
On List Colouring and List

Homomorphism of Permutation and

Interval Graphs

Jessica Enright1, Lorna Stewart1, and Gábor Tardos2

1 University of Alberta
2 Simon Fraser University and Rényi Institute

Abstract. List colouring is an NP-complete decision problem even if
the total number of colours is three. It is hard even on planar bipar-
tite graphs. We give a polynomial-time algorithm for solving list colour-
ing of permutation graphs with a bounded total number of colours.
More generally we give a polynomial-time algorithm that solves the list-
homomorphism problem to any fixed target graph for a large class of
input graphs including all permutation and interval graphs.

1 Introduction

A proper colouring of a graph assigns colours to the vertices such
that adjacent vertices receive distinct colours. (In this paper we deal
only with vertex colourings.) The k-colouring problem asks if a given
graph has a proper colouring with at most k colours. For k ≥ 3 this
is NP-complete.

In the list colouring problem each vertex of the input graph comes
with a list of allowed colours and we ask if a proper colouring exists
where each vertex receives a colour from its list. As a generalization
of ordinary colouring, it is NP-complete [8]. List colouring remains
hard even on interval graphs [1], as well as split graphs, cographs,
and bipartite graphs [7]. It is solvable in polynomial time on trees
[7].

Kratochv́ıl and Tuza [10] showed that list colouring is NP-complete
even if the size of each list assigned to a vertex is at most three, each
colour appears in at most three lists, each vertex in the graph has
degree at most three, and the graph is planar. However, they gave
polynomial-time algorithms to solve list colouring on a graph if the
maximum list size is at most two, or each colour appears in at most
two lists, or each vertex has degree at most two.

Let k-list colouring stand for the list colouring problem where
the total number of colours is bounded by the constant k. This is
a generalization of k-colouring, thus for k ≥ 3 it is NP-complete. It
remains NP-complete on planar bipartite graphs [9], but is solvable
in polynomial time on graphs of fixed treewidth [6].

Note that 2-list colouring is solvable in polynomial time. Indeed,
2-colouring is solvable in polynomial time and has at most two (com-
plementary) solutions on each connected component. Thus, for the
2-list colouring problem it is enough to check that one of these is
compatible with the lists on each component.

A graph homomorphism from a graph G to another graph H is
a function f : V (G) → V (H) satisfying that f(x) and f(y) are
adjacent in H whenever x and y are adjacent in G. Note that here
we allow the graphs to have loops.

Let H be fixed graph. The H-colouring problem takes a graph G

as input and asks if there is G to H homomorphism. In the list H-
colouring problem each vertex of the input graph comes with a list
of vertices of H and we ask if a G to H homomorphism exists that
maps each vertex to a member of its list. Clearly, k-colouring is a
graph-homomorphism to the complete graph Kk, so list H-colouring
is a generalization of k-list colouring.

Permutation graphs are comparability cocomparability graphs
(see definitions in the next section). List colouring is NP-complete on
permutation graphs since cographs are permutation graphs [7]. The
k-list colouring problem is NP-complete for comparability graphs for
k ≥ 3, since bipartite graphs are comparability graphs. The complex-
ity of k-list colouring of cocomparability graphs remains open.

In this paper we give a polynomial-time algorithm for the k-list
colouring of permutation graphs for any fixed k. More generally we
give a polynomial-time algorithm that solves the list-homomorphism
problem to any fixed target graph for permuatation graphs. The
same algorithm also works for interval graphs and more.

Our algorithm is based on what we call a multi-chain ordering

(see definition in the next section), a notion related to chain graphs
[13] and to a characterization of bipartite permutation graphs given
in [4]. The algorithm applies to every graph with all connected in-
duced subgraphs having a multi-chain ordering, among them all
permutation graphs and all interval graphs. We also remark that

since adding loops to a graph does not have any effect on the multi-
chain ordering, our algorithm also applies to interval and permuta-
tion graphs with loops added to some vertices. The running time for
k-list colouring, or more generally, for list H-colouring for a graph
H on k vertices is O(nk2

−3k+4), where n stands for the number of
vertices of the input graph.

Hoàng et al. [5] give an algorithm for k-list colouring P5-free
graphs in polynomial time. Their algorithm, like ours, is based on
how colouring of one side of the bipartition of a chain graph can
restrict the coloring of the other side, and noticing that there are
only a polynomial number of possible such restrictions.

We mention here that a polynomial-time k-list colouring algo-
rithm for interval graphs cannot be considered new. Indeed, another
polynomial-time algorithm already exists for list H-colouring graphs
with bounded treewidth. The treewidth of an interval graph is one
less than the size of its largest clique. Thus, unless it is bounded one
does not have a proper colouring with a bounded number of colours.
The same cannot be said about permutation graphs though. Even
bipartite permutation graphs have unbounded treewidth.

Multi-chain orderings are based on distance from a starting ver-
tex. They give insight into the structure of permutation or interval
graphs, and may lead to algorithms for other problems on these or
similar graphs.

2 Definitions and Preliminaries

We consider finite graphs only with no multiple edges. We allow for
loop edges connecting a vertex to itself and call a graph simple if it
has no such edge. (Loop edges in the input graph only make sense
for the list H-colouring problem if H has at least one loop, so in
particular, not for k-list colouring.) We represent graphs as a pair
G = (V,E), where V = V (G) is the vertex set and E = E(G) is the
edge set. We denote the edge connecting x to y by xy, so xy = yx.
In a directed graph we have ordered pairs of vertices as edges and
denote such an edge as −→uv saying it leaves the vertex u and is ori-
ented toward the vertex v. A sink is a vertex that no edge leaves.
A directed graph is transitive if the presence of the edges −→uv and
−→vw implies the presence of −→uw. An orientation of the simple graph

G = (V,E) is a directed graph G = (V,
−→
E), where

−→
E is obtained

by replacing each edge {u, v} ∈ E by one of its orientations: −→uv

or −→vu but not both. A comparability graph is a simple graph that
admits a transitive orientation. Equivalently, a graph is a compara-
bility graph if there is a partial order on the vertices with exactly
the adjacent (distinct) vertices being comparable. The complement

of the simple graph G = (V,E) is G = (V,E), where E contains all
possible non-loop edges on V not in E. We sometimes call the edges
of G the nonedges of G. A cocomparability graph is a graph whose
complement is a comparability graph. Graphs that are simultane-
ously comparability and cocomparability graphs are called permuta-

tion graphs. Permutation graphs are exactly the graphs G = (V,E)
that are obtained from a permutation π : {1, . . . , n} → {1, . . . , n}
by setting V = {x1, . . . , xn} and E = {xixj | i < j, π(i) < π(j)}.
A simple graph is an interval graph if one can identify its vertices
with real intervals such that two vertices are adjacent if and only if
the corresponding intervals intersect. Such intervals can always be
chosen to have distinct endpoints. Weakly chordal graphs are simple
graphs with no induced Cn or Cn, for n > 4.

Let G = (V,E) be a graph. A list mapping of G is a mapping
that assigns a set (list) of colours to each vertex in G. A colouring of
G obeys a list mapping if it assigns every vertex a colour from its list.
More generally, if the graph H is fixed a list mapping of G assigns a
subset of V (H) (a list) to every vertex of G. A homomorphism from
G to H obeys the list mapping if each vertex is mapped to member
of its list.

A chain graph is a bipartite graph that contains no induced 2K2.
This name was introduced by Yannakakis [13]. The following charac-
terization is easily seen to be equivalent to the definition. A bipartite
graph with sides (partite sets) A and B is a chain graph if and only
if for any two vertices in A the neighborhood of one of them contains
the neighborhood of the other. As a consequence we see that if we
order the vertices of B according to decreasing degree (breaking ties
arbitrarily), then the neighborhood of any vertex in A consists of a
consecutive (in the ordering) set of vertices in B, including the first
vertex of B.

Let G = (V,E) be a connected graph. The distance layers of G

from a vertex v0 are {v0} = L0, L1, . . . , Lz, where Li consists of the

vertices at distance i from v0 and z is the largest integer for which
this set is not empty. These layers form a multi-chain ordering of G

if for every two consecutive layers Li and Li+1 the edges connecting
these two layers form a chain graph.

Our algorithm processes each connected component of the input
graph separately. It is based on multi-chain orderings of the com-
ponents and uses the following simple properties of such orderings:
(a) H-colouring of one layer in a multi-chain ordering has limited
effect on the colouring of the next layer and no direct effect on sub-
sequent layers and (b) each layer has a vertex that is adjacent to
all vertices in the next layer, thus if this vertex is mapped to c then
all non-neighbours of c will be missing from the H-colouring of the
next layer, practically reducing the size of H. Note that (b) does
not apply if H has a vertex c that is adjacent to every vertex of H

including itself. Fortunately this easy special case can be handled by
alternate methods.

Lemma 1. Let
−→
G = (V,

−→
E) be a transitive orientation of a con-

nected comparability graph G = (V,E). Let v0 ∈ V be a sink in
−→
G and let L0, . . . , Lz be the distance layers of G from v0. Then for

0 ≤ i < z all edges of
−→
E between the vertices of two consecutive

layers Li and Li+1 are oriented toward Li if i is even and all these

edges are oriented toward Li+1 if i is odd.

Proof. We proceed by induction on i. For i = 0 the statement of
the lemma holds since v0 is a sink. Each u ∈ Li for i > 0 has a
neighbour u′ ∈ Li−1, and an edge between u and Li+1 oriented “the
wrong way” would imply the presence of an edge between u′ and
Li+1 by transitivity, a contradiction. �

Lemma 2. Let
−→
G = (V,

−→
E) be a transitive orientation of the com-

plement of a connected comparability graph G = (V,E). Let v0 ∈ V

be a sink in
−→
G and let L0, . . . , Lz be the distance layers of G from the

vertex v0. Then for every pair of layers Li, Lj where 0 ≤ i < j ≤ z

all edges of
−→
G between Li and Lj are directed toward Li.

Proof. We proceed by induction on i. For i = 0 the statement fol-
lows from v0 being a sink. Let us consider i > 0 and assume for

contradiction that −→uv is an edge of
−→
G with u ∈ Li and v ∈ Lj, j > i.

Now v is not adjacent in G to any vertex u′ ∈ Li−1, so by the induc-

tion hypothesis we have
−→
vu′ ∈

−→
E and by transitivity

−→
uu′ ∈

−→
E . But

this contradicts the fact that u has a neighbour u′ ∈ Li−1 in G, so
no orientation of an edge between u and this neighbour should be

present in
−→
G . �

Theorem 1. Every connected permutation graph has a multi-chain

ordering.

Proof. Let G = (V,E) be a permutation graph and let
−→
G be a

transitive orientation of G and
−→
G a transitive orientation of the

complement of G.

Let v0 be a vertex that is a sink in both of the graphs
−→
G and

−→
G ,

the existence of which is shown in [12]. We claim that the distance
layers L0, . . . , Lz of G from v0 form a multi-chain ordering. To see
this assume for a contradiction that u, v ∈ Li and u′, v′ ∈ Li−1 are
vertices of two neighbouring layers and u is adjacent with u′ but not
with v′ in G and v is adjacent with v′ but not with u′. We distinguish
two cases according to whether u and v are adjacent in G.

Assume first that u and v are adjacent and assume without loss

of generality that this edge is oriented toward v in
−→
G . By Lemma

1, either both the edge between u and u′ and between v and v′

are oriented toward Li, or both are oriented toward Li−1. In the

former case we should have
−→
u′v ∈

−→
E by transitivity, contradicting

our assumption that v is not adjacent with u′ in G. In the latter case

we similarly have
−→
uv′ ∈

−→
E , again a contradiction.

Now assume that u and v are not adjacent in G and assume
without loss of generality that this nonedge is oriented toward v in
−→
G . By Lemma 2, the nonedge between v and u′ is oriented toward u′

in
−→
G . By transitivity we have

−→
uu′ ∈

−→
E contradicting our assumption

that u and u′ are adjacent in G. �

Not every graph with a multi-chain ordering is a permutation
graph. Further examples are given by interval graphs as shown by
the next theorem. In addition, Cn and Cn where n > 4, and the
graph T defined as K1,3 with each edge subdivided once, do not have

multi-chain orderings. Therefore, there are cocomparability graphs
and even trees that do not have multi-chain orderings. Moreover, any
graph such that all induced subgraphs have multi-chain orderings
must be a weakly chordal graph, but not all weakly chordal graphs
have multi-chain orderings. We also note that the complement of the
graph T is a cocomparability graph that is neither a permutation
graph nor an interval graph, in which every connected subgraph has
a multi-chain ordering. For further information about these graph
classes, the reader is referred to [3].

Theorem 2. All connected interval graphs admit multi-chain order-

ings.

Proof. Consider an interval representation in which all interval end-
points are distinct. We can choose v0 to be the vertex with the left-
most left endpoint. One can find reals x0 < x1 . . . such that the
layer Li of G at distance i from v0 consists of the vertices with left
endpoint in (xi−1, xi]. To see that these layers form a multi-chain
ordering of G take two vertices (intervals) in Li and let u be the one
with its left end point more to the left, and v the other. Clearly, all
intervals in Li−1 intersecting v must also intersect u. �

Our list H-colouring algorithm works for every graph whose con-
nected induced subgraphs all have multi-chain orderings, and it runs
in polynomial time as long as H is fixed. The last two theorems show
that this class includes all permutation and interval graphs (and the
graphs obtained from them by adding some loops). Restricting at-
tention to complete graphs H = Kk we get polynomial-time k-list
colouring algorithms.

Given a connected graph G and vertex v of G, we can check
whether the distance layers from starting vertex v form a multi-
chain ordering in O(m) time where m is the number of edges of G.
The algorithm for doing so uses breadth-first search to generate the
distance layers from v and to compute the degree of each vertex in
the next layer. It then uses bucket sort to order the vertices of each
layer by decreasing size of their neighbourhood in the previous layer.
Finally it checks that for each vertex it holds that its neighbours in
the next layer appear in the beginning of that layer before the non-
neighbours. Each step can be accomplished in O(m) time.

As a naive algorithm to check if a connected graph has a multi-
chain ordering, and generate it if it does, we can start a breadth-first
search from each vertex, and check to see if that search has given
us a multi-chain ordering in O(nm) time overall. In some classes,
for example permutation graphs, this can be done more quickly. In
the case of permutation graphs, we can use the output of the linear-
time recognition algorithm provided by McConnell and Spinrad [11]
to identify a vertex that is a sink in some transitive orientation of
both the graph and its complement. We can then generate the dis-
tance layers from this vertex in O(m) time which is a multi-chain
ordering as the proof of Theorem 1 shows. Similarly, several linear
time algorithms exist to find a “leftmost” vertex in a interval graph,
the earliest one being [2]. The distance layers can be constructed
from there in linear time. As the proof of Theorem 2 shows this is a
multi-chain ordering.

3 The algorithm

In this section we present our algorithm to list H-colour any graph
with the property that all connected induced subgraphs have multi-
chain orderings. The algorithm runs in polynomial time if H is fixed.
Since the algorithm handles connected components separately, we
consider only connected graphs in the following description.

Let G = (V,E) be a connected graph and let L0, . . . , Lz form a
multi-chain ordering of G. For x ∈ Li we introduce d−(x) for the
number of neighbours of x in Li−1 (or 0 if i = 0) and d+(x) for
the number of neighbours of x in Li+1 (or 0 if i = z). We fix an
ordering of the vertices within each layer according to decreasing d−

values breaking ties arbitrarily. As observed in the definition of chain
graphs, this ordering ensures that the neighbours of a vertex x ∈ Li

among the vertices of the next layer Li+1 must be the first d+(x)
vertices in that layer.

Let us fix the target graph H with vertex set C = V (H). Let P
be a list mapping of G, so P(x) ⊆ C for every vertex x ∈ V .

A configuration is a pair (i, B), where 1 ≤ i ≤ z and B : C →
{0, 1, . . . , |Li|} satisfying that B takes both 0 and |Li| as values. We
introduce two more special configurations: S0 = (0, B0) and Sz+1 =
(z + 1, B0), where B0 : C → {0} is the constant zero function.

These configurations form the vertices of the configuration graph.
This is a directed graph that contains the edge from (i, B) to (i′, B′)
if i′ = i+1 and there is a homomorphism χ from the subgraph Gi of
G induced by the layer Li to H providing for this edge, i.e., satisfying
the following three conditions:

– χ obeys P , i.e., for x ∈ Li we have χ(x) ∈ P(x).
– χ does not assign c ∈ C to the first B(c) vertices in Li (recall

that Li is ordered).
– For each x ∈ Li and c ∈ C with c not adjacent to χ(x) in H we

have B′(c) ≥ d+(x).

We call a vertex of the graph H universal if it is connected to
every vertex of H. In particular, a universal vertex must be connected
to itself too. The importance of the configuration graph is shown by
the following theorem.

Theorem 3. Assume H has no universal vertex. Then G has a ho-

momorphism to H obeying P if and only if there exists a directed

path from S0 to Sz+1 in the configuration graph.

Proof. Assume χ : V → C is a homomorphism from G to H obeying
P . For 1 ≤ i ≤ z define the function Bi on C by setting Bi(c) to be
the largest integer 0 ≤ Bi(c) ≤ |Li| satisfying that χ does not map
any of the first Bi(c) vertices of Li to c. Clearly, Bi takes the value 0
on χ(x) for the first vertex x of Li. We know that the vertices in the
layer Li have a common neighbour y in Li−1. As χ(y) is not universal
in H there must exist c ∈ C not adjacent to χ(y) and thus χ cannot
take the value c on any neighbour of y making Bi(c) = |Li|. Thus
Si = (i, Bi) is a configuration. We claim that S0S1 . . . SzSz+1 is a
directed path in the configuration graph. Indeed, for 0 ≤ i ≤ z the

restriction of χ to Li provides for the edge
−−−−→
SiSi+1. Conditions (1) and

(2) are satisfied trivially; to see (3) one has to use our observation
that the neighbours in Li+1 of any vertex x ∈ Li are the first d+(x)
vertices of that layer.

Conversely, let us assume that there is a directed path from S0

to Sz+1 in the configuration graph. By the layered structure of the
configuration graph this path must be of the form S0S1 . . . SzSz+1

with Si = (i, Bi) and appropriate functions Bi. For 0 ≤ i ≤ z let

χi : Li → C be a homomorphism providing for the
−−−−→
SiSi+1 edge and

let χ : V → C be the union of these maps. We claim that χ is a G

to H homomorphism obeying P .
The function χ obeys P since all its parts χi do so by condition

(1).
To see that χ is a homomorphism we have to show that the

image of every edge xy ∈ E is an edge in H. Clearly, x and y have
to come from the same or neighbouring layers. If they are in the
same layer Li, then χ(x)χ(y) = χi(x)χi(y) ∈ E(H) because χi is
a homomorphism. Now assume that for some 0 ≤ i < z we have
vertices x ∈ Li and y ∈ Li+1 such that their images χ(x) = χi(x)
and χ(y) = χi+1(y) are not adjacent in H. By condition (2) χi+1

does not map the first Bi+1(χ(y)) vertices of Li+1 to χ(y). Thus y

is not among the first Bi+1(χ(y)) vertices of Li+1. By condition (3)
on χi we have Bi+1(χ(y)) ≥ d+(x), so y is not among the first d+(x)
vertices of Li+1, so it is not adjacent to x as needed. �

Our next theorem tells us how to construct the configuration
graph, more precisely, how to decide whether an edge is present. Let
us fix two configurations S = (i, B) and S ′ = (i + 1, B′). Let Gi

be the subgraph of G induced on the layer Li and let us define a
list mapping P ′ on Gi as follows. For 1 ≤ j ≤ |Li| let xj stand for
the j’th vertex in the layer Li and let us set P ′(xj) = {c ∈ P(xj) |
B(c) < j,∀c′ ∈ C(d+(xj) ≤ B′(c′) or cc′ ∈ E(H))}.

Theorem 4. With S, S ′, Gi and P ′ as above there is an edge from S

to S ′ in the configuration graph if and only if Gi has a homomorphism

to H obeying P ′.

Proof. Any homomorphism providing for
−→
SS ′ obeys P ′ by the condi-

tions (1–3). Conversely any homomorphism from Gi to H that obeys
P ′ provides for this edge. �

We now present our algorithm for the list H-colouring problem
for graphs with all connected induced subgraphs having a multi-
chain ordering.

Algorithm 1 LH(G, P , H)

Input: Graphs G, H, list mapping P where every connected induced subgraph of G
must have a multi-chain ordering
Output: TRUE if there is a homomorphism from G to H obeying P; FALSE oth-
erwise

Let H ′ be the subgraph of H induced by vertices that appear in at least one list of
P.
if H ′ 6= H then return LH(G, P, H ′)
end if

if H has a universal vertex c then

Let G′ be the subgraph of G induced by the vertices x with c /∈ P(x)
and let P ′ be the restriction of P to this subgraph. return LH(G′,H,P ′)

end if

if G has a single vertex then

if H has a loop or G has no loop and H has at least one vertex then return

TRUE
elsereturn FALSE
end if

end if

for each connected component D = (V, E) of G do

if H has at most two vertices then

Find all (the at most two) homomorphisms from D to H.
if at least one of the homomorphisms obeys P then

cD ← TRUE
else

cD ← FALSE
end if

else

Find a multi-chain ordering L0, . . . , Lz of D and order the vertices of
each layer by decreasing size of neighbourhood in the next layer.

Initialize the directed configuration graph to have a vertex for each
configuration of this multi-chain ordering including S0 and Sz+1.

for i← 0 to z − 1 do

Let Di be the subgraph of D induced by Li.
for each pair of configurations S = (i, B) and S′ = (i + 1, B′) do

Construct a list mapping P ′ for Di as follows.
for j ← 1 to |Li| do

Let xj stand for the j’th vertex in the layer Li.
P ′(xj)← {c ∈ P(xj) | B(c) < j,
∀c′ ∈ V (H)(d+(xj) ≤ B′(c′) or cc′ ∈ E(H))}

end for

if LH(Di, P
′, H) = TRUE then

Add edge
−−→
SS′ to the configuration graph

end if

end for

end for

Algorithm 1 LH(G, P , H) (continued)
if there is a directed path from S0 to Sz+1 in the configuration graph then

cD ← TRUE
else

cD ← FALSE
end if

end if

end for

if cD = TRUE for all components D of G then return TRUE
elsereturn FALSE
end if

We are given a fixed graph H, an input graph G and the list
mapping P . We start with very simple reductions.

If H has a universal vertex c, then consider the subgraph G′ of
G induced by the vertices whose lists do not contain c. Clearly, G

has a homomorphism to H obeying P if and only if G′ has such a
homomorphism as the vertices outside G′ can “freely” be mapped to
c.

Let H ′ stand for the subgraph of H induced by all the vertices
that appear in the lists in P . Clearly, G has a homomorphism to H

obeying P if and only if G has a homomorphism to H ′ obeying P .

G has homomorphism to H obeying P if and only if all connected
components of G have homomorphisms to H obeying P .

We use the these reductions (repeatedly, if necessary) until we
arrive at a problem in which G is connected, H has no universal
vertex and each vertex of H appears on a list of P .

Start by constructing the layers L0, . . . , Lz of a multi-chain order-
ing of G with the corresponding ordering of the vertices within the
layers according to decreasing d− degrees. Construct the configura-
tions for this multi-chain ordering including S0 and Sz+1. Construct
the edges of the configuration graph using a recursive call to check
for the presence of each possible edge using the equivalent condition
as given in Theorem 4. Return TRUE if there is directed path from
S0 to Sz+1 in the configuration graph and return FALSE otherwise.

Note that the recursive calls to determine the presence of an
edge from the configuration (i, B) to (i + 1, B′) is simpler than the
original problem instance. Indeed, it is a list H-colouring problem
for Gi and Gi has a single vertex for i = 0, while for i > 0 we have a

vertex c of H with B(c) = |Li| and this vertex does not show up in
any of the lists — basically decreasing the number of vertices in the
target graph H. To give base to this recursion we solve the trivial
instances directly: If either G or H has a single vertex, deciding the
list H-colouring problem for G becomes trivial. We can also handle
the case where H has two vertices directly. If the two vertices are not
adjacent in H, we must map each connected component of G to one
or the other vertex. If the two vertices of H are connected and there
is no loop in H we face a 2-list colouring problem already discussed
in the introduction. Finally if the two vertices of H are connected
and there is also a loop in H, then H has a universal vertex and
list H-colouring reduces to list H ′-colouring with H ′ having a single
vertex.

Using Theorems 3 and 4 it is straightforward to see that the
above algorithm correctly answers the question whether G has a
homomorphism to H obeying P .

It is a bit more involved to estimate the running time. Let k and
n stand for the number of vertices in H and G. We claim the the
running time of the algorithm is O(nk2

−3k+4) (the constant of pro-
portionality depends on k). We prove this statement by induction on
k. For k ≤ 2 the algorithm clearly finishes in time O(n2). Let us as-
sume k > 2. If H has a universal vertex our reduction reduces list H-
colouring to a single list H ′-colouring instance with H ′ having fewer
vertices. If H has no universal vertex we split G into connected com-
ponents, find the multi-chain ordering of each component and build
the configuration graphs corresponding to them. The number of con-
figurations for a fixed layer Li of a single component is O(|Li|

k−2)
because the value of the function B in a configuration (i, B) is ar-
bitrary for k − 2 vertices of H, but it has to be either 0 or |Li| for
two. So the number of configurations for all connected components
together can be bounded by O(nk−2) and the number of potential
edges (the number of recursive calls on the top level) is O(n2k−4). In
a recursive call to test the presence of an edge in the configuration
graph one uses a list mapping that avoids at least one vertex of H

completely, so the inductive hypothesis can be used for k − 1. The
only exception to this rule is the test for an edge leaving the configu-
ration S0 of one of the components, but there the recursive call is for
a trivial graph on |L0| = 1 vertices. These trivial recursive calls take

constant time, the other recursive calls take O(n(k−1)2−3(k−1)+4) time,
so all recursive calls finish in O(n2k−4n(k−1)2−3(k−1)+4) = O(nk2

−3k+4)
time. This huge time bound clearly dominates the time of the non-
recursive part of the algorithm.

4 Conclusion

We have given a polynomial-time algorithm to solve the list H-
colouring problem for fixed H if every connected induced subgraph of
the input graph has a multi-chain ordering. Every connected permu-
tation or interval graph has a multi-chain ordering, so this algorithm
works for permutation and interval graphs.

References

1. Milos Biro, Mihaly Hujter, and Zsolt Tuza. Precoloring extension. i. interval
graphs. Discrete Mathematics, 100(1):267–279, 1992.

2. Kellogg S. Booth and George S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer

and System Sciences, 13(3):335–379, 1976.
3. Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A

Survey. SIAM, 1999.
4. Andreas Brandstädt and Vadim V. Lozin. On the linear structure and clique-width

of bipartite permutation graphs. Ars Combinatoria, 67:273–281, 2003.
5. Ch́ınh Hoàng, Marcin Kamiński, Vadim Lozin, Joe Sawada, and Xiao Shu. De-

ciding k-colorability of p5-free graphs inpolynomial time. Algorithmica, 57:74–81,
2010. 10.1007/s00453-008-9197-8.

6. Mihaly Hujter and Zsolt Tuza. Precoloring extension 3: Classes of perfect graphs.
Combinatorics, Probability & Computing, pages 35–56, 1996.

7. Klaus Jansen and Petra Scheffler. Generalized coloring for tree-like graphs. Dis-

crete Applied Mathematics, 75(2):135 – 155, 1997.
8. Tommy R. Jensen and Bjarne Toft. Graph Coloring Problems. John Wiley & Sons,

New York, NY, USA, 1994.
9. Jan Kratochv́ıl. Precoloring extension with fixed color bound. Acta Math. Univ.

Comen., 62:139–153, 1994.
10. Jan Kratochv́ıl and Zsolt Tuza. Algorithmic complexity of list colorings. Discrete

Applied Mathematics, 50(3):297–302, 1994.
11. Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive

orientation. Discrete Mathematics, 201(1-3):189 – 241, 1999.
12. Amir Pnueli, Abraham Lempel, and Shimon Even. Transitive orientation of graphs

and identification of permutation graphs. Canadian Journal of Mathematics,
23:160–175, 1971.

13. Mihalis Yannakakis. The complexity of the partial order dimension problem. SIAM

Journal on Algebraic and Discrete Methods, 3:351–358, 1982.

