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Abstrat. Let G be a geometri graph with n verties, i.e., a graph drawn in the plane with

straight-line edges. It is shown that if G has no self-interseting path of length 3, then its

number of edges is O(n log n). This result is asymptotially tight. Analogous questions for

urvilinear drawings and for longer paths are also onsidered.

1 Introdution

A geometri graph is a graph drawn in the plane so that its verties are points and its edges are

possibly rossing straight-line segments. We assume, for simpliity, that the points are in general

position, i.e., no three points are on a line and no three edges pass through the same point. Topologial

graphs are de�ned similarly, exept that now the edges are not neessarily retilinear; every edge

an be represented by an arbitrary ontinuous ar whih does not pass through any vertex di�erent

from its endpoints. Throughout this paper, we also assume that any two edges have a �nite number

of ommon interior points and they properly ross at eah of them. Clearly, every geometri graph

is also a topologial graph.

Using this terminology, the fat that every planar graph with n verties has at most 3n�6 edges

an be rephrased as follows: any topologial graph with n verties and more than 3n� 6 edges must

have two edges that ross eah other. This result is tight even for geometri graphs.

In the mid-sixties Avital and Hanani [AH66℄, Erd}os, and Perles initiated, later Kupitz [K79℄ and

many others ontinued the systemati study of extremal problems for geometri graphs. In partiular,

they proposed the following general question. Let H be a so-alled forbidden geometri on�guration

or a lass of forbidden on�gurations. For example, H may onsist of k pairwise rossing edges or

may be the lass of all on�gurations of k+1 edges, one of whih rosses all the others, et. What is

the maximum number of edges that a geometri graph with n verties an have without ontaining any

forbidden subon�guration? If H onsists of k = 2 (pairwise) rossing edges, then, aording to the

previous paragraph, the answer is 3n� 6. For k = 3, this maximum is linear in n (see [AAPPS97℄),

but for larger values of k the best known bound due to Valtr is only O(n logn) [V98℄. It is an exiting

?
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open problem to deide whether one an get rid of the logarithmi fator here. If H is the lass of

all on�gurations onsisting of k + 1 edges, one of whih rosses all the others, then the maximum

number of edges is equal to (k + 2)(n� 3), provided that k = 1; 2; 3, and the maximum is O(

p

kn)

for large values of k (f. [PT97℄). For a survey of many similar results in Geometri Graph Theory,

onsult [P99℄.

The above questions an also be regarded as geometri analogues of the fundamental problem

of Extremal Graph Theory [B78℄: determine the maximum number of edges of all K-free graphs on

n verties, i.e., all graphs whih do not ontain a subgraph isomorphi to a �xed graph K. Denote

this maximum by ex(n;K).

In the present note, we onsider the speial instane of the above question when H onsists of

all self-interseting straight-line drawings of a �xed graph K. In other words, what is the maximum

number ex

r

(n;K) of edges that a geometri graph with n verties an have, if it ontains no self-

interseting opy of K? Obviously, we have ex

r

(n;K) � ex(n;K); beause if a graph ontains no

opy of K, then it annot ontain a self-interseting opy either. Therefore, if K is not a bipartite

graph, then ex

r

(n;K) is quadrati in n. The question is more exiting for bipartite planar graphs.

What happens if K = P

k

(or K = C

k

), a path (or a yle) of (an even) length k? The ase where

K = C

4

is disussed in [PR02℄.

We analyze the ase whenK = P

3

. The orresponding graph property is a relaxation of planarity:

the geometri graphs satisfying the ondition are allowed to have two rossing edges, but if this is

the ase, no endpoint of one of these edges an be joined to an endpoint of the other. Is it still

true that the number of edges of suh geometri graphs is O(n)? The following theorem provides a

negative answer to this question.

Theorem 1. The maximum number of edges of a geometri graph with n verties, ontaining no

self-interseting path of length 3, satis�es

ex

r

(n; P

3

) � n logn;

for a suitable onstant . Apart from the value of the onstant, this bound annot be improved.

The proof of this result (presented in three di�erent versions in the next three setions) applies

to a slightly more general situation. Theorem 1 remains true for topologial graphs whose edges are

ontinuous funtions de�ned on subintervals of the x-axis, i.e., every line perpendiular to the x-axis

intersets eah edge in at most one point. The topologial graphs satisfying this ondition are usually

alled x-monotone.

On the other hand, a onstrution in Setion 3 shows that Theorem 1 annot be improved even

for geometri graphs all of whose edges are rossed by a straight line.

What happens if we drop the requirement of x-monotoniity? We do not have any example of a

topologial graph with n verties and more than onstant times n logn edges, in whih every path

of length 3 is simple, i.e., non-self-interseting. The best upper bound we have is the following.

Theorem 2. The maximum number of edges of a topologial graph with n verties, ontaining no

self-interseting path of length 3, is O(n

3=2

).

As was pointed out by Tutte [T70℄, parity plays an important role in determining the possible

rossing patterns between the edges of a topologial graph. This may well be a onsequene of the

Jordan Curve Theorem: every Jordan ar onneting an interior point and an exterior point of a

simple losed Jordan urve must ross this urve an odd number of times. In partiular, Tutte showed

that every topologial graph with n verties and more than 3n�6 edges has two edges that not only

ross eah other, but (i) they ross an odd number of times, and (ii) they do not share an endpoint.

(See also [H34℄.)

This may suggest that Theorem 2 and perhaps any other bound of this type an be sharpened

as follows.
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Theorem 3. The maximum number of edges of a topologial graph with n verties, ontaining no

path of length 3 whose �rst and last edges ross an odd number of times, is O(n

3=2

).

In Setion 5 we prove this stronger statement. Somewhat surprisingly (to the authors), it turns

out that this last result is asymptotially tight. More preisely, in Setion 6 we establish

Theorem 4. Let G be a bipartite graph on n verties, ontaining no yle of length 4. Then G

an be drawn in the plane as an x-monotone topologial graph with the property that any two edges

belonging to a path of length 3 ross an even number of times.

It is well known that there are C

4

-free bipartite graphs of n verties and at least onstant times

n

3=2

edges (see e.g. [B78℄).

In Setion 7, we onsider geometri and x-monotone topologial graphs with no self-interseting

path of length �ve. In this ase, Theorem 9 provides a slightly stronger bound on the number of

edges than those obtained for graphs with no self-interseting P

3

. We do not believe that Theorem

9 is tight. However, a reent onstrution of Tardos [T02℄ shows that ex

r

(n; P

k

) is superlinear in n,

for any �xed value k � 3.

In the �nal setion, we disuss a few related results and open problems.

2 A Davenport-Shinzel bound for double arrays

In this setion, we disuss the speial ase of Theorem 1 when G is a bipartite geometri (or x-

monotone topologial) graph, whose verties are divided by the y-axis into two lasses, A and B,

and all edges of G run between these lasses. We assume, for simpliity, that no two edges of G ross

the y-axis at the same point.

Let a

1

b

1

; a

2

b

2

; : : : ; a

m

b

m

be the edges of G listed from top to bottom, in the order of their

intersetions with the y-axis, where a

i

2 A and b

i

2 B for every i. Consider the orresponding

double array (2�m matrix)

M =

�

a

1

a

2

: : : a

m

b

1

b

2

: : : b

m

�

It is easy to verify that if G is a geometri graph (or an x-monotone topologial graph) without

any self-interseting path of length three, then the orresponding matrix M does not ontain any

submatrix of the form F

1

=

�

u v u v

� x x �

�

or F

2

=

�

� u u �

x y x y

�

, where u 6= v, x 6= y and � stands for

an unspei�ed entry (see Fig. 1(a)).

u

y

u
y

x

(a) (b)

x

Fig. 1. (a) F

2

is forbidden, (b) not neessarily forbidden if adjaent edges may ross
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In what follows, we show that if a 2 �m matrix M having at most n distint entries does not

ontain any forbidden submatrix of the above two types, then its number of olumns is O(n logn).

Therefore, the number of edges of G is at most O(n logn), as required by Theorem 1.

If G is an x-monotone topologial graph whose adjaent edges are allowed to ross, and we only

require that the �rst and last edges of every path of length three must be disjoint, then the situation

is slightly more ompliated, beauseM may ontain submatries of the above forms (see Fig. 1(b)).

However, in this ase the following 2� 6 submatries are forbidden:

�

v $ u v u v $ u

� � x x � �

�

(1)

and

�

� � u u � �

y $ x y x y $ x

�

: (2)

Here the signs $ indiate that the order of the �rst two olumns and the order of the last two

olumns are not spei�ed.

Theorem 5. Let M be a 2 �m matrix with at most n distint entries, all of whose olumns are

di�erent. If M has no 2� 6 submatrix of types (1) or (2), then m � 17n log

2

n.

It follows from the onstrution at the end of Setion 3, that the bound in Theorem 5 is tight

apart from the value of the onstant. In fat, for any n there exist a 2�m matrix with at most n

distint entries having neither F

1

nor F

2

as a submatrix with m � n log

2

n=4.

Proof. We need some de�nitions. Let

M =

�

a

1

a

2

: : : a

m

b

1

b

2

: : : b

m

�

For any 1 � i � m, we say that a

i

is a leftmost (or rightmost) entry if a

k

6= a

i

for every k < i (or

k > i, resp.). Aordingly, a

i

is alled a seond leftmost (or seond rightmost) entry if a

k

= a

i

for

preisely one index k < i (or preisely one index k > i, resp.). Analogous terms are used for the

entries b

i

in the seond row of M .

A set of onseutive olumns of M is alled a blok. A blok is said to be pure if all elements in

the �rst row of the blok are distint and the same is true for the elements in the seond row.

Assume the olumns of M are partitioned into l pure bloks. Consider now two onseutive pure

bloks, B

1

and B

2

, onsisting of the olumns i+1; i+2; : : : ; j and j+1; j+2; : : : ; k, resp., for some

0 � i < j < k � n. Suppose that there is an element whih appears in the �rst row of B

1

as well as

in the �rst row of B

2

. That is, a

p

= a

q

for some i < p � j and j < q � k. We laim that either b

q

is a leftmost, seond leftmost or rightmost entry, or b

p

is a rightmost, seond rightmost or leftmost

entry. Indeed, otherwise, using the fat that b

q

is neither a leftmost nor a seond leftmost entry, we

obtain that there exists an index r � i suh that b

r

= b

q

. Sine b

q

is not a rightmost entry, there is

an index s > k suh that b

s

= b

q

. Similarly, in view of the fat that b

p

is neither a rightmost nor a

seond rightmost entry, we an onlude that b

s

0

= b

p

for some s

0

> k. Sine b

p

is not leftmost, there

is a r

0

� i suh that b

r

0

= b

p

. Observe that now the olumns r; r

0

< p < q < s; s

0

form a forbidden

submatrix of type

�

� � u u � �

y $ x y x y $ x

�

;

a ontradition.

A symmetri argument shows that if b

p

= b

q

for some i < p � j and j < q � k, then either a

q

is a leftmost, seond leftmost or rightmost entry, or a

p

is a rightmost, seond rightmost or leftmost

entry. Thus, if we delete from M (and from its blok deomposition) every olumn whose upper or

lower element is a leftmost, seond leftmost, rightmost, or seond rightmost entry, the union of the

remainders of any two onseutive bloks beomes pure.
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There are at most n distint entries, eah may appear in the �rst row and in the seond row,

so the number of deleted olumns is at most 8n. The resulting matrix M

0

an be deomposed into

dl=2e pure bloks. Repeating this proess at most dlog

2

le times, we end up with a matrix onsisting

of at least m� 8ndlog

2

le olumns that form a single pure blok. Thus, we have

m� 8ndlog

2

le � n:

Applying the above proedure to the initial partition of M into l = m pure bloks, eah onsisting

of a single olumn, the upper bound follows. �

For many other Davenport-Shinzel type results for matries, onsult [FH92℄.

As we have pointed out before, the last theorem implies that every geometri or x-monotone

topologial graph with n verties and no path of length three whose �rst and last edges ross eah

other, has at most onstant times n logn edges, provided that all of its edges an be stabbed by a

line. Thus, we immediately obtain

Corollary 1. The maximum number of edges of an x-monotone topologial graph with n verties,

ontaining no path of length 3 whose �rst and last edges ross, is O(n log

2

n).

This result is slightly weaker than the bound in Theorem 1.

3 Proof of Theorem 1

We prove the following more general statement.

Theorem 6. Let G be an x-monotone topologial graph of n verties, whih has no self-interseting

path of length 3. Then G has at most onstant times n logn edges.

We assume without loss of generality that no two edges that share an endpoint ross eah other.

Otherwise, the two non-ommon endpoints of these edges must be of degree 1 or 2, beause G has

no self-interseting path of length 3. So we an delete these endpoints, and omplete the argument

by indution on the number of verties.

It will be onvenient to use the following terminology. If a vertex v is the left (resp. right) endpoint

of an edge e, then e is said to be a right (resp. left) edge at v. It follows from our assumption on

adjaent edges that the left and the right edges at a given vertex an be ordered from bottom to

top.

Let e

1

= vu

1

and e

2

= vu

2

be two right edges at a vertex v suh that the x-oordinate of u

1

is

at most as large as the x-oordinate of u

2

. We de�ne the right triangle determined by them as the

bounded losed region bounded by e

1

, a segment of e

2

;, and a segment of the vertial line passing

through u

1

. The vertex v is alled the apex of this triangle. Analogously, we an introdue the notion

of left triangle.

Construt a sequene of subgraphs G

0

, G

1

, G

2

; : : : of G, as follows. Let G

0

= G. If G

i

has already

been de�ned for some i, then let G

i+1

be the topologial graph obtained from G

i

by deleting at eah

vertex the bottom 2 and the top 2 left and right edges (if they exist). We delete at most 8 edges per

vertex.

Claim. For any k � 0, every triangle determined by two edges of G

k

ontains at least 2

k

pairwise

di�erent triangles of G.

Proof of Claim. By indution on k. Obviously, for k = 0; the laim is true, beause every triangle

ontains itself. Assume that the laim holds for k�1 (k > 0). Consider, e.g., a right triangle T in G

k

,
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determined by the edges e

1

= vu

1

and e

2

= vu

2

, where the x-oordinate of u

1

is at most as large as

the x-oordinate of u

2

. Suppose without loss of generality that e

1

lies below e

2

. Using the fat that

e

1

2 E(G

k

), we obtain that at u

1

there are at least two left edges f

1

; f

2

2 E(G

k�1

) whih lie above

e

1

. Both of these edges must be entirely ontained in T , otherwise we ould �nd a self-interseting

path of length 3. Suppose that f

1

lies below f

2

.

Let T

1

and T

2

denote the left triangles with apex u

1

, determined by e

1

and f

1

, and by f

1

and

f

2

, resp. Clearly, T

1

and T

2

both belong to G

k�1

, and they have disjoint interiors. By the indution

hypothesis, both T

1

and T

2

ontain 2

k�1

pairwise di�erent triangles. It follows that T ontains 2

k

pairwise di�erent triangles, as required. �

Now we an easily omplete the proof of Theorem 6. Sine every triangle is spei�ed by a pair of

edges meeting at its apex, the total number of di�erent triangles is at most n

3

. Hene, for k > 3 log

2

n;

the graph G

k

annot determine any triangle, and its number of edges is smaller than n. On the other

hand, we have that jE(G

k

)j � jE(G

0

)j� 8kn. Therefore, jE(G)j = jE(G

0

)j � 25n log

2

n, ompleting

the proof of Theorem 6.

We lose this setion by showing that, up to the value of the onstant , Theorem 1 (and hene

Theorem 6, too) is best possible. Let n = 2

k

be �xed. We will reursively onstrut a sequene

of bipartite geometri graphs G

i

= G

(k)

i

, i = 1; 2; : : : ; k, suh that G

i

has 2

i

verties, (i + 1)2

i�2

edges, and ontains no self-interseting path of length 3. Furthermore, we will maintain the following

properties for every i.

1. The verties of G

i

have distint x-oordinates, whih are all integers in the losed intervals

[�2

k

;�2

k

+2

i

� 1℄ and [0; 2

i

� 1℄. Verties with x-oordinates in the �rst (resp. seond) interval

are alled left (resp. right).

2. Every edge of G

i

onnets a left vertex to a right vertex, and hene it must ross the vertial

line (x = �

1

2

).

3. The horizontal edges of G

i

are of length 2

k

and form a perfet mathing. If two verties of

u; v 2 V (G

i

), are onneted by a horizontal edge, than they are said to form a pair.

4. For any vertex v of G

i

, the order of the edges inident to v aording to their slopes oinides

with the order aording to the lengths of their projetions to the x-axis.

Let G

1

onsist of two verties, (�2

k

; 0) and (0; 0), onneted by an edge. Obviously, this meets

the requirements.

Assuming that we have already onstruted G

i

for some i, we show how to obtain G

i+1

. Let

G

0

i

denote the translate of G

i

by a vetor (2

i�1

; Y

i

), where Y

i

is a very large positive integer to be

spei�ed later. Let G

i+1

be the union of G

i

and G

0

i

, together with the following 2

i�1

\new" edges:

onnet every left vertex v 2 V (G

i

) to the right vertex v + (2

k

+ 2

i�1

; Y

i

) 2 V (G

0

i

), that is, to the

right vertex forming a pair with the translate of v. See Fig. 2.

Choose Y

i

so large that the slope of the new edges exeeds the slope of any line indued by the

points of G

i

(or by the points of G

0

i

).

We have to hek that G

i+1

has the required properties. We have jV (G

i+1

)j = 2jV (G)j = 2

i+1

and jE(G

i+1

)j = 2jE(G

i

)j + 2

i�1

= (i + 2)2

i�1

. Properties 1, 2, 3 and 4 are all inherited from G

i

.

To see that property 4 is maintained, it is suÆient to reall that both the slope and length of the

x-projetion of every new edge between G

i

and G

0

i

is larger than the orresponding values for the

old edges.

It remains to verify that G

i+1

does not ontain a self-interseting path of length 3. Assume to

the ontrary that there is suh a path P in G

i+1

, and denote its edges by e

1

= uv, e

2

= vw, and

e

3

= wz. Sine G

i

(and thus G

0

i

) does not ontain a self-interseting path of length 3, at least one

of these edges must run between G

i

and G

0

i

. Note that there annot be two suh edges, beause all

edges of G

i+1

running between G

i

and G

0

i

are parallel. It is also lear that e

2

is not suh an edge.
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Assume, without loss of generality, that e

1

runs between G

i

and G

0

i

, and that we have u 2 V (G

i

)

and v 2 V (G

0

i

). Thus, e

2

and e

3

belong to G

0

i

. As v is a right vertex, w must be a left vertex, and both

e

2

and e

3

are to the right of w. Sine e

3

rosses e

1

, the slope of e

3

must be smaller than that of e

2

.

In view of property 4, we onlude that the x-oordinate of z is smaller than the x-oordinate of v.

This implies that the slope of the line onneting z and v is larger than the slope of e

2

, ontraditing

our assumption.

Fig. 2. The onstrution of G

i

(i = 3)

4 A strengthening of Theorem 6

The aim of this setion is to establish the following stronger form of Theorem 6.

Theorem 7. The maximum number of edges of an x-monotone topologial graph with n verties,

ontaining no path of length 3 whose �rst and last edges ross, is O(n logn).

Proof. Let G be an x-monotone topologial graph with n verties and m edges, ontaining no path

of length 3 whose �rst and last edges ross. Our goal is to onstrut another topologial graph G

0

with n

0

= 2n verties and m

0

� m=2� n edges, with the property that G

0

has no path of length 3

whose �rst and last edges ross, and no two adjaent edges of G

0

ross eah other. Applying Theorem

6 to G

0

, the statement follows.

First, we split eah vertex of G into into two verties, one of them just a bit left to the other, so

that every original edge e beomes an edge onneting the right opy of the left endpoint of e to the

left opy of its right endpoint. The resulting x-monotone topologial graph G

0

has n

0

= 2n verties

and m edges, it has no self-interseting path of length three, and the right endpoint of any edge of

G

0

is distint from the left endpoint of any other edge.

In the rest of this setion, the length of an edge means the length of its projetion to the x-axis,

and the terms shorter and longer will be used in the same sense. We write e = uv for an edge of

G

0

, whose left and right endpoints are u and v, resp. We all an edge e = uv long if it is the longest

either among all edges uv

0

or among all edges u

0

v 2 E(G

0

). Clearly, G

0

has fewer than n

0

long edges.

Let e and e

0

be two edges of G, where e is shorter than e

0

, and we have either e = uv and e

0

= uw,

or e = vu and e

0

= wu. We say that e is above e

0

if v is above e

0

. Similarly, we say e is below e

0

if v is

below e

0

. Note that if e is above or below e

0

then e is shorter, but e and e

0

may ross several times.

Let e = uv be an edge of G

0

whih is not long. By de�nition, there exist two edges, e

0

= uw and

e

00

= zv 2 E(G

0

), suh that both of them are longer than e. So e is either above or below e

0

and e

is also above or below e

00

. However, e annot be above both e

0

and e

00

. Indeed, otherwise u is above
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e

00

while v is above e

0

, so e

0

and e

00

ross, ontraditing our assumption on G. Similarly, e annot be

below both e

0

and e

00

. Thus, eah edge e = uv 2 E(G

0

) whih is not long either satis�es that e is

above every longer edge uw and below every longer edge zv, or it satis�es that e is below every longer

edge uw and above every longer edge zv. We an assume, by symmetry, that the former ondition

(whih will be referred to as the monotoniity ondition) holds for m

0

� (m � n

0

)=2 = m=2 � n

edges. Let G

1

be the subgraph of G

0

formed by these edges.

We are now in a position to de�ne G

0

. As an abstrat graph, G

0

is idential to G

1

. The loations

of the verties will oinide, too. For any edge e 2 E(G

1

), denote by ê the orresponding edge of

G

0

. We draw the edges of G

0

one by one, in dereasing order of length. If e in G

1

is neither above

nor below another edge, set ê = e. If e = uv is above (below) at least one other edge, let e

�

be the

shortest edge suh that e is above e

�

(let e

+

be the shortest edge suh that e is below e

+

, resp.).

Draw ê in suh a way that all of its internal points lie stritly above ê

�

and below ê

+

(if these edges

exist). Notie that, if they exist, e

+

and e

�

are longer than e, so ê

+

and ê

�

are already de�ned. We

make sure during the onstrution that, if e

+

exists, it passes above u, if e

�

exists, it passes below

v (see property 2 below), and if both of them exist, they are disjoint (see property 4 below). We

de�ne ê to follow e, exept in the intervals where ê

+

is below e or ê

�

is above e. In these intervals,

let ê run just below ê

+

or just above ê

�

, lose enough not to interset any further edges and going

on the same side of every vertex. See Fig. 3.

^

^

^e

e

e

e+

-

Fig. 3. The onstrution of the edge ê in G

0

We laim that the resulting graph G

0

has the following properties.

1. If e is below (above) e

0

in G

1

, then every interior point of ê is below (above, resp.) ê

0

.

2. If e

0

is below (above) e in G

1

, then the endpoint of e

0

whih is not an endpoint of e is below

(above, resp.) ê.

3. If e, e

0

, and e

00

form a path in G

1

and e is longer than e

0

, then ê and e

00

do not ross.

4. If e, e

0

, and e

00

form a path in G

1

then ê and

^

e

00

do not ross.

We verify these properties by showing that if they hold for the partially drawn graph, they do

not get violated when we add an extra edge ê.

(1) By the monotoniity, if there exists at least one edge f suh that e is below f , then the

shortest among them, e

+

, must be below all others. Similarly, e

�

(if exists) must be above all other
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edges that e is above. Therefore, as property 1 has held so far, it does not get violated now, provided

that ê is in between ê

�

and ê

+

, whih is the ase.

(2) Let e = uv and assume that e

0

= uw is above e. By de�nition, w is above e and, by the

monotoniity ondition, w is above e

�

, if the latter exists. As property 2 has held so far, w is above

ê

�

, so w must be above ê. Similarly, if e

0

= zv is below e, then z is below ê.

(3) Note that e

0

is above or below e. By symmetry, we an assume without loss of generality that

e

0

is below e. By monotoniity, this means that they share their right endpoints. Here e and e

00

do

not ross, as they are �rst and last edges of a path of length 3, and the left endpoint of e

00

is below

e. So every point of e

00

must be below e or to the right of the right endpoint of e. If e

+

exists, we an

apply property 3 to the edges e

+

, e

0

, e

00

, and �nd that ê

+

does not ross e

00

. By the onstrution,

wherever ê runs below e, it follows ê

+

, so ê is disjoint from e

00

.

(4) We onsider two ases.

If both e and e

00

are shorter than e

0

, then one of them is below and the other is above e

0

(monotoniity). Thus, by property 1,

^

e

0

(drawn before the other two) separates ê from

^

e

00

, so they

annot ross.

We may assume that e is shorter than e

00

, so in the remaining ase e

00

is longer than e

0

. The

edge e

0

is below or above e

00

, and we an again assume, by symmetry, that e

0

is below e

00

. Applying

property 3 to the path e

00

, e

0

, e, we �nd that e is disjoint from

^

e

00

. By property 2, the left endpoint

of e lies below

^

e

00

. Thus, all points of e must be below

^

e

00

or to the right of its right endpoint. As ê

follows ê

�

wherever it runs above e, it is enough to show that if e

�

exists, ê

�

is disjoint from

^

e

00

. If

e

�

= e

0

, this follows from property 1, otherwise, from property 4 of the initial on�guration (before

ê has been drawn).

Observe that, by property 1, no two adjaent edges of G

0

ross eah other and, by property 4,

the same is true for seond neighbors. Hene, we an indeed apply Theorem 6 to G

0

, and Theorem

7 follows. �

5 Forbidden subgraphs { Proof of Theorem 3

For any k � 2; let F

k

denote a graph with vertex set

V (F

k

) = fx; yg [ fb

i

: 1 � i � kg [ f

ij

: 1 � i < j � kg

and edge set

E(F

k

) = fxb

i

; yb

i

: 1 � i � kg [ f

ij

b

i

; 

ij

b

j

: 1 � i < j � kg:

We need the following theorem, whih an be obtained by a straightforward generalization of a result

of F�uredi [F91℄.

Theorem 8. For any �xed integer k � 2; let ex(n; F

k

) denote the maximum number of edges of an

F

k

-free graph with n verties. Then we have ex(n; F

k

) = O(n

3=2

). �

Let G be a topologial graph with n verties, ontaining no path of length 3 whose �rst and

last edges ross an odd number of times. To establish Theorem 3, it is suÆient to verify that the

abstrat graph obtained from G by disregarding how the edges are drawn does not have a subgraph

isomorphi to F

4

. In fat, it is enough to onentrate to a the subgraph F

0

4

of F

4

indueed by the

vertex set fx; yg [ fb

i

: 1 � i � 4g [ f

ij

: 1 � i < j � 3g. Notie that F

0

4

is a subdivision of K

5

:

it an be obtained from K

5

by replaing four of its edges (a triangle and an edge not inident to

the triangle) by paths of length two. This means that a topologial graph isomorphi to F

0

4

an be

also onsidered as a topologial graph isomorphi to K

5

(simply remove the subdividing points). As

K

5

is not a planar graph, any topologial graph isomorphi to it must have at least one rossing.
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Furthermore, by Tutte's theorem [T70℄, there must exist two non-adjaent edges that ross an odd

number of times. Thus, any topologial graph isomorphi to F

0

4

has two edges that ross an odd

number of times and they are either non-adjaent edges of the underlying K

5

or portions of two

suh edges. However, any two edges with this property an be extended to a self-interseting path

of length 3. Consequently, F

0

4

is not isomorphi to a subgraph of G, and Theorem 3 follows.

6 Drawing C

4

-free graphs { Proof of Theorem 4

Let G be a C

4

-free bipartite graph with vertex set V (G) = A [ B, where A = fa

1

; a

2

; : : : ; a

n

g and

B = fb

1

; b

2

; : : : ; b

n

g. The edge set of G is denoted by E(G).

We now onstrut a drawing of G. Pik 2n points, a

1

; : : : ; a

n

; b

1

; : : : b

n

, on the x-axis, from left to

right in this order. These points will be identi�ed with the verties of G. For every edge a

i

b

j

2 E(G),

draw an x-monotone ar e

ij

onneting a

i

to b

j

, aording to the following rules:

(i) for any k > i, the ar e

ij

passes above a

k

if and only if a

k

b

j

62 E(G);

(ii) for any l < j, the ar e

ij

passes above b

l

if and only if a

i

b

l

2 E(G);

(iii) no two distint ars \touh" eah other (internal rossings are proper).

Notie that, unless two ars share an endpoint, the parity of their number of intersetions is

determined by these rules.

Take two non-adjaent edges a

i

b

j

; a

k

b

l

2 E(G) that belong to a path of length 3. We have to

distinguish four di�erent ases:

1. i < k, j < l, and a

k

b

j

2 E(G);

2. i < k, j < l, and a

i

b

l

2 E(G);

3. i < k, l < j, and a

i

b

l

2 E(G);

4. i < k, l < j, and a

k

b

j

2 E(G).

Consider the �rst ase. By drawing rule (i), the ar e

ij

passes below a

k

. By rule (ii), e

kl

passes

above b

j

. In view of rule (iii), this implies that e

ij

and e

kl

ross an even number of times, as required.

The seond ase an be treated similarly and is left to the reader.

In the third ase, applying rule (i), we obtain that a

k

lies above e

ij

. It is suÆient to show that

the same is true for b

l

. At this point, we use that G is C

4

-free: sine a

i

b

j

; b

j

a

k

; a

k

b

l

2 E(G), we

have a

i

b

l

62 E(G). By rule (ii), this implies that b

l

is above e

ij

, as required. The last ase follows in

the same way, by symmetry.

So far we have heked that in our drawing any two non-adjaent edges ross an even number of

times. It is not hard to extend the same property to all pairs of edges, even if they share endpoints.

To this end, we slightly modify the ars e

ij

in some very small neighborhoods of their endpoints.

Clearly, this will not e�et the rossing patterns of non-adjaent pairs.

Fix a vertex a

i

. Redraw the ars e

ij

inident to a

i

so that the ounter-lokwise order of their

initial piees in a small neighborhood of a

i

will be the same as the order of x-oordinates of their

right endpoints. Consider now two ars, e

ij

; e

il

; (l < j), inident to a

i

. By rule (ii), b

l

lies below

e

ij

. On the other hand, after performing the loal hange desribed above, the initial piee of e

il

will also lie below e

ij

. This guarantees that e

ij

and e

il

ross an even number of times. Repeating

this proedure for eah vertex a

i

, and its symmetri version for eah b

j

, we obtain a drawing whih

meets the requirements of Theorem 4.
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7 Paths of length �ve

If we exlude self-interseting paths of length �ve (rather than three), we an establish a slightly

better upper bound on the number of edges of a geometri or x-monotone topologial graph.

Theorem 9. Let G be an x-monotone topologial graph of n verties with no self-interseting path

of length 5. Then G has at most onstant times n logn= log logn edges.

We modify the proof of Theorem 6, and use the same notation. We all an edge a left edge at its

right endpoint and a right edge at its left endpoint.

Suppose G has nm edges with m � 8. Construt a sequene of subgraphs G, G

0

, G

0

0

, G

00

0

, G

1

,

G

0

1

, G

00

1

, G

2

; : : : of G, as follows. Let G

0

be the topologial graph obtained from G by deleting eah

vertex of degree at most

m

2

. Notie that no two edges of G

0

that share an endpoint ross eah other.

Otherwise, sine all degrees are at least 5, those two edges ould be extended to a rossing path of

length 5. Thus, the left and the right edges at a vertex are naturally ordered from top to bottom.

Similarly, no path of length 3 or 4 is self-interseting.

1. If G

i

has already been de�ned for some i, let G

0

i

denote the topologial graph obtained from G

i

by deleting the bottom and the top left and right edges at eah vertex (if they exist). We delete

at most four edges per vertex.

2. If G

0

i

has already been de�ned for some i, let G

00

i

denote the topologial graph obtained from G

0

i

by deleting the bottom and the top left and right edges at every vertex (if they exist). We delete

at most four edges per vertex.

3. If G

00

i

has already been de�ned for some i, let G

i+1

be the topologial graph obtained from G

00

i

by deleting reursively eah vertex of degree at most

m

2

, so that all verties of G

i+1

have degree

higher than

m

2

. Clearly, as long as the average degree of G

00

i

is at least m, it annot derease in

this step.

Let a

i

denote the average degree in G

i

. It is easy to see that a

0

� 2m and a

i

� a

i�1

� 16 as long

as a

i�1

� 16 � m. So, we have a

b

m

16



� m. Therefore, G

b

m

16



still determines at least one (atually,

many) triangle(s).

Reall that a left (right) triangle at a vertex is determined by two left (right, resp.) edges of the

vertex, and it is the region bounded by one of the edges, a piee of the other edge, and a vertial

interval.

It is suÆient to establish the following.

Claim. For any 0 � k �

m

16

, every triangle determined by two edges of G

k

ontains at least

�

m

2

� 2

�

k

pairwise di�erent triangles of G.

Indeed, assuming that the Claim is true, a triangle determined by G

b

m

16



ontains at least

�

m

2

� 2

�

b

m

16



triangles, and this number is at most n

3

. It follows that m �  logn= log logn, as

required by the theorem.

Proof of Claim. By indution on k. Obviously, for k = 0; the assertion is true, beause every

triangle ontains itself. Assume that the laim holds for k � 1 (k > 0). Consider a right triangle T

in G

k

, determined by the edges e

1

= vu

1

and e

2

= vu

2

, where the x-oordinate of u

1

is at most

as large as the x-oordinate of u

2

. Suppose without loss of generality that e

1

lies below e

2

. Sine

e

1

2 E(G

00

k�1

), there is at least one left edge, f

1

2 E(G

0

k�1

), at u

1

above e

1

. This edge, f

1

= w

1

u

1

,

must entirely be ontained in T , otherwise we ould �nd a self-interseting path of length 3. Sine

f

1

2 E(G

0

k�1

), there is at least one right edge, f

2

2 E(G

k�1

), at w

1

below f

1

. Similarly, this edge,

f

2

= w

1

w, must be entirely ontained in the triangle determined by e

1

and f

1

. Therefore, f

2

must
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also lie in T . See Fig. 4. The degree of w in G

k�1

is at least

m

2

. In view of the fat that there is

no self-interseting path of length 5 or shorter, none of these edges an ross e

1

, e

2

, f

1

, and f

2

.

Therefore, all of them are entirely inside T . They determine at least

m

2

� 2 triangles with pairwise

disjoint interiors, eah of whih ontains at least

�

m

2

� 2

�

k�1

further triangles, and we are done by

indution. �

u

u

w

1

2

v

Fig. 4. The edges at w are all in T

8 Related problems

A. Theorems 1 and 6 easily imply

Corollary 2. For any tree T other than a star, there exists a onstant (T ) suh that every geometri

(or x-monotone topologial) graph G with n verties and more than (T )n logn edges ontains a self-

interseting opy of T . That is, we have

ex

r

(n; T ) � (T )n logn:

Indeed, deleting one-by-one every vertex of G whose degree is smaller than jV (T )j, we end up

with a graph G

0

having at most n verties and at least ((T ) logn � jV (T )j)n edges. If (T ) is

suÆiently large, then G

0

has a self-interseting path of length 3. Using the fat that the degree of

every vertex in G

0

is at least jV (T )j, this path an be extended to a opy of T in G

0

(and hene in

G).

B. A slight modi�ation of the proof of Theorem 1 gives

Corollary 3. For any positive integer k, there exists a onstant 

k

with the property that every

geometri graph with n verties and at least 

k

n logn edges has two adjaent verties, u and v, and

2k edges inident to them, uu

1

; uu

2

; : : : ; uu

k

and vv

1

; vv

2

; : : : ; vv

k

, suh that uu

i

rosses vv

j

for

every pair 1 � i; j � k.

C. We onjeture that Theorem 1 an be generalized to all topologial graphs with with no self-

interseting path of length 3. Reently, we have proved that if G is an x-monotone topologial graph

with n verties, all of whose edges ross the y-axis, and G has no self-interseting path of length
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4, then jE(G)j = O(n log

1=2

n). It is interesting to note that one annot guarantee the existene of

any spei� rossing pattern of a path of length 4, even if the number of edges is at least 
(n logn).

Indeed, the onstrution in Setion 3 provides suh a geometri graph with no self-interseting path

of length 3. On the other hand, a onvex, balaned, omplete bipartite geometri graph, all of whose

edges ross the y-axis, has no path of length 4, whose only self-intersetion ours between its �rst

and last edges.

D. Any drawing of K

3;3

, a omplete bipartite graph with 3 verties in eah of its lasses, has two

non-adjaent edges that ross eah other. Clearly, any two edges belong to a yle of length 4, so

ex

r

(n;C

4

) � ex(n;K

3;3

) = O(n

5=3

):

This bound has been reently improved to O(n

8=5

) by Pinhasi and Radoi�i� [PR02℄. It seems likely

that the best possible bound is lose to n

3=2

.

It also follows from Theorem 8 that ex

r

(n;C

6

) = O(n

3=2

), and it generalizes to topologial

graphs. On the other hand, we have ex

r

(n;C

6

) � ex(n;C

6

) � n

4=3

; for a suitable onstant  > 0

(see [BS74℄). For C

4

-free graphs this bound is almost tight.

Theorem 10. Let G be a C

4

-free geometri (or x-monotone topologial) graph on n verties. If G

has no self-interseting yle of length 6, then G has O(n

4=3

log

2=3

n) edges.

Proof. Assume without loss of generality that the left end of an edge is not the right end of another

edge in G. This an be ahieved by splitting the verties in two as in the proof of Theorem 7. Let G

have n verties and jE(G)j = m > 

0

n

4=3

log

2=3

n edges. For p =

2n logn

jE(G)j

< 1, olor randomly and

independently with probability p eah vertex of G red. Let G

0

be the subgraph of G indued by the

red verties.

Let i(G

0

) denote the number of self-interseting paths of length 3 in G

0

. Deleting one edge from

eah suh path, we obtain a graph with no self-interseting path of length 3. Thus, in view of

Theorem 1, we have

jE(G

0

)j � i(G

0

) < jV (G

0

)j log jV (G

0

)j;

for some positive . Taking expeted values, this yields

p

2

jE(G)j � p

4

i(G) < pn logn:

We obtain i(G) >

jE(G)j

3

8

2

n

2

log

2

n

: If 

0

is large enough, then i(G) >

�

n

2

�

, and there must exist two

self-interseting paths of length 3 onneting the same pair of verties. These paths annot share

an internal vertex as that would lead to a C

4

. Therefore, putting them together, we get a C

6

whih

intersets itself at least twie. �
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