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Abstra
t. Let G be a geometri
 graph with n verti
es, i.e., a graph drawn in the plane with

straight-line edges. It is shown that if G has no self-interse
ting path of length 3, then its

number of edges is O(n log n). This result is asymptoti
ally tight. Analogous questions for


urvilinear drawings and for longer paths are also 
onsidered.

1 Introdu
tion

A geometri
 graph is a graph drawn in the plane so that its verti
es are points and its edges are

possibly 
rossing straight-line segments. We assume, for simpli
ity, that the points are in general

position, i.e., no three points are on a line and no three edges pass through the same point. Topologi
al

graphs are de�ned similarly, ex
ept that now the edges are not ne
essarily re
tilinear; every edge


an be represented by an arbitrary 
ontinuous ar
 whi
h does not pass through any vertex di�erent

from its endpoints. Throughout this paper, we also assume that any two edges have a �nite number

of 
ommon interior points and they properly 
ross at ea
h of them. Clearly, every geometri
 graph

is also a topologi
al graph.

Using this terminology, the fa
t that every planar graph with n verti
es has at most 3n�6 edges


an be rephrased as follows: any topologi
al graph with n verti
es and more than 3n� 6 edges must

have two edges that 
ross ea
h other. This result is tight even for geometri
 graphs.

In the mid-sixties Avital and Hanani [AH66℄, Erd}os, and Perles initiated, later Kupitz [K79℄ and

many others 
ontinued the systemati
 study of extremal problems for geometri
 graphs. In parti
ular,

they proposed the following general question. Let H be a so-
alled forbidden geometri
 
on�guration

or a 
lass of forbidden 
on�gurations. For example, H may 
onsist of k pairwise 
rossing edges or

may be the 
lass of all 
on�gurations of k+1 edges, one of whi
h 
rosses all the others, et
. What is

the maximum number of edges that a geometri
 graph with n verti
es 
an have without 
ontaining any

forbidden sub
on�guration? If H 
onsists of k = 2 (pairwise) 
rossing edges, then, a

ording to the

previous paragraph, the answer is 3n� 6. For k = 3, this maximum is linear in n (see [AAPPS97℄),

but for larger values of k the best known bound due to Valtr is only O(n logn) [V98℄. It is an ex
iting

?
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open problem to de
ide whether one 
an get rid of the logarithmi
 fa
tor here. If H is the 
lass of

all 
on�gurations 
onsisting of k + 1 edges, one of whi
h 
rosses all the others, then the maximum

number of edges is equal to (k + 2)(n� 3), provided that k = 1; 2; 3, and the maximum is O(

p

kn)

for large values of k (
f. [PT97℄). For a survey of many similar results in Geometri
 Graph Theory,


onsult [P99℄.

The above questions 
an also be regarded as geometri
 analogues of the fundamental problem

of Extremal Graph Theory [B78℄: determine the maximum number of edges of all K-free graphs on

n verti
es, i.e., all graphs whi
h do not 
ontain a subgraph isomorphi
 to a �xed graph K. Denote

this maximum by ex(n;K).

In the present note, we 
onsider the spe
ial instan
e of the above question when H 
onsists of

all self-interse
ting straight-line drawings of a �xed graph K. In other words, what is the maximum

number ex


r

(n;K) of edges that a geometri
 graph with n verti
es 
an have, if it 
ontains no self-

interse
ting 
opy of K? Obviously, we have ex


r

(n;K) � ex(n;K); be
ause if a graph 
ontains no


opy of K, then it 
annot 
ontain a self-interse
ting 
opy either. Therefore, if K is not a bipartite

graph, then ex


r

(n;K) is quadrati
 in n. The question is more ex
iting for bipartite planar graphs.

What happens if K = P

k

(or K = C

k

), a path (or a 
y
le) of (an even) length k? The 
ase where

K = C

4

is dis
ussed in [PR02℄.

We analyze the 
ase whenK = P

3

. The 
orresponding graph property is a relaxation of planarity:

the geometri
 graphs satisfying the 
ondition are allowed to have two 
rossing edges, but if this is

the 
ase, no endpoint of one of these edges 
an be joined to an endpoint of the other. Is it still

true that the number of edges of su
h geometri
 graphs is O(n)? The following theorem provides a

negative answer to this question.

Theorem 1. The maximum number of edges of a geometri
 graph with n verti
es, 
ontaining no

self-interse
ting path of length 3, satis�es

ex


r

(n; P

3

) � 
n logn;

for a suitable 
onstant 
. Apart from the value of the 
onstant, this bound 
annot be improved.

The proof of this result (presented in three di�erent versions in the next three se
tions) applies

to a slightly more general situation. Theorem 1 remains true for topologi
al graphs whose edges are


ontinuous fun
tions de�ned on subintervals of the x-axis, i.e., every line perpendi
ular to the x-axis

interse
ts ea
h edge in at most one point. The topologi
al graphs satisfying this 
ondition are usually


alled x-monotone.

On the other hand, a 
onstru
tion in Se
tion 3 shows that Theorem 1 
annot be improved even

for geometri
 graphs all of whose edges are 
rossed by a straight line.

What happens if we drop the requirement of x-monotoni
ity? We do not have any example of a

topologi
al graph with n verti
es and more than 
onstant times n logn edges, in whi
h every path

of length 3 is simple, i.e., non-self-interse
ting. The best upper bound we have is the following.

Theorem 2. The maximum number of edges of a topologi
al graph with n verti
es, 
ontaining no

self-interse
ting path of length 3, is O(n

3=2

).

As was pointed out by Tutte [T70℄, parity plays an important role in determining the possible


rossing patterns between the edges of a topologi
al graph. This may well be a 
onsequen
e of the

Jordan Curve Theorem: every Jordan ar
 
onne
ting an interior point and an exterior point of a

simple 
losed Jordan 
urve must 
ross this 
urve an odd number of times. In parti
ular, Tutte showed

that every topologi
al graph with n verti
es and more than 3n�6 edges has two edges that not only


ross ea
h other, but (i) they 
ross an odd number of times, and (ii) they do not share an endpoint.

(See also [H34℄.)

This may suggest that Theorem 2 and perhaps any other bound of this type 
an be sharpened

as follows.
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Theorem 3. The maximum number of edges of a topologi
al graph with n verti
es, 
ontaining no

path of length 3 whose �rst and last edges 
ross an odd number of times, is O(n

3=2

).

In Se
tion 5 we prove this stronger statement. Somewhat surprisingly (to the authors), it turns

out that this last result is asymptoti
ally tight. More pre
isely, in Se
tion 6 we establish

Theorem 4. Let G be a bipartite graph on n verti
es, 
ontaining no 
y
le of length 4. Then G


an be drawn in the plane as an x-monotone topologi
al graph with the property that any two edges

belonging to a path of length 3 
ross an even number of times.

It is well known that there are C

4

-free bipartite graphs of n verti
es and at least 
onstant times

n

3=2

edges (see e.g. [B78℄).

In Se
tion 7, we 
onsider geometri
 and x-monotone topologi
al graphs with no self-interse
ting

path of length �ve. In this 
ase, Theorem 9 provides a slightly stronger bound on the number of

edges than those obtained for graphs with no self-interse
ting P

3

. We do not believe that Theorem

9 is tight. However, a re
ent 
onstru
tion of Tardos [T02℄ shows that ex


r

(n; P

k

) is superlinear in n,

for any �xed value k � 3.

In the �nal se
tion, we dis
uss a few related results and open problems.

2 A Davenport-S
hinzel bound for double arrays

In this se
tion, we dis
uss the spe
ial 
ase of Theorem 1 when G is a bipartite geometri
 (or x-

monotone topologi
al) graph, whose verti
es are divided by the y-axis into two 
lasses, A and B,

and all edges of G run between these 
lasses. We assume, for simpli
ity, that no two edges of G 
ross

the y-axis at the same point.

Let a

1

b

1

; a

2

b

2

; : : : ; a

m

b

m

be the edges of G listed from top to bottom, in the order of their

interse
tions with the y-axis, where a

i

2 A and b

i

2 B for every i. Consider the 
orresponding

double array (2�m matrix)

M =

�

a

1

a

2

: : : a

m

b

1

b

2

: : : b

m

�

It is easy to verify that if G is a geometri
 graph (or an x-monotone topologi
al graph) without

any self-interse
ting path of length three, then the 
orresponding matrix M does not 
ontain any

submatrix of the form F

1

=

�

u v u v

� x x �

�

or F

2

=

�

� u u �

x y x y

�

, where u 6= v, x 6= y and � stands for

an unspe
i�ed entry (see Fig. 1(a)).

u

y

u
y

x

(a) (b)

x

Fig. 1. (a) F

2

is forbidden, (b) not ne
essarily forbidden if adja
ent edges may 
ross
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In what follows, we show that if a 2 �m matrix M having at most n distin
t entries does not


ontain any forbidden submatrix of the above two types, then its number of 
olumns is O(n logn).

Therefore, the number of edges of G is at most O(n logn), as required by Theorem 1.

If G is an x-monotone topologi
al graph whose adja
ent edges are allowed to 
ross, and we only

require that the �rst and last edges of every path of length three must be disjoint, then the situation

is slightly more 
ompli
ated, be
auseM may 
ontain submatri
es of the above forms (see Fig. 1(b)).

However, in this 
ase the following 2� 6 submatri
es are forbidden:

�

v $ u v u v $ u

� � x x � �

�

(1)

and

�

� � u u � �

y $ x y x y $ x

�

: (2)

Here the signs $ indi
ate that the order of the �rst two 
olumns and the order of the last two


olumns are not spe
i�ed.

Theorem 5. Let M be a 2 �m matrix with at most n distin
t entries, all of whose 
olumns are

di�erent. If M has no 2� 6 submatrix of types (1) or (2), then m � 17n log

2

n.

It follows from the 
onstru
tion at the end of Se
tion 3, that the bound in Theorem 5 is tight

apart from the value of the 
onstant. In fa
t, for any n there exist a 2�m matrix with at most n

distin
t entries having neither F

1

nor F

2

as a submatrix with m � n log

2

n=4.

Proof. We need some de�nitions. Let

M =

�

a

1

a

2

: : : a

m

b

1

b

2

: : : b

m

�

For any 1 � i � m, we say that a

i

is a leftmost (or rightmost) entry if a

k

6= a

i

for every k < i (or

k > i, resp.). A

ordingly, a

i

is 
alled a se
ond leftmost (or se
ond rightmost) entry if a

k

= a

i

for

pre
isely one index k < i (or pre
isely one index k > i, resp.). Analogous terms are used for the

entries b

i

in the se
ond row of M .

A set of 
onse
utive 
olumns of M is 
alled a blo
k. A blo
k is said to be pure if all elements in

the �rst row of the blo
k are distin
t and the same is true for the elements in the se
ond row.

Assume the 
olumns of M are partitioned into l pure blo
ks. Consider now two 
onse
utive pure

blo
ks, B

1

and B

2

, 
onsisting of the 
olumns i+1; i+2; : : : ; j and j+1; j+2; : : : ; k, resp., for some

0 � i < j < k � n. Suppose that there is an element whi
h appears in the �rst row of B

1

as well as

in the �rst row of B

2

. That is, a

p

= a

q

for some i < p � j and j < q � k. We 
laim that either b

q

is a leftmost, se
ond leftmost or rightmost entry, or b

p

is a rightmost, se
ond rightmost or leftmost

entry. Indeed, otherwise, using the fa
t that b

q

is neither a leftmost nor a se
ond leftmost entry, we

obtain that there exists an index r � i su
h that b

r

= b

q

. Sin
e b

q

is not a rightmost entry, there is

an index s > k su
h that b

s

= b

q

. Similarly, in view of the fa
t that b

p

is neither a rightmost nor a

se
ond rightmost entry, we 
an 
on
lude that b

s

0

= b

p

for some s

0

> k. Sin
e b

p

is not leftmost, there

is a r

0

� i su
h that b

r

0

= b

p

. Observe that now the 
olumns r; r

0

< p < q < s; s

0

form a forbidden

submatrix of type

�

� � u u � �

y $ x y x y $ x

�

;

a 
ontradi
tion.

A symmetri
 argument shows that if b

p

= b

q

for some i < p � j and j < q � k, then either a

q

is a leftmost, se
ond leftmost or rightmost entry, or a

p

is a rightmost, se
ond rightmost or leftmost

entry. Thus, if we delete from M (and from its blo
k de
omposition) every 
olumn whose upper or

lower element is a leftmost, se
ond leftmost, rightmost, or se
ond rightmost entry, the union of the

remainders of any two 
onse
utive blo
ks be
omes pure.
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There are at most n distin
t entries, ea
h may appear in the �rst row and in the se
ond row,

so the number of deleted 
olumns is at most 8n. The resulting matrix M

0


an be de
omposed into

dl=2e pure blo
ks. Repeating this pro
ess at most dlog

2

le times, we end up with a matrix 
onsisting

of at least m� 8ndlog

2

le 
olumns that form a single pure blo
k. Thus, we have

m� 8ndlog

2

le � n:

Applying the above pro
edure to the initial partition of M into l = m pure blo
ks, ea
h 
onsisting

of a single 
olumn, the upper bound follows. �

For many other Davenport-S
hinzel type results for matri
es, 
onsult [FH92℄.

As we have pointed out before, the last theorem implies that every geometri
 or x-monotone

topologi
al graph with n verti
es and no path of length three whose �rst and last edges 
ross ea
h

other, has at most 
onstant times n logn edges, provided that all of its edges 
an be stabbed by a

line. Thus, we immediately obtain

Corollary 1. The maximum number of edges of an x-monotone topologi
al graph with n verti
es,


ontaining no path of length 3 whose �rst and last edges 
ross, is O(n log

2

n).

This result is slightly weaker than the bound in Theorem 1.

3 Proof of Theorem 1

We prove the following more general statement.

Theorem 6. Let G be an x-monotone topologi
al graph of n verti
es, whi
h has no self-interse
ting

path of length 3. Then G has at most 
onstant times n logn edges.

We assume without loss of generality that no two edges that share an endpoint 
ross ea
h other.

Otherwise, the two non-
ommon endpoints of these edges must be of degree 1 or 2, be
ause G has

no self-interse
ting path of length 3. So we 
an delete these endpoints, and 
omplete the argument

by indu
tion on the number of verti
es.

It will be 
onvenient to use the following terminology. If a vertex v is the left (resp. right) endpoint

of an edge e, then e is said to be a right (resp. left) edge at v. It follows from our assumption on

adja
ent edges that the left and the right edges at a given vertex 
an be ordered from bottom to

top.

Let e

1

= vu

1

and e

2

= vu

2

be two right edges at a vertex v su
h that the x-
oordinate of u

1

is

at most as large as the x-
oordinate of u

2

. We de�ne the right triangle determined by them as the

bounded 
losed region bounded by e

1

, a segment of e

2

;, and a segment of the verti
al line passing

through u

1

. The vertex v is 
alled the apex of this triangle. Analogously, we 
an introdu
e the notion

of left triangle.

Constru
t a sequen
e of subgraphs G

0

, G

1

, G

2

; : : : of G, as follows. Let G

0

= G. If G

i

has already

been de�ned for some i, then let G

i+1

be the topologi
al graph obtained from G

i

by deleting at ea
h

vertex the bottom 2 and the top 2 left and right edges (if they exist). We delete at most 8 edges per

vertex.

Claim. For any k � 0, every triangle determined by two edges of G

k


ontains at least 2

k

pairwise

di�erent triangles of G.

Proof of Claim. By indu
tion on k. Obviously, for k = 0; the 
laim is true, be
ause every triangle


ontains itself. Assume that the 
laim holds for k�1 (k > 0). Consider, e.g., a right triangle T in G

k

,
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determined by the edges e

1

= vu

1

and e

2

= vu

2

, where the x-
oordinate of u

1

is at most as large as

the x-
oordinate of u

2

. Suppose without loss of generality that e

1

lies below e

2

. Using the fa
t that

e

1

2 E(G

k

), we obtain that at u

1

there are at least two left edges f

1

; f

2

2 E(G

k�1

) whi
h lie above

e

1

. Both of these edges must be entirely 
ontained in T , otherwise we 
ould �nd a self-interse
ting

path of length 3. Suppose that f

1

lies below f

2

.

Let T

1

and T

2

denote the left triangles with apex u

1

, determined by e

1

and f

1

, and by f

1

and

f

2

, resp. Clearly, T

1

and T

2

both belong to G

k�1

, and they have disjoint interiors. By the indu
tion

hypothesis, both T

1

and T

2


ontain 2

k�1

pairwise di�erent triangles. It follows that T 
ontains 2

k

pairwise di�erent triangles, as required. �

Now we 
an easily 
omplete the proof of Theorem 6. Sin
e every triangle is spe
i�ed by a pair of

edges meeting at its apex, the total number of di�erent triangles is at most n

3

. Hen
e, for k > 3 log

2

n;

the graph G

k


annot determine any triangle, and its number of edges is smaller than n. On the other

hand, we have that jE(G

k

)j � jE(G

0

)j� 8kn. Therefore, jE(G)j = jE(G

0

)j � 25n log

2

n, 
ompleting

the proof of Theorem 6.

We 
lose this se
tion by showing that, up to the value of the 
onstant 
, Theorem 1 (and hen
e

Theorem 6, too) is best possible. Let n = 2

k

be �xed. We will re
ursively 
onstru
t a sequen
e

of bipartite geometri
 graphs G

i

= G

(k)

i

, i = 1; 2; : : : ; k, su
h that G

i

has 2

i

verti
es, (i + 1)2

i�2

edges, and 
ontains no self-interse
ting path of length 3. Furthermore, we will maintain the following

properties for every i.

1. The verti
es of G

i

have distin
t x-
oordinates, whi
h are all integers in the 
losed intervals

[�2

k

;�2

k

+2

i

� 1℄ and [0; 2

i

� 1℄. Verti
es with x-
oordinates in the �rst (resp. se
ond) interval

are 
alled left (resp. right).

2. Every edge of G

i


onne
ts a left vertex to a right vertex, and hen
e it must 
ross the verti
al

line (x = �

1

2

).

3. The horizontal edges of G

i

are of length 2

k

and form a perfe
t mat
hing. If two verti
es of

u; v 2 V (G

i

), are 
onne
ted by a horizontal edge, than they are said to form a pair.

4. For any vertex v of G

i

, the order of the edges in
ident to v a

ording to their slopes 
oin
ides

with the order a

ording to the lengths of their proje
tions to the x-axis.

Let G

1


onsist of two verti
es, (�2

k

; 0) and (0; 0), 
onne
ted by an edge. Obviously, this meets

the requirements.

Assuming that we have already 
onstru
ted G

i

for some i, we show how to obtain G

i+1

. Let

G

0

i

denote the translate of G

i

by a ve
tor (2

i�1

; Y

i

), where Y

i

is a very large positive integer to be

spe
i�ed later. Let G

i+1

be the union of G

i

and G

0

i

, together with the following 2

i�1

\new" edges:


onne
t every left vertex v 2 V (G

i

) to the right vertex v + (2

k

+ 2

i�1

; Y

i

) 2 V (G

0

i

), that is, to the

right vertex forming a pair with the translate of v. See Fig. 2.

Choose Y

i

so large that the slope of the new edges ex
eeds the slope of any line indu
ed by the

points of G

i

(or by the points of G

0

i

).

We have to 
he
k that G

i+1

has the required properties. We have jV (G

i+1

)j = 2jV (G)j = 2

i+1

and jE(G

i+1

)j = 2jE(G

i

)j + 2

i�1

= (i + 2)2

i�1

. Properties 1, 2, 3 and 4 are all inherited from G

i

.

To see that property 4 is maintained, it is suÆ
ient to re
all that both the slope and length of the

x-proje
tion of every new edge between G

i

and G

0

i

is larger than the 
orresponding values for the

old edges.

It remains to verify that G

i+1

does not 
ontain a self-interse
ting path of length 3. Assume to

the 
ontrary that there is su
h a path P in G

i+1

, and denote its edges by e

1

= uv, e

2

= vw, and

e

3

= wz. Sin
e G

i

(and thus G

0

i

) does not 
ontain a self-interse
ting path of length 3, at least one

of these edges must run between G

i

and G

0

i

. Note that there 
annot be two su
h edges, be
ause all

edges of G

i+1

running between G

i

and G

0

i

are parallel. It is also 
lear that e

2

is not su
h an edge.
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Assume, without loss of generality, that e

1

runs between G

i

and G

0

i

, and that we have u 2 V (G

i

)

and v 2 V (G

0

i

). Thus, e

2

and e

3

belong to G

0

i

. As v is a right vertex, w must be a left vertex, and both

e

2

and e

3

are to the right of w. Sin
e e

3


rosses e

1

, the slope of e

3

must be smaller than that of e

2

.

In view of property 4, we 
on
lude that the x-
oordinate of z is smaller than the x-
oordinate of v.

This implies that the slope of the line 
onne
ting z and v is larger than the slope of e

2

, 
ontradi
ting

our assumption.

Fig. 2. The 
onstru
tion of G

i

(i = 3)

4 A strengthening of Theorem 6

The aim of this se
tion is to establish the following stronger form of Theorem 6.

Theorem 7. The maximum number of edges of an x-monotone topologi
al graph with n verti
es,


ontaining no path of length 3 whose �rst and last edges 
ross, is O(n logn).

Proof. Let G be an x-monotone topologi
al graph with n verti
es and m edges, 
ontaining no path

of length 3 whose �rst and last edges 
ross. Our goal is to 
onstru
t another topologi
al graph G

0

with n

0

= 2n verti
es and m

0

� m=2� n edges, with the property that G

0

has no path of length 3

whose �rst and last edges 
ross, and no two adja
ent edges of G

0


ross ea
h other. Applying Theorem

6 to G

0

, the statement follows.

First, we split ea
h vertex of G into into two verti
es, one of them just a bit left to the other, so

that every original edge e be
omes an edge 
onne
ting the right 
opy of the left endpoint of e to the

left 
opy of its right endpoint. The resulting x-monotone topologi
al graph G

0

has n

0

= 2n verti
es

and m edges, it has no self-interse
ting path of length three, and the right endpoint of any edge of

G

0

is distin
t from the left endpoint of any other edge.

In the rest of this se
tion, the length of an edge means the length of its proje
tion to the x-axis,

and the terms shorter and longer will be used in the same sense. We write e = uv for an edge of

G

0

, whose left and right endpoints are u and v, resp. We 
all an edge e = uv long if it is the longest

either among all edges uv

0

or among all edges u

0

v 2 E(G

0

). Clearly, G

0

has fewer than n

0

long edges.

Let e and e

0

be two edges of G, where e is shorter than e

0

, and we have either e = uv and e

0

= uw,

or e = vu and e

0

= wu. We say that e is above e

0

if v is above e

0

. Similarly, we say e is below e

0

if v is

below e

0

. Note that if e is above or below e

0

then e is shorter, but e and e

0

may 
ross several times.

Let e = uv be an edge of G

0

whi
h is not long. By de�nition, there exist two edges, e

0

= uw and

e

00

= zv 2 E(G

0

), su
h that both of them are longer than e. So e is either above or below e

0

and e

is also above or below e

00

. However, e 
annot be above both e

0

and e

00

. Indeed, otherwise u is above
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e

00

while v is above e

0

, so e

0

and e

00


ross, 
ontradi
ting our assumption on G. Similarly, e 
annot be

below both e

0

and e

00

. Thus, ea
h edge e = uv 2 E(G

0

) whi
h is not long either satis�es that e is

above every longer edge uw and below every longer edge zv, or it satis�es that e is below every longer

edge uw and above every longer edge zv. We 
an assume, by symmetry, that the former 
ondition

(whi
h will be referred to as the monotoni
ity 
ondition) holds for m

0

� (m � n

0

)=2 = m=2 � n

edges. Let G

1

be the subgraph of G

0

formed by these edges.

We are now in a position to de�ne G

0

. As an abstra
t graph, G

0

is identi
al to G

1

. The lo
ations

of the verti
es will 
oin
ide, too. For any edge e 2 E(G

1

), denote by ê the 
orresponding edge of

G

0

. We draw the edges of G

0

one by one, in de
reasing order of length. If e in G

1

is neither above

nor below another edge, set ê = e. If e = uv is above (below) at least one other edge, let e

�

be the

shortest edge su
h that e is above e

�

(let e

+

be the shortest edge su
h that e is below e

+

, resp.).

Draw ê in su
h a way that all of its internal points lie stri
tly above ê

�

and below ê

+

(if these edges

exist). Noti
e that, if they exist, e

+

and e

�

are longer than e, so ê

+

and ê

�

are already de�ned. We

make sure during the 
onstru
tion that, if e

+

exists, it passes above u, if e

�

exists, it passes below

v (see property 2 below), and if both of them exist, they are disjoint (see property 4 below). We

de�ne ê to follow e, ex
ept in the intervals where ê

+

is below e or ê

�

is above e. In these intervals,

let ê run just below ê

+

or just above ê

�

, 
lose enough not to interse
t any further edges and going

on the same side of every vertex. See Fig. 3.

^

^

^e

e

e

e+

-

Fig. 3. The 
onstru
tion of the edge ê in G

0

We 
laim that the resulting graph G

0

has the following properties.

1. If e is below (above) e

0

in G

1

, then every interior point of ê is below (above, resp.) ê

0

.

2. If e

0

is below (above) e in G

1

, then the endpoint of e

0

whi
h is not an endpoint of e is below

(above, resp.) ê.

3. If e, e

0

, and e

00

form a path in G

1

and e is longer than e

0

, then ê and e

00

do not 
ross.

4. If e, e

0

, and e

00

form a path in G

1

then ê and

^

e

00

do not 
ross.

We verify these properties by showing that if they hold for the partially drawn graph, they do

not get violated when we add an extra edge ê.

(1) By the monotoni
ity, if there exists at least one edge f su
h that e is below f , then the

shortest among them, e

+

, must be below all others. Similarly, e

�

(if exists) must be above all other
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edges that e is above. Therefore, as property 1 has held so far, it does not get violated now, provided

that ê is in between ê

�

and ê

+

, whi
h is the 
ase.

(2) Let e = uv and assume that e

0

= uw is above e. By de�nition, w is above e and, by the

monotoni
ity 
ondition, w is above e

�

, if the latter exists. As property 2 has held so far, w is above

ê

�

, so w must be above ê. Similarly, if e

0

= zv is below e, then z is below ê.

(3) Note that e

0

is above or below e. By symmetry, we 
an assume without loss of generality that

e

0

is below e. By monotoni
ity, this means that they share their right endpoints. Here e and e

00

do

not 
ross, as they are �rst and last edges of a path of length 3, and the left endpoint of e

00

is below

e. So every point of e

00

must be below e or to the right of the right endpoint of e. If e

+

exists, we 
an

apply property 3 to the edges e

+

, e

0

, e

00

, and �nd that ê

+

does not 
ross e

00

. By the 
onstru
tion,

wherever ê runs below e, it follows ê

+

, so ê is disjoint from e

00

.

(4) We 
onsider two 
ases.

If both e and e

00

are shorter than e

0

, then one of them is below and the other is above e

0

(monotoni
ity). Thus, by property 1,

^

e

0

(drawn before the other two) separates ê from

^

e

00

, so they


annot 
ross.

We may assume that e is shorter than e

00

, so in the remaining 
ase e

00

is longer than e

0

. The

edge e

0

is below or above e

00

, and we 
an again assume, by symmetry, that e

0

is below e

00

. Applying

property 3 to the path e

00

, e

0

, e, we �nd that e is disjoint from

^

e

00

. By property 2, the left endpoint

of e lies below

^

e

00

. Thus, all points of e must be below

^

e

00

or to the right of its right endpoint. As ê

follows ê

�

wherever it runs above e, it is enough to show that if e

�

exists, ê

�

is disjoint from

^

e

00

. If

e

�

= e

0

, this follows from property 1, otherwise, from property 4 of the initial 
on�guration (before

ê has been drawn).

Observe that, by property 1, no two adja
ent edges of G

0


ross ea
h other and, by property 4,

the same is true for se
ond neighbors. Hen
e, we 
an indeed apply Theorem 6 to G

0

, and Theorem

7 follows. �

5 Forbidden subgraphs { Proof of Theorem 3

For any k � 2; let F

k

denote a graph with vertex set

V (F

k

) = fx; yg [ fb

i

: 1 � i � kg [ f


ij

: 1 � i < j � kg

and edge set

E(F

k

) = fxb

i

; yb

i

: 1 � i � kg [ f


ij

b

i

; 


ij

b

j

: 1 � i < j � kg:

We need the following theorem, whi
h 
an be obtained by a straightforward generalization of a result

of F�uredi [F91℄.

Theorem 8. For any �xed integer k � 2; let ex(n; F

k

) denote the maximum number of edges of an

F

k

-free graph with n verti
es. Then we have ex(n; F

k

) = O(n

3=2

). �

Let G be a topologi
al graph with n verti
es, 
ontaining no path of length 3 whose �rst and

last edges 
ross an odd number of times. To establish Theorem 3, it is suÆ
ient to verify that the

abstra
t graph obtained from G by disregarding how the edges are drawn does not have a subgraph

isomorphi
 to F

4

. In fa
t, it is enough to 
on
entrate to a the subgraph F

0

4

of F

4

indu
eed by the

vertex set fx; yg [ fb

i

: 1 � i � 4g [ f


ij

: 1 � i < j � 3g. Noti
e that F

0

4

is a subdivision of K

5

:

it 
an be obtained from K

5

by repla
ing four of its edges (a triangle and an edge not in
ident to

the triangle) by paths of length two. This means that a topologi
al graph isomorphi
 to F

0

4


an be

also 
onsidered as a topologi
al graph isomorphi
 to K

5

(simply remove the subdividing points). As

K

5

is not a planar graph, any topologi
al graph isomorphi
 to it must have at least one 
rossing.
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Furthermore, by Tutte's theorem [T70℄, there must exist two non-adja
ent edges that 
ross an odd

number of times. Thus, any topologi
al graph isomorphi
 to F

0

4

has two edges that 
ross an odd

number of times and they are either non-adja
ent edges of the underlying K

5

or portions of two

su
h edges. However, any two edges with this property 
an be extended to a self-interse
ting path

of length 3. Consequently, F

0

4

is not isomorphi
 to a subgraph of G, and Theorem 3 follows.

6 Drawing C

4

-free graphs { Proof of Theorem 4

Let G be a C

4

-free bipartite graph with vertex set V (G) = A [ B, where A = fa

1

; a

2

; : : : ; a

n

g and

B = fb

1

; b

2

; : : : ; b

n

g. The edge set of G is denoted by E(G).

We now 
onstru
t a drawing of G. Pi
k 2n points, a

1

; : : : ; a

n

; b

1

; : : : b

n

, on the x-axis, from left to

right in this order. These points will be identi�ed with the verti
es of G. For every edge a

i

b

j

2 E(G),

draw an x-monotone ar
 e

ij


onne
ting a

i

to b

j

, a

ording to the following rules:

(i) for any k > i, the ar
 e

ij

passes above a

k

if and only if a

k

b

j

62 E(G);

(ii) for any l < j, the ar
 e

ij

passes above b

l

if and only if a

i

b

l

2 E(G);

(iii) no two distin
t ar
s \tou
h" ea
h other (internal 
rossings are proper).

Noti
e that, unless two ar
s share an endpoint, the parity of their number of interse
tions is

determined by these rules.

Take two non-adja
ent edges a

i

b

j

; a

k

b

l

2 E(G) that belong to a path of length 3. We have to

distinguish four di�erent 
ases:

1. i < k, j < l, and a

k

b

j

2 E(G);

2. i < k, j < l, and a

i

b

l

2 E(G);

3. i < k, l < j, and a

i

b

l

2 E(G);

4. i < k, l < j, and a

k

b

j

2 E(G).

Consider the �rst 
ase. By drawing rule (i), the ar
 e

ij

passes below a

k

. By rule (ii), e

kl

passes

above b

j

. In view of rule (iii), this implies that e

ij

and e

kl


ross an even number of times, as required.

The se
ond 
ase 
an be treated similarly and is left to the reader.

In the third 
ase, applying rule (i), we obtain that a

k

lies above e

ij

. It is suÆ
ient to show that

the same is true for b

l

. At this point, we use that G is C

4

-free: sin
e a

i

b

j

; b

j

a

k

; a

k

b

l

2 E(G), we

have a

i

b

l

62 E(G). By rule (ii), this implies that b

l

is above e

ij

, as required. The last 
ase follows in

the same way, by symmetry.

So far we have 
he
ked that in our drawing any two non-adja
ent edges 
ross an even number of

times. It is not hard to extend the same property to all pairs of edges, even if they share endpoints.

To this end, we slightly modify the ar
s e

ij

in some very small neighborhoods of their endpoints.

Clearly, this will not e�e
t the 
rossing patterns of non-adja
ent pairs.

Fix a vertex a

i

. Redraw the ar
s e

ij

in
ident to a

i

so that the 
ounter-
lo
kwise order of their

initial pie
es in a small neighborhood of a

i

will be the same as the order of x-
oordinates of their

right endpoints. Consider now two ar
s, e

ij

; e

il

; (l < j), in
ident to a

i

. By rule (ii), b

l

lies below

e

ij

. On the other hand, after performing the lo
al 
hange des
ribed above, the initial pie
e of e

il

will also lie below e

ij

. This guarantees that e

ij

and e

il


ross an even number of times. Repeating

this pro
edure for ea
h vertex a

i

, and its symmetri
 version for ea
h b

j

, we obtain a drawing whi
h

meets the requirements of Theorem 4.
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7 Paths of length �ve

If we ex
lude self-interse
ting paths of length �ve (rather than three), we 
an establish a slightly

better upper bound on the number of edges of a geometri
 or x-monotone topologi
al graph.

Theorem 9. Let G be an x-monotone topologi
al graph of n verti
es with no self-interse
ting path

of length 5. Then G has at most 
onstant times n logn= log logn edges.

We modify the proof of Theorem 6, and use the same notation. We 
all an edge a left edge at its

right endpoint and a right edge at its left endpoint.

Suppose G has nm edges with m � 8. Constru
t a sequen
e of subgraphs G, G

0

, G

0

0

, G

00

0

, G

1

,

G

0

1

, G

00

1

, G

2

; : : : of G, as follows. Let G

0

be the topologi
al graph obtained from G by deleting ea
h

vertex of degree at most

m

2

. Noti
e that no two edges of G

0

that share an endpoint 
ross ea
h other.

Otherwise, sin
e all degrees are at least 5, those two edges 
ould be extended to a 
rossing path of

length 5. Thus, the left and the right edges at a vertex are naturally ordered from top to bottom.

Similarly, no path of length 3 or 4 is self-interse
ting.

1. If G

i

has already been de�ned for some i, let G

0

i

denote the topologi
al graph obtained from G

i

by deleting the bottom and the top left and right edges at ea
h vertex (if they exist). We delete

at most four edges per vertex.

2. If G

0

i

has already been de�ned for some i, let G

00

i

denote the topologi
al graph obtained from G

0

i

by deleting the bottom and the top left and right edges at every vertex (if they exist). We delete

at most four edges per vertex.

3. If G

00

i

has already been de�ned for some i, let G

i+1

be the topologi
al graph obtained from G

00

i

by deleting re
ursively ea
h vertex of degree at most

m

2

, so that all verti
es of G

i+1

have degree

higher than

m

2

. Clearly, as long as the average degree of G

00

i

is at least m, it 
annot de
rease in

this step.

Let a

i

denote the average degree in G

i

. It is easy to see that a

0

� 2m and a

i

� a

i�1

� 16 as long

as a

i�1

� 16 � m. So, we have a

b

m

16




� m. Therefore, G

b

m

16




still determines at least one (a
tually,

many) triangle(s).

Re
all that a left (right) triangle at a vertex is determined by two left (right, resp.) edges of the

vertex, and it is the region bounded by one of the edges, a pie
e of the other edge, and a verti
al

interval.

It is suÆ
ient to establish the following.

Claim. For any 0 � k �

m

16

, every triangle determined by two edges of G

k


ontains at least

�

m

2

� 2

�

k

pairwise di�erent triangles of G.

Indeed, assuming that the Claim is true, a triangle determined by G

b

m

16





ontains at least

�

m

2

� 2

�

b

m

16




triangles, and this number is at most n

3

. It follows that m � 
 logn= log logn, as

required by the theorem.

Proof of Claim. By indu
tion on k. Obviously, for k = 0; the assertion is true, be
ause every

triangle 
ontains itself. Assume that the 
laim holds for k � 1 (k > 0). Consider a right triangle T

in G

k

, determined by the edges e

1

= vu

1

and e

2

= vu

2

, where the x-
oordinate of u

1

is at most

as large as the x-
oordinate of u

2

. Suppose without loss of generality that e

1

lies below e

2

. Sin
e

e

1

2 E(G

00

k�1

), there is at least one left edge, f

1

2 E(G

0

k�1

), at u

1

above e

1

. This edge, f

1

= w

1

u

1

,

must entirely be 
ontained in T , otherwise we 
ould �nd a self-interse
ting path of length 3. Sin
e

f

1

2 E(G

0

k�1

), there is at least one right edge, f

2

2 E(G

k�1

), at w

1

below f

1

. Similarly, this edge,

f

2

= w

1

w, must be entirely 
ontained in the triangle determined by e

1

and f

1

. Therefore, f

2

must
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also lie in T . See Fig. 4. The degree of w in G

k�1

is at least

m

2

. In view of the fa
t that there is

no self-interse
ting path of length 5 or shorter, none of these edges 
an 
ross e

1

, e

2

, f

1

, and f

2

.

Therefore, all of them are entirely inside T . They determine at least

m

2

� 2 triangles with pairwise

disjoint interiors, ea
h of whi
h 
ontains at least

�

m

2

� 2

�

k�1

further triangles, and we are done by

indu
tion. �

u

u

w

1

2

v

Fig. 4. The edges at w are all in T

8 Related problems

A. Theorems 1 and 6 easily imply

Corollary 2. For any tree T other than a star, there exists a 
onstant 
(T ) su
h that every geometri


(or x-monotone topologi
al) graph G with n verti
es and more than 
(T )n logn edges 
ontains a self-

interse
ting 
opy of T . That is, we have

ex


r

(n; T ) � 
(T )n logn:

Indeed, deleting one-by-one every vertex of G whose degree is smaller than jV (T )j, we end up

with a graph G

0

having at most n verti
es and at least (
(T ) logn � jV (T )j)n edges. If 
(T ) is

suÆ
iently large, then G

0

has a self-interse
ting path of length 3. Using the fa
t that the degree of

every vertex in G

0

is at least jV (T )j, this path 
an be extended to a 
opy of T in G

0

(and hen
e in

G).

B. A slight modi�
ation of the proof of Theorem 1 gives

Corollary 3. For any positive integer k, there exists a 
onstant 


k

with the property that every

geometri
 graph with n verti
es and at least 


k

n logn edges has two adja
ent verti
es, u and v, and

2k edges in
ident to them, uu

1

; uu

2

; : : : ; uu

k

and vv

1

; vv

2

; : : : ; vv

k

, su
h that uu

i


rosses vv

j

for

every pair 1 � i; j � k.

C. We 
onje
ture that Theorem 1 
an be generalized to all topologi
al graphs with with no self-

interse
ting path of length 3. Re
ently, we have proved that if G is an x-monotone topologi
al graph

with n verti
es, all of whose edges 
ross the y-axis, and G has no self-interse
ting path of length
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4, then jE(G)j = O(n log

1=2

n). It is interesting to note that one 
annot guarantee the existen
e of

any spe
i�
 
rossing pattern of a path of length 4, even if the number of edges is at least 
(n logn).

Indeed, the 
onstru
tion in Se
tion 3 provides su
h a geometri
 graph with no self-interse
ting path

of length 3. On the other hand, a 
onvex, balan
ed, 
omplete bipartite geometri
 graph, all of whose

edges 
ross the y-axis, has no path of length 4, whose only self-interse
tion o

urs between its �rst

and last edges.

D. Any drawing of K

3;3

, a 
omplete bipartite graph with 3 verti
es in ea
h of its 
lasses, has two

non-adja
ent edges that 
ross ea
h other. Clearly, any two edges belong to a 
y
le of length 4, so

ex


r

(n;C

4

) � ex(n;K

3;3

) = O(n

5=3

):

This bound has been re
ently improved to O(n

8=5

) by Pin
hasi and Radoi�
i�
 [PR02℄. It seems likely

that the best possible bound is 
lose to n

3=2

.

It also follows from Theorem 8 that ex


r

(n;C

6

) = O(n

3=2

), and it generalizes to topologi
al

graphs. On the other hand, we have ex


r

(n;C

6

) � ex(n;C

6

) � 
n

4=3

; for a suitable 
onstant 
 > 0

(see [BS74℄). For C

4

-free graphs this bound is almost tight.

Theorem 10. Let G be a C

4

-free geometri
 (or x-monotone topologi
al) graph on n verti
es. If G

has no self-interse
ting 
y
le of length 6, then G has O(n

4=3

log

2=3

n) edges.

Proof. Assume without loss of generality that the left end of an edge is not the right end of another

edge in G. This 
an be a
hieved by splitting the verti
es in two as in the proof of Theorem 7. Let G

have n verti
es and jE(G)j = m > 


0

n

4=3

log

2=3

n edges. For p =

2
n logn

jE(G)j

< 1, 
olor randomly and

independently with probability p ea
h vertex of G red. Let G

0

be the subgraph of G indu
ed by the

red verti
es.

Let i(G

0

) denote the number of self-interse
ting paths of length 3 in G

0

. Deleting one edge from

ea
h su
h path, we obtain a graph with no self-interse
ting path of length 3. Thus, in view of

Theorem 1, we have

jE(G

0

)j � i(G

0

) < 
jV (G

0

)j log jV (G

0

)j;

for some positive 
. Taking expe
ted values, this yields

p

2

jE(G)j � p

4

i(G) < 
pn logn:

We obtain i(G) >

jE(G)j

3

8


2

n

2

log

2

n

: If 


0

is large enough, then i(G) >

�

n

2

�

, and there must exist two

self-interse
ting paths of length 3 
onne
ting the same pair of verti
es. These paths 
annot share

an internal vertex as that would lead to a C

4

. Therefore, putting them together, we get a C

6

whi
h

interse
ts itself at least twi
e. �
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