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Abstract

The crossing number, cr(G), of a graph G is the least number of cross-
ing points in any drawing of G in the plane. According to the Crossing
Lemma of Ajtai, Chvátal, Newborn, Szemerédi [ACNS82] and Leighton
[L83], the crossing number of any graph with n vertices and e > 4n
edges is at least constant times e3/n2. Apart from the value of the
constant, this bound cannot be improved. We establish some stronger
lower bounds under the assumption that the distribution of the degrees
of the vertices is irregular. In particular, we show that if the degrees of
the vertices are d1 ≥ d2 ≥ . . . ≥ dn, then the crossing number satisfies
cr(G) ≥ c1

n

∑n

i=1
id3

i − c2n
2, and that this bound is tight apart from the

values of the constants c1, c2 > 0. Some applications are also presented.

1 Introduction

Let G be a simple undirected graph with n = n(G) vertices and e = e(G) edges.
A drawing of G in the plane is a mapping f that assigns to each vertex of G a
distinct point in the plane and to each edge uv a continuous arc connecting f(u)
and f(v), not passing through the image of any other vertex. For simplicity,
the arc assigned to uv is also called an edge, and if this leads to no confusion,
it is also denoted by uv. Assume that no three edges share an interior point.
A common interior point of two edges is called a crossing point. The crossing
number, cr(G), of G is the minimum number of crossing points in any drawing
of G.
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The determination of cr(G) is an NP-complete problem [GJ83]. It was dis-
covered by Leighton [L83] that the crossing number can be used to estimate the
chip area required for the VLSI circuit layout of a graph. He proved the general
lower bound cr(G) > ce3/n2−O(n), for some c > 0, which was discovered inde-
pendently by Ajtai, Chvátal, Newborn, and Szemerédi [ACNS82]. The largest
known value of the constant, c = 1024/31827 > 0.032 , was found in [PRTT04].

Székely [Sz95] observed that this result can be elegantly used to deduce the
Szemerédi-Trotter theorem on the maximum number of incidences between n
points and m lines in the plane and the best known upper bound for the number
times the same distance can occur among n points in the plane. Székely’s
method was further developed to improve the existing lower bounds on the
number of distinct distances determined by n points in the plane [ST01], [KT04]
and upper bound for the number of different ways how a line can split a set of
2n points into two equal parts [D98]. For some other interesting corollaries,
consult [PS98], [PT02], [STT02], [MSSW06], [BCSV07].

It is easy to see that the above bound is tight, apart from the value of the
constant. However, as was shown in [PST00], it can be strengthened for some
special classes of graphs, e.g., for graphs not containing some fixed, so-called
forbidden subgraph. In particular, if G contains no cycle of length four, its
crossing number is at least c′e4/n3 −O(n), for a suitable constant c′ > 0.

The aim of this note is to establish that the order of magnitude of the bounds
of Leighton and Ajtai et al. can be tight only for “nearly regular” graphs and find
improved bounds for graphs with irregular degree distributions. Our techniques
could also be used to achieve similar improvement on the estimates in [PST00].

Theorem 1. For any simple graph G on n vertices with vertex degrees d1 ≥
d2 ≥ . . . ≥ dn we have

cr(G) ≥ 1
36000n

n∑

i=1

id3
i − 4.01n2.

Another result of this kind was found independently by Fox and Cs. Tóth
[FT06]. They proved that if

∑n
i=1 di ≥ 16n7/5 log2/5 n, then cr(G) ≥ 1

24

∑n
i=1 d2

i .
In this range, our bound in Theorem 1 is stronger. Fox and Tóth also established
the following “truncated” inequality for sparse graphs: cr(G) ≥ 1

64

∑n
i=k d2

i ,
where k is the smallest index that

∑n
i=k di ≤ 2

3

∑n
i=1 di. (The degree sequence

is decreasing.) For the precise details and for an interesting application of the
last inequality, consult [FT06].

As we will see, the main term in the estimate of Theorem 1 cannot be sub-
stantially improved if we restrict our attention to bounds that depend monoton-
ically on the degrees of the vertices. In this form of the estimate, the quadratic
error term is also unavoidable as shown for example by n vertex star that is
planar, but 1

n

∑n
i=1 d3

i evaluates to (n− 1)3/n. Note however that the original
version of the crossing number lemma (see Lemma 2.2 (ii)) has a linear error
term. It would be desirable to change main term of our estimate in such a
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way that allows for a linear error term and therefore would allow meaningful
estimates for the crossing number, even if it smaller than quadratic.

First, we prove the tightness of Theorem 1 in a bipartite setting.

Theorem 2. For any sequence of integers n ≥ d1 ≥ d2 ≥ . . . ≥ dn ≥ 0, there
exists a bipartite graph G with n vertices in either vertex class such that the
degree sequence in one class is exactly d1, . . . , dn and

cr(G) ≤ 8
n

n∑

i=1

id3
i .

Theorems 1 and 2 are almost complementary. Building on this we show in
Section 4 that the minimum crossing number of a graph with degrees at least
d1 ≥ . . . ≥ dn is estimated up to a constant factor by the expression 1

n

∑n
i=1 id3

i ,
provided that this value exceeds a constant multiple of n2. This is not true if
we consider graphs with degree sequence exactly d1 ≥ . . . ≥ dn as shown by
the observation that while the addition of isolated vertices does not change the
crossing number of a graph, adding extra zeroes to the degree sequence decreases
1
n

∑n
i=1 id3

i as n increases.
We mention some alternative forms of this estimate. As we will see in Section

3,
∑n

i=1 id3
i is within a constant factor of

∑n
i=1 sid

2
i , where si =

∑i
j=1 di and

d1 ≥ . . . ≥ dn ≥ 0. In some situations, it is more convenient to use the latter
variant.

The expression (
∑n

i=1 d
3/2
i )2 is also closely related to the sum

∑n
i=1 id3

i . It
is more attractive, in the sense that it does not depend on the order of the
elements d1, . . . , dn. It is easy to prove that for any sequence of nonnegative
reals d1 ≥ . . . ≥ dn, we have

n∑

i=1

id3
i ≤

(
n∑

i=1

d
3/2
i

)2

≤ (lnn + 1)
n∑

i=1

id3
i .

For the first inequality use that d
3/2
i d

3/2
j ≥ d3

j for i ≤ j, for the second inequality

use Cauchy-Schwarz with i1/2d
3/2
i and i−1/2. The logarithmic factor on the

right-hand side cannot be eliminated, as is shown, for example, by the sequence
di = i−2/3. In order to obtain an integer sequence (suitable for degree sequence),
one can scale this up to di = bn/i2/3c.

Theorems 1 and 2 are proved in Sections 2 and 3. Section 4 contains some
direct applications of our results and concluding remarks.

2 Imbalanced bipartite Crossing Lemma

Our computations will be based on the simple observation that in an imbal-
anced bipartite graph the number of crossings is always larger than the bound
guaranteed by the Crossing Lemma.
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Lemma 2.1. Let G(A,B) be a bipartite graph with vertex classes A and B, and
suppose that its number of edges satisfies e ≥ 6max(|A|, |B|). Then we have

cr(G(A, B)) ≥ 1
108

e3

|A||B| .

Proof. If G(A,B) is planar, then it follows from Euler’s Polyhedral Formula
that e ≤ 2(|A|+ |B|)− 4, provided that |A|+ |B| ≥ 3. This yields, by induction
on e, that for not necessarily planar bipartite graphs on at least 3 vertices

cr(G(A,B)) ≥ e− 2(|A|+ |B|) + 4 (1)

holds.
Select each vertex of A independently with probability p1, and let A′ denote

the set of selected vertices. Analogously, let B′ be a randomly chosen subset
of B, whose elements are selected from B independently with probability p2.
Letting G(A′, B′) denote the subgraph of G(A,B) induced by A′∪B′, (1) implies
that

cr(G(A′, B′)) > e′ − 2(|A′|+ |B′|),
where e′ stands for the number of edges of G(A′, B′). Taking expectations of
both sides, we obtain

p2
1p

2
2cr(G(A,B)) ≥ E[cr(G(A′, B′))]

> E[e′]− 2E[|A′|+ |B′|]
= p1p2e− 2(p1|A|+ p2|B|)

cr(G(A,B)) >
1

p1p2

(
e− 2

( |A|
p2

+
|B|
p1

))
.

Setting p1 := 6|B|
e and p2 := 6|A|

e , the result follows. 2

We can get rid of the assumption e ≥ 6max(|A|, |B|) in Lemma 2.1 by
introducing an error term. For comparison and later reference, we also state
the original version of the Crossing Lemma (with the better constant obtained
in [PRTT04]).

Lemma 2.2. (i) Let G be a bipartite graph with vertex classes of size k and `
with k ≤ ` and e edges. We have

cr(G) ≥ 1
108

e3

k`
− 2

`2

k
.

(ii) For an arbitrary simple graph G with n vertices and e edges, we have

cr(G) ≥ 1
32

e3

n2
− 2n.
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Proof of (i). Adjusting the constant in the error term, we can achieve that
the bound becomes negative and therefore trivially holds when the assumption
of Lemma 2.1 is not satisfied. 2

Proof of Theorem 1. Fix a graph G with vertex set V (G) = {v1, . . . , vn}
with d(vi) = di for i = 1, . . . , n.

Let l0 = blog2 nc. For 1 ≤ l ≤ l0, consider the pairwise disjoint sets Vl =
{vi|2l−1 ≤ i < 2l} ⊆ V (G), and let Hl denote the subgraph of G induced by
Vl. Let H ′

l ⊆ G be the bipartite subgraph, consisting of all edges of G running
between Vl and its complement V (G) \ Vl. Finally, let fl and f ′l denote the
number of edges in Hl and H ′

l .
Set tl =

∑
vi∈Vl

di. Clearly, we have tl = 2fl + f ′l for every l, so that
max(fl, f

′
l ) ≥ tl/3. Applying parts (ii) and (i) of Lemma 2.2 to Hl and H ′

l ,
respectively, we obtain that

cr(Hl) ≥ f3
l

22l+3
− 2l and cr(H ′

l) ≥
f ′3l

54 · 2ln
− 4n2

2l
.

This yields

max(cr(Hl), cr(H ′
l)) ≥

t3l
1500 · 2ln

− 4n2

2l
.

The graphs Hl and H ′
l (1 ≤ l ≤ l0) have the property that every edge belongs

to at most two of them. Thus, we have

cr(G) ≥
l0∑

l=1

cr(Hl) + cr(H ′
l)

2
≥ 1

3000n

l0∑

l=1

t3l
2l
− 4n2.

In order to prove Theorem 1, it is enough to show that the above bound
exceeds the one stated in the theorem. It follows from the fact that the sequence
d1, d2, . . . is monotone decreasing that

tl =
2l−1∑

i=2l−1

di ≥ 2l−1d2l ,

for 1 ≤ l ≤ l0.
Consider the partial sum

Dl =
max(2l+1−1,n)∑

i=2l

id3
i .

Obviously, we have
l0∑

l=1

Dl =
n∑

i=2

id3
i =

n∑

i=1

id3
i − d3

1.

Using again the monotonicity of the degree sequence, we conclude that

Dl ≤ 3 · 22l−1d3
2l ≤ 12

t3l
2l

,
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so that

cr(G) ≥ 1
3000n

l0∑

l=1

t3l
2l
− 4n2

≥ 1
36000n

l0∑

l=1

Dl − 4n2

≥ 1
36000n

n∑

i=1

id3
i − 4.01n2. 2

3 A bipartite construction

For the proof of Theorem 2, we need the following technical lemma.

Lemma 3.1 Let d1, . . . , dn be a sequence of non-negative reals. For 1 ≤ i ≤ n,
let si =

∑i
j=1 dj. We have

n∑

i=1

sid
2
i ≤ 4

n∑

i=1

id3
i .

Proof. First, notice that

2
i∑

j=1

sjdj = 2
i∑

j=1

j∑

k=1

djdk = s2
i +

i∑

j=1

d2
j .

Therefore, we have

si ≤ 2
si

i∑

j=1

sjdj ,

for all i.
Introducing the notation A =

∑n
i=1 sid

2
i and B =

∑n
i=1 id3

i , in view of the
last inequality, we have

A ≤ 2
n∑

i=1

d2
i

si

i∑

j=1

sjdj ,

1
2
A−B ≤

n∑

i=1

d2
i

i∑

j=1

(
sj

si
dj − di

)
.

Using the estimate di(x− di) ≤ x2/4 for x = (sj/si)dj , and switching the order
of the summations, we obtain

1
2
A−B ≤

n∑

i=1

di

4

i∑

j=1

(
sj

si
dj

)2

=
1
4

n∑

j=1

s2
jd

2
j

n∑

i=j

di

s2
i
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Notice that
di

s2
i

≤ 1
si−1

− 1
si

,

so we have
n∑

i=j

di

s2
i

≤ dj

s2
j

+
1
sj

.

This yields
1
2
A−B ≤ 1

4

n∑

j=1

(sjd
2
j + d3

j ) =
1
4
(A +

n∑

j=1

d3
j ),

and, by rearranging the terms, A ≤ 4B +
∑n

i=1 d3
i .

To get rid of the error term of C =
∑n

i=1 d3
i , we simply apply the last

inequality to the sequence (d′i)
2n
i=1 obtained from (di)n

i=1 by repeating each term
twice. The corresponding sums for this sequence are A′ = 4A−C, B′ = 4B−C,
and C ′ = 2C. We obtain A′ ≤ 4B′ + C ′, which implies A ≤ 4B, as claimed. 2

We suspect that Lemma 3.1 remains true with the constant 4 replaced by
3. However, as is shown by the sequence di = i−2/3, the claim is certainly false
with any constant smaller than 3. Note that the reverse inequality

∑n
i=1 id3

i ≤∑n
i=1 sid

2
i trivially holds if di is non-increasing sequence of non-negative reals,

since in this case si ≥ idi.

Proof of Theorem 2. We construct G together with a straight-line draw-
ing that will demonstrate the upper bound on the crossing number of G. Let
{v1, . . . , vn} and {w1, . . . , wn} be the two vertex classes of G. Pick a line `, and
place the points w1, . . . , wn on ` in this order, from left to right. The positions
of the vertices v1, . . . , vn will be determined one by one, so that no vi lies on `
or on any previously drawn edge, and each vi is connected by a segment to the
prescribed number di of points wj .

Place v1 at any point that does not belong to `, and connect it to the
vertices w1, . . . , wd1 . Now let i > 1, and assume that the position of all vertices
v1, . . . , vi−1 has already been fixed. If di = 0, then vi is an isolated vertex
and it can be placed anywhere outside of ` and the previously drawn edges. If
di > 0, then let wj denote the last vertex (that is, the one with the highest
index) incident to vi−1.

If n − j ≥ di, connect vi to wj+1, wj+2, . . . , wj+di . If n − j < di, connect
vi to w1, . . . , wdi . Place vi at a point (not belonging to ` or to any previously
drawn edge) which lies so close to one of its neighbors that any edge incident
to vi can cross only those edges that are incident to a neighbor of vi. As the
neighbors of vi are consecutive points on `, this can indeed be achieved.

Obviously, the resulting geometric graph is bipartite and the degrees of its
vertices satisfy d(vi) = di. It remains to estimate the number of crossings. Fix a
vertex vi and consider its neighbors wj . Let si denote the maximum degree of a
neighbor of vi in the graph induced by the vertices w1, . . . , wn and v1, . . . , vi−1.
In other words, si is the number of times our drawing algorithms had to “start
over” at w1 before processing vi. The numbers di were listed in decreasing order,
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therefore in each round at least n/2 edges were drawn. Thus, the total number
of edges drawn before processing vi is

∑i−1
j=1 dj ≥ sin/2, so that

si ≤ 2
n

i−1∑

j=1

dj .

According to the drawing rules, the introduction of each vi creates at most
sid

2
i new crossings. Thus, we have cr(G) ≤ ∑n

i=1 sid
2
i . Applying Lemma 3.1,

we obtain

cr(G) ≤ 8
n

n∑

i=1

id3
i ,

as required. 2

4 Applications and concluding remarks

Given a set P of 2n points in general position in the plane, two elements of
P form a halving pair if the line connecting them divides P into two parts of
equal cardinality [L71]. The best known upper bound for the number of halving
pairs, O(n4/3), was established by Dey [D98]. His result was strengthened by
Andrzejak, Aronov, Har-Peled, Seidel, and Welzl [AAHSW98, AW03], as fol-
lows. Define the halving-edge graph H(P ) of P , as a geometric graph on the
vertex set P , where two vertices are connected by a straight-line segment (edge)
if and only if they form a halving pair. For the degree sequence d1, d2, . . . , d2n

of the vertices of H(P ), Andrzejak et al. found the beautiful formula

κ(H(P )) +
2n∑

i=1

(
(di + 1)/2

2

)
=

(
n

2

)
,

where κ(H(P )) denotes the number of crossing pairs of edges of H(P ). It follows
that κ(H(P )) < n2/2, and combining this bound with the Crossing Lemma, we
immediately obtain Dey’s result. Note that here the contribution of the sum of
the squares of the degrees is negligible, therefore we gain no information on the
degree distribution. By Theorem 1, we have

Corollary 3. For the degree sequence d1 ≥ d2 ≥ . . . ≥ d2n of the halving-edge
graph H(P ) of a 2n-element point set P in general position in the plane, we
have

2n∑

i=1

id3
i ≤ Cn3,

where C is a positive constant.

This inequality is a strengthening of Dey’s bound. It implies that if there
exists a point set with Ω(n4/3) halving pairs, then its halving-edge graph must
have a fairly even degree distribution. Analogously, we can generalize other
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applications of the Crossing Lemma, and conclude that the resulting estimates
cannot be asymptotically tight, unless the degrees of the vertices in the corre-
sponding graph are roughly the same.

Finally, we return to the claim we made in the Introduction that the min-
imum crossing number of a simple graph on n vertices having degrees at least
n− 1 ≥ d1 ≥ . . . ≥ dn is approximated within a constant factor by 1

n

∑n
i=1 id3

i ,
provided this value exceeds a certain constant multiple of n2. The lower bound
directly follows from Theorem 1, as increasing the degrees can only increase the
bound claimed there. For the upper bound, we slightly modify the construction
in the proof of Theorem 2 to obtain a graph G with vertices v1, . . . , vn satis-
fying d(vi) ≥ di and a drawing of G in the plane with straight-line edges and
with O(

∑n
i=1 id3

i ) edge crossings. For simplicity, we assume n is even and set
m = n/2. If dm > m, we have 1

n

∑n
i=1 id3

i = Ω(n4), so any straight-line drawing
of G = Kn will do. Otherwise, we apply the construction of Theorem 2 to
the degree sequence d′1, . . . , d

′
m, where d′i = max(di,m). We obtain a bipartite

graph G0 between the vertices v1, . . . , vm and w1 = vm+1, . . . , wm = v2m, and
a straight-line drawing of G0 such that d(vi) = d′i for i ≤ m and the number of
edge crossings is at most 8

m

∑m
i=1 id′i

3. If vm+1 is connected to vi+1 and vi is
connected to vj , we connect vi to every vertex vk with k > j. In other words,
we finish each “pass” of the construction of G0 by connecting the last vertex
in the pass with the remaining vertices vj , j > m “not used in that pass”. In
the resulting graph G1, we still have d(vi) ≥ d′i for i ≤ m, and now we have
d(vi) ≥ d′m = dm ≥ di for i > m. The number of edge crossings in G1 is still
at most 16

m

∑m
i=1 id′i

3. Finally, we complete the construction of G by connecting
every vertex vi of G1 with di > m to all the other vertices of G1. The result-
ing graph satisfies d(vi) ≥ di for all i and the number of edge crossings is still
O( 1

m

∑m
i=1 id′i

3) = O( 1
n

∑n
i=1 id3

i ).
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