
Piercing quasi-rectangles—

On a problem of Danzer and Rogers

János Pach
∗
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Abstract

It is an old problem of Danzer and Rogers to decide whether it is possible to
arrange O( 1

ε
) points in the unit square so that every rectangle of area ε > 0 within

the unit square contains at least one of them. We show that the answer to this
question is in the negative if we slightly relax the notion of rectangles, as follows.

Let δ be a fixed small positive number. A quasi-rectangle is a region swept
out by a continuously moving segment s, with no rotation, so that throughout the
motion the angle between the trajectory of the center of s and its normal vector
remains at most δ. We show that the smallest number of points needed to pierce all
quasi-rectangles of area ε > 0 within the unit square is Θ

(

1

ε
log 1

ε

)

.

1 Introduction

An old problem of Danzer and Rogers [Mo85, BeC87, CrFG91, BrC97] is the following:
What is the area of the largest convex region not containing in its interior any one of n
given points in a unit square? Vertical lines through the points partition the square into
n + 1 rectangles. At least one of these rectangles has area at least 1

n+1 , so this is clearly
a lower bound. Can the order of magnitude of this bound be improved for all point sets,
as n tends to infinity? We do not know. In 1982, Moser [Mo85] reported only a fairly

weak upper bound, O
(√

log n
n3/4

)

, due to Fan Chung. Since then, the problem has been

analyzed a little better. To explain the new developments, we need some preparation.

It is more convenient to rephrase the question as follows. Given ε > 0, what is
the size of the smallest set of points with the property that every convex set of area ε
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within the unit square contains at least one of them. Denoting this minimum by f(ε),
we clearly have f(ε) = Ω(1/ε). The question is whether f(ε) = O(1/ε) holds.

This problem can be regarded as a continuous version of the ε-net problem in an
infinite range space (N,R), where the ground set N is the unit square, the ranges R ∈ R
are convex subsets of N , and we want to “hit” every range R with |R ∩ N | = |R| ≥
ε|N | = ε, where |.| stands for the Lebesgue measure (area). A subset of N that intersects
every such range is said to be an ε-net for the range space (N,R).

A subset A of a ground set X is called shattered by the family R if for every subset
B ⊆ A, one can find a range RB ∈ R with RB ∩A = B. The size of the largest shattered
subset A ⊆ X, is said to be the Vapnik-Chervonenkis dimension (or VC-dimension)
of the range space (X,R) (see [VaC71, PaA95, Ch00]). It follows from the celebrated
results of Haussler and Welzl [HaW87] that every range space of VC-dimension at most
∆ admits an ε-net of size O

(

∆
ε log ∆

ε

)

.
We apply these ideas to our original problem. The area of the largest rectangle

contained in a plane convex set R is at least half of the area of R [Ra52]. Thus, in order
to hit (pierce) all plane convex sets of area ε in the unit square, it is sufficient to find an
ε/2-net for all rectangles. The family of rectangles has bounded VC-dimension ∆ < 10.
Therefore, the theorem of Haussler and Welzl implies that f(ε) = O

(

1
ε log 1

ε

)

.

It has been known for a long time that, in the “abstract” combinatorial setting, the
logarithmic factor in the Haussler-Welzl theorem cannot be removed [PaW90, KoPW92].
More recently, following the work of Alon [Al10], the present authors constructed a
variety of geometric range spaces with the same property [PaT11].

Nevertheless, it is perfectly possible that f(ε) = O
(

1
ε

)

, that is, all rectangles of area
at least ε > 0 in the unit square can be pierced by O

(

1
ε

)

points.
The aim of the present note is to show that, if we slightly enlarge the family of

rectangles, by including “quasi-rectangles,” then O
(

1
ε

)

points do not suffice.

A rectangle is a region swept out by a line segment s moving orthogonally to itself. If
we continuously translate s almost orthogonally to itself, without rotating it, so that the
angle between s and the trajectory of its center always remains between 90−δ and 90+δ
degrees for a fixed small δ > 0, then we call the resulting region a quasi-rectangle. To
be concrete, set δ = 1◦. The motion of the segment s is supposed to be monotone in the
direction orthogonal to it, so that the segment is not allowed to turn back. Therefore,
the area of a quasi-rectangle is equal to the length of s multiplied by the distance it
traveled in the direction orthogonal to s.

A quasi-rectangle is not necessarily convex, but it is “almost” convex. Although the
VC-dimension of the family of quasi-rectangles is unbounded, it is not hard to see that
all quasi-rectangles of area ε inside the unit square can be stabbed by O

(

1
ε log 1

ε

)

points.
(See Lemma 2.) Our main theorem shows that this bound is tight up to a constant
factor.

2



< δ

Figure 1: A quasi-rectangle.

Theorem 1 For any ε > 0, let F (ε) denote the smallest number of points in a set with
the property that every quasi-rectangle of area ε inside the unit square contains at least
one of them. We have F (ε) = Θ

(

1
ε log 1

ε

)

.

2 Quasi-rectangles—Proof of Theorem 1

Let N = [0, 1] × [0, 1] denote the unit square. For any integer k ≥ 6, define a set of
O(k2k) points in N , as follows. Let

Sk =
{

(a/2i, b/2k−i) | 0 ≤ i ≤ k, 0 ≤ a ≤ 2i, 0 ≤ b ≤ 2k−i
}

,

where i, a, and b are integers.

Lemma 2 Every quasi-rectangle Q ⊂ N of area 29−k contains at least one point of Sk.
Setting k =

⌈

log 1
ε

⌉

+ 9, this yields

F (ε) ≤ |Sk| = O

(

1

ε
log

1

ε

)

.

Proof. Let Q ⊂ N be a quasi-rectangle of area 29−k. We can choose a quasi-rectangle
Q′ ⊆ Q of area at least 26−k such that the length of the segment s generating it is at
most 22−k/2. Indeed, if the original segment s0 generating Q satisfies |s0| ≤ 22−k/2, then
Q′ = Q will do. If 22−k/2 < |s0| ≤ 25−k/2, then a subsegment s ⊂ s0 of length 22−k/2 will
sweep at least 1/8th of the area of Q, forming a suitable quasi-rectangle Q′. Finally, if
|s0| > 25−k/2, then we choose Q′ to be a rectangle. In this case, Q contains a symmetric
trapezoid on the base s0 with altitude 29−k/|s0| and with angles 89◦ at s0. Within this
trapezoid, we can find a rectangle R with one side, s1, of length 29−k/|s0| and area at
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least 28−k. In case |s1| ≤ 22−k/2, we can pick Q′ = R with s = s1. Otherwise, let s
be a subinterval of s1 with length 22−k/2 and let Q′ be the part of R generated by s.
Obviously, the area of Q′ is at least one quarter of the area of R.

Suppose by symmetry that the angle between s and the x-axis is at most 45◦. Let i be
the smallest integer with 21−i ≤ |s|. Clearly, we have |s| < 22−i. The distence between
the starting and ending positions of the interval s sweeping Q′ is at least 26−k/|s|, thus
the vertical component of the motion is at least

cos 46◦ · 26−k/|s| > 2|s| + 1/2k−i.

This implies that during its motion the segment s must pass from one side of a horizontal
line of the form y = b/2k−i to the other side. According to the definition of i, we have
|s| ≥ 2/2i. Since the motion of s was almost orthogonal to itself, during the process s
must have passed through a point of the form (a/2i, b/2k−i) ∈ Sk. This point belongs
to Q′ ⊆ Q. 2

The lower bound on F (ε) stated in Theorem 1 is an easy corollary of the following
result.

Lemma 3 Let k > 1, and let S be a set of points in the unit square, with |S| ≤ k2k/320.
Then there exist an i (k/2 ≤ i ≤ k) and a sequence of axis-parallel closed squares
N1, N2, . . . , N22i−k ⊂ N of side length 2−i, satisfying the following conditions.

1. Nj ∩ S = ∅ for every j (1 ≤ j ≤ 22i−k).

2. For every j (1 ≤ j < 22i−k), the square Nj+1 can be obtained from Nj by translating
it by a distance 2−i in the positive direction parallel to one of the coordinate axes.

Before turning to the proof of Lemma 3, we show how it implies Theorem 1.

Proof of Theorem 1 (using Lemma 3). A δ-quasi-rectangle is a set swept out by a
segment s moving without rotation almost orthogonally to itself, in the sense that the
angle between s and the trajectory of its center remains between 90 − δ and 90 + δ
degrees.

Let N∗ = N1 ∪ N2 ∪ . . . ∪ N22i−k , where i and Nj denote the same objects as in
Lemma3. We claim that N∗ contains a 45◦-quasi-rectangle generated by a segment
parallel to the x + y = 0 line, whose area is at least half of the area of N∗. Indeed,
the whole area of N∗, with the exception of the lower left corner of N1 and the upper
right corner of N22i−k , can be swept out by the diagonal of N1 moving either vertically
or horizontally. This region is a 45◦-quasi-rectangle and contains at least half of N∗ if
i > k/2. In the extremal i = k/2 case we have N∗ = N1 and the square determined by
the midpoints of the edges of N1 will do.
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Thus, Lemma 3 implies that F (ε) = Ω
(

1
ε log 1

ε

)

holds for this relaxed definition of
quasi-rectangles.

To complete the proof for any δ > 0, choose an affine transformation τ : N → N
which maps N into a rhombus with smaller angle 2δ. If |S| ≤ k2k/320, then applying
Lemma 2 to the set S′ = τ−1(S), we obtain a “path” N∗ ⊆ N which evades all elements
of S′ and has area Ω(2−k). However, this means that the set τ(N∗) ⊆ N is disjoint from
S and contains a δ-quasi-rectangle whose area is at least half of the area of τ(N∗). The
area of this quasi-rectangle is Ω(2−k), where the constant factor hidden in the Ω-notation
depends on the mapping τ (and hence on δ). Therefore, we have F (n) = Ω

(

1
ε log 1

ε

)

, for
any fixed δ > 0, as required. 2

For the proof of Lemma 3, we need some preparation. Let S ⊂ N be a finite set of
points.

Fix a positive integer i, and place a square grid on the plane, parallel to the coordinate
axes, so that every elementary square (cell) has side length 2−i. For every cell T and any
integers a and b, let T + (a, b) denote the cell obtained from T by a translation by the
vector (a/2i, b/2i). A sequence of cells T1, T2, . . . , Tk is called a path if Tj+1 = Tj +(1, 0)
or Tj+1 = Tj + (0, 1) for every 1 ≤ j < k. The length of a path is the number k of cells
in it. In notation, a path will often be identified with the union of its cells and it will be
called empty if it is contained in the unit square N but contains no point from S. Note
that we treat all points outside N the same way as the points in S leading to the notion
that a path is not empty unless it is contained in N .

A detour for a cell T is a path, which consists of the cells T + (−a, j) and T + (j, a),
where a is a fixed nonnegative integer and j runs through the integers with −a ≤ j ≤ a.
Notice that, by this definition, a single cell T is also considered a detour for itself (with
a = 0). We call this detour trivial. Every other detour is nontrivial. A path consisting
of the cells T0 + (j, j) for 0 ≤ j ≤ c and T0 + (j + 1, j) for 0 ≤ j < c is called a staircase
starting at T0. Note that the length of a staircase and the length of a detour are always
odd.

Lemma 4 Let S be a set of points in the unit square N . If each cell of a staircase Σ
admits an empty detour, then there exists an empty path whose length is the same as
that of Σ.

Proof. Let us choose an empty detour for each cell in Σ. We construct the empty path
as the upper envelope (in a diagonal direction) of all these detours. More precisely, we
include a cell T if T is contained in one of the detours we chose, but T + (−a, a) is not
included in any of them for any positive integer a. We leave the simple proof that the
cells selected indeed form an empty path of the required length or longer to the reader.
2
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Figure 2: Detours for a cell T .

Proof of Lemma 3. Let S be a set of at most k2k/320 points in the plane. For every
i, k/2 ≤ i ≤ k, place a randomly and uniformly shifted axis-parallel grid Gi on the
plane, with side length 2−i. Assume for contradiction that there is no i for which Gi

has an empty path of length at least 22i−k. By Lemma 4, this implies that for every
i (k/2 ≤ i ≤ k), every staircase of length at least 22i−k in Gi has a cell that does not
admit an empty detour. Recall that we have defined “empty” to imply “contained in
N”, so any cell that does not lie entirely in N admits no empty detour. We call a cell
dead if it lies entirely in N but still admits no empty detour.

Note that every dead cell T contains at least one element of S, otherwise T would
serve as a (trivial) empty detour for itself. In every dead cell T ⊂ N of side length 2−i,
assign to each point p ∈ T ∩ S the weight

wi(p) =
1

|T ∩ S|
.

We assign no weight to those elements of S that do not belong to a dead cell. Obviously,
the total weight wi we have distributed among the points of S is equal to the number of
dead cells of Gi. For simplicity we assume no point in S lies on the boundary of a cell,
an event of probability one.

It is easy to see that there are at least 2k−3 internally pairwise disjoint staircases
of length at least 22i−k in Gi, which are entirely contained in N . According to our
assumption, each of them has at least one dead cell. Thus, the total weight

∑

p∈S wi(p)

6



distributed at level i is at least 2k−3. Denoting the sum of these values over all i by W ,
we have

W =

k
∑

i=⌈k/2⌉

∑

p∈S

wi(p) ≥ k2k−4.

Next, we give an upper bound on the expected total weight assigned to a single point
of p = (x, y) ∈ S. Let us choose the grids Gi for all values of i in reverse order, starting
with i = k. Let i′ be the first (largest) integer, for which wi′(p) > 0.

For any t ≥ 1, let Nt(p) denote the 2t − 1 by 2t − 1 square of grid cells of Gi′ such
that p is contained in its central cell. Notice that if Nt(p) lies entirely in N , then its
part above the diagonal is the union of t detours for the cell containing p. Since the cell
of Gi′ containing p is dead, Nt(p) must contain at least t elements from S.

For any i < i′, the probability that the cell of Gi that contains p does not cover the
whole square Nt(p), is at most 2(2t−1)2i−i′ < 4t2i−i′ . If this cell does cover Nt(p), then
wi(p) ≤ 1/t. (It is also possible that wi(p) = 0 in this case, provided that its cell sticks
out of the unit square N .) Thus, the expected weight of p given at level i satisfies

Exp[wi(p)] < 4t2i−i′ + 1/t.

Setting t := 2⌈(i
′−i)/2⌉, the right-hand side becomes smaller than 5/2(i′−i)/2. Summing

over all i, we obtain that for every p ∈ S

Exp





k
∑

i=⌈k/2⌉
wi(p)



 <
i′

∑

i=0

5 · 2(i−i′)/2 < 20.

Hence, the expected value of W , that is, the expected total weight assigned to all points
of S summed over all levels i, is smaller than 20|S|. Comparing this estimate to the
lower bound W ≥ k2k−4, we obtain that |S| > k2k/320, contradicting our assumption.
This completes the proof of the lemma and hence Theorem 1. 2

3 Concluding remarks

1. Recall the definition of δ-quasi-rectangles: A region is called a δ-quasi-rectangle if
it swept out by a segment s translated almost orthogonally to itself with a possibly
changing velocity vector that encloses an angle of absolute value at most δ with the
positive normal vector of s. As δ → 0, a δ-quasi-rectangle resembles more and more a
real rectangle.

It is well known that there is a set of O(1/ε) points in the unit square N = [0, 1]×[0, 1]
such that every axis-parallel rectangle R ⊂ N with area at least ε > 0 contains at least
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one of them. It follows from the proof of Theorem 1 that this statement does not remain
true for δ-quasi-rectangles, for any fixed δ > 0. We have the following result.

Theorem 1’. There exists an absolute constant C > 0 such that for any δ, ε > 0 with
δ > 2ε, and for any set of points S ⊂ R

2 with |S| < C 1
ε log δ

ε , there is a δ-quasi-rectangle
with vertical sides that does not contain any element of S. This bound is tight up to the
value of the constant C. 2

2. The theory of “weak” ε-nets allows us to handle a number of other piercing questions,
related to the Danzer-Rogers problem. An interesting example discussed by Chazelle,
Edelsbrunner et al. [ChEG95] is the following. Let γ denote the circle of radius 1/2
centered at the point (1/2, 1/2) ∈ [0, 1]× [0, 1]. At least how many points are needed to
hit all convex sets C ⊂ [0, 1]× [0, 1] such that the total length of the part of γ covered by
C is at least ε? Using a beautiful construction from hyperbolic geometry, it was shown
in [ChEG95] that O(1/ε) points suffice.

It is tempting to conjecture that a similar result holds when, instead of measuring
the total length of the part of a circle covered by C, we measure the total length of
the pieces of any other closed convex curve γ′ lying within C. Unfortunately, in this
case only a slightly weaker result is known. Alon, Kaplan, Nivasch et al. [AlKN08]
proved that it is sufficient to pick O((1/ε)α(1/ε)) points, where α denotes the inverse
Ackermann function.

3. The notion of quasi-rectangles can be generalized to higher dimensions in more than
one way. We consider two possible extensions of our results.

A. A set of points in d-dimensional Euclidean space is called a δ-ball-trajectory if it
is the set of points swept by a ball of arbitrary radius that is continuously moved in an
“almost straight” direction. By almost straight we mean that the direction of the motion
must remain within an angle of δ < 90◦ to a fixed (but arbitrary) direction. Note that
2-dimensional δ-ball-trajectories are not exactly the same as δ-quasi-rectangles, but for
our purposes they are equivalent. More precisely, any 2-dimensional δ-ball-trajectory T
contains a δ-quasi-rectangle R with |R| = cδ|T |, and conversely, any δ-quasi-rectangle R
contains a δ-ball-trajectory T with |T | = cδ|R|, where cδ > 0 is a constant. Again, for
concreteness, set δ = 1◦, and call a 1◦-ball-trajectory simply a ball-trajectory.

Our methods naturally extend to ball-trajectories in any fixed dimension. To con-
struct a hitting set in dimension d consider the point set Si

a,b consisting of points

(x1, . . . , xd), where 0 ≤ xj < 1 for all j, 2bxi is an integer and 2axj is an integer
for all j 6= i. For a positive integer k let

Sk =
⋃

1≤i≤d,
(d−1)a+b=k

Si
a,b.
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We have |Sk| = Od(k2k) and Sk hits all δ-ball-trajectories of volume at least Cd/2k that
are within the unit cube [0, 1]d, where Cd is a constant depending on the dimension
d. Thus, hitting sets for ball-trajectories of volume ε (or ε-nets for these sets) of size
Od(

1
ε log 1

ε ) do exist.
To see that smaller hitting sets do not exist, it is enough to consider ball-trajectories

where the ball is dragged parallel to the 2-dimensional plane determined by the first two
coordinate axes. An argument very similar to the one we presented for quasi-rectangles
shows that, even if we want to hit only ball-trajectories of volume ε with this special
property, we need Ωd(

1
ε log 1

ε ) points. Thus, we obtain

Theorem 5 Let d ≥ 2 be fixed. For any ε > 0, let Fd(ε) denote the smallest number of
points with the property that every ball-trajectory of volume ε inside the d-dimensional
unit cube contains at least one of them. We have Fd(ε) = Θ

(

1
ε log 1

ε

)

.

B. In some sense, δ-ball-trajectories are reminiscent of boxes with d − 1 out of d
sides being equal. One can generalize this notion by getting rid of the last condition, as
follows.

Let c be a fixed positive number. A function f : R
d → R is called c-Lipschitz if

|f(x) − f(y)| ≤ c · d(x, y) for any points x, y in the domain of f . Here d(·, ·) stands
for the Euclidean distance. An interval is regarded as a 1-dimensional c-quasi-box. For
d ≥ 2, a subset B of the d-dimensional Euclidean space is called a c-quasi-box if the
space can be written as the direct (orthogonal) product of a hyperplane H and the real
line, and using these coordinates we have

B = {(x, z) | x ∈ B0, f(x) ≤ z ≤ f(x) + h},

for a suitable (d− 1)-dimensional c-quasi-box B0, for a c-Lipschitz function f , and for a
constant (height) h > 0.

Notice that in the plane c-quasi-boxes and δ-quasi-rectangles are exactly the same
if c = tan δ. Moreover, our two-dimensional lower bound for the size of hitting sets
for quasi-rectangles trivially yields a similar lower bound for the size of hitting sets for
quasi-boxes in any dimension d ≥ 2. This follows from the fact that the direct product
of a quasi-rectangle with a (real) box is a quasi-box.

Corollary. Let d ≥ 2, c > 0 be fixed. For any ε > 0, let Gd,c(ε) denote the smallest
number of points with the property that every c-quasi-box of volume ε inside the d-
dimensional unit cube contains at least one of them. We have Gd,c(ε) = Ω

(

1
ε log 1

ε

)

.

On the other hand, the obvious generalization of the construction of hitting sets for
quasi-rectangles implies that Gd,c(ε) = O

(

1
ε (log 1

ε )d−1
)

, for any fixed d ≥ 3, c > 0. It
would be interesting to close this gap.
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