Capacity of collusion secure fingerprinting — a
tradeoff between rate and efficiency

Gébor Tardos
School of Computing Science
Simon Fraser University
and
Rényi Institute, Budapest
tardos@cs.sfu.ca

Abstract

The talk presented a short history of collusion resistant finger-
printing concentrating on recent results that represent joint work with
Ehsan Amiri.

1 The model

To ensure protection of their copyright, content producers often make each
copy of their productions unique by embedding a distinct code in each. For
this to work they have to be able to hide the positions where the code is
embedded. A collision attack is performed by a group of malicious users
(the pirates), who compare their copies and identify the positions where
they differ as a position of the embedded code. They can then arbitrarily
change the code in these positions. We assume however that they do not
notice the positions of the hidden code where all their codes agreed and
therefore they cannot alter these positions. This is the marking assumption.

A (collusion resistant) fingerprinting code consists of a randomized pro-
cedure to choose codewords (the code generation) and a tracing algorithm
that finds one of the pirates based on all these codewords and and the forged
codeword read from the unauthorized copy made by the pirates. We say that
the code (or the tracing algorithm) errs if it falsely accuses an innocent user
or outputs no accused user at all. This should happen with small proba-
bility. The mathematical definition was first given by Boneh and Shaw [4]
and can also be found in most of the papers cited below. Here we do not

go beyond the slightly informal explanation given above, but in order to be
able to speak about the result we have to list the numerous parameters a
fingerprinting code has. These are

e alphabet size The codewords are are sequences over a fixed alphabet
Y. Most of the research on fingerprinting codes concentrates on the
binary alphabet ¥ = {0, 1}, but fingerprinting is worth studying over
larger alphabets too and the size |X| of the alphabet is an important
parameter.

e codelength This is the length of the codewords, usually denoted by n.

o number of users Usually denoted by N, this is also the number of
codewords.

o number of pirates In most codes one has to assume a bound ¢ on the
number of pirates responsible for the collusion attack. If the actual
number of pirates is ¢ or less, the tracing algorithm should perform
with small error probability. In many of the fingerprinting codes the
probability of accusing an innocent user is small even if the number of
pirates exceeds t, only the probability of tracing algorithm failing by
not producing any accusations increases in this case.

e error probability We say that a a code is e-secure against ¢ pirates or it
is an e-secure t-fingerprinting code, if the probability of the error of the
tracing algorithm is at most € for any set of at most ¢ pirates performing
an arbitrary pirate strategy to produce the forged codeword provided
that they obey the marking assumption.

e rate The rate R of a fingerprinting code is computed from the number
N of codewords and the length n as R = log N/n, where the logarithm
is binary. In the trivial ¢ = 1 case (no collusion) it is enough to ensure
that the codewords are pairwise distinct and thus a rate of R = log|X|
is achievable (R = 1 for binary codes), the reciprocal of the rate gives
how much longer the codewords are compared to these trivial binary
codewords.

To simplify the large number of parameters we concentrate on maximiz-
ing the rate of a sequence of fingerprinting codes (a fingerprinting scheme)
subject to the conditions that the number of users and the length should
go to infinity, the error probability should go to zero while the number of

pirates and and the alphabet is fixed. The t-fingerprinting capacity for al-
phabet size || is the maximum achievable limit rate of such fingerprinting
schemes.

The goal of fingerprinting research is to find efficient and secure finger-
printing codes. The paramount problem in the application of fingerprinting
codes is the high cost of embedding every single digit of the code. This
makes it important to design secure fingerprinting codes that are short, or
equivalently, have high rate. In particular, recent research focused on find-
ing or estimating the t-fingerprinting capacity for various values of ¢ (mostly
considering the binary alphabet).

2 History of results

Boneh and Shaw [4] were first to define fingerprinting secure against collusion
attacks. They proposed such binary codes of length O(t* log(N/e)log(1/€))
for N users that are e-secure against ¢ pirates. This translates to a t-secure
fingerprinting scheme with rate of Q(1/t*). The same paper gave a lower
bound of Q(tlog(1/(te))) for the length of the fingerprinting code with the
same parameters. This does not quite translate to an upper bound on the
binary t-fingerprinting capacity but still roughly correspond to an O(1/t)
bound.

The paper [11] introduced a new and more efficient codes. The rate
of these binary t-secure codes are 1/(100t?) and the same paper also gave
a lower bound on the length of t-secure fingerprinting codes that roughly
translates to an O(1/t?) upper bound on the rate for any alphabet size.
This settled the order of magnitude for the t-fingerprinting capacity: it
is ©(1/t?). The large constant factor between the lower and upper bound
motivated further research and many subsequent papers (e.g., [3, 7, 8, 9, 10])
managed to improve the constant 100 in the construction with optimizing
various parameters in the construction and/or better analysis in the estimate
of the error probability.

Amiri and Tardos [1] and independently Huang and Moulin [5, 6] (for a
broader class of models including the marking assumption model surveyed
here) designed fundamentally different fingerprinting codes in an attempt
to find the optimal rate, the fingerprinting capacity. While these new codes
in the two papers are slightly different they are very similar and achieve
identical rates. I conjecture that the rates achieved are optimal (i.e., they
achieve the t-fingerprinting capacity) to the best of my knowledge this has
not been fully proved yet.

3 Comparison of the techniques

Bias based code generation was introduced in [11]. This is a two phase
process for generating the code words starting with picking iid. biases for
each position from 1 to n and continuing with picking each digit of each
codeword independently with the bias determined by the position of the
digit. In the binary case a bias for position ¢ is a real number 0 < p; < 1 and
the digit i of a codeword x is picked with Plx; = 1] = p;. For larger alphabets
the bias is an arbitrary distribution on . The same code generation was
used later in [1], but with a different distribution to choose the biases from.
The tracing algorithm in [11] is simple and efficient, whether a user is
accused or not is determined by simple linear constraint, most notably it is
determined by the codeword of the user, the forged codeword and the biases
without regard to all the other codewords. This makes the tracing algorithm
linear time in the size of the code matrix. In contrast, in the schemes of
[1, 5] and also in the scheme of the earlier paper [2] of Anthapadmanabhan,
Barg and Dumer the tracing algorithm has to consider each t-tuple of users
to decide which user to accuse, thus the accusation of a user depends on the
codewords of all other users too. This makes tracing rather inefficient.

4 Further research directions

An obvious research direction is to combine the efficiency of the tracing
algorithm in [11] with the higher rates of [2] (for ¢ = 2 pirates) and of [1, 6]
(for any number of pirates). With Ehsan Amiri we achieved partial results
in this direction. These results are yet to be published.

For the first non-trivial case when the code should be secure against only
t = 2 pirates we can design a more efficient tracing algorithm for the fin-
gerprinting code of [2, 1] (these have the same very simple code generation
procedure for ¢t = 2: each user receives an independent uniform random bi-
nary codeword). Although accusation of a user still depends on codewords
of all other users too (this is unavoidable), the new tracing algorithm is
linear time in the size of the codematrix. So in the case of two pirates the
shorter codes and the faster tracing algorithms can be achieved simultane-
ously without having to compromise in either.

For more than two pirates our results are much more modest. First, we
can achieve a small speedup of the tracing algorithm. Instead of considering
all t-tuples of users for a tracing algorithm with N? as the leading term in its
running time we can slightly improve the exponent. This represent a slightly

more efficient, but still optimal length fingerprinting codes. Another possi-
ble approach is to insist on a much faster tracing algorithm for the price of a
slightly longer code (i.e., lower rates). We devised a sequence of intermedi-
ate fingerprinting codes representing a gradual trade-off between efficiency
(speed of tracing) and length (rate). It is not clear however, whether this
trade-off is inherent or just the result of our imperfect techniques.

Another important research direction is to study how the alphabet size
influences the fingerprinting capacity. By the results of [11, 1] the O(1/t?)
upper bound for the t-fingerprinting capacity holds with an absolute con-
stant independent of the alphabet size, but our preliminary calculations
show that the actual ¢-fingerprinting capacity grows substantially with mov-
ing from binary to larger alphabets. It would be important to determine
the limit rates achievable as the alphabet size grows.

References

[1] E. Amiri, G. Tardos, High rate fingerprinting codes and the fingerprint-
ing capacity, in Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2009), 336-345.

[2] N.P. Anthapadmanabhan, A. Barg, I. Dumer, Fingerprinting capacity
under the marking assumption, IEEE Transactions on Information The-
ory 54 (6) (2008), 2678-2689. Preliminary version appeared in the Pro-
ceedings of the 2007 IEEE International Symposium on Information The-
ory, (ISIT 2007), 2007.

[3] O. Blayer, T. Tassa, Improved versions of Tardos’ fingerprinting scheme,
Designs, Codes and Cryptography 48 (2008), 79-103.

[4] D. Boneh, J. Shaw, Collusion-secure fingerprinting for digital data, IEEE
Transactions of Information Theory 44 (1988), 480-491.

[5] Y. Huang, P. Moulin, Saddle-point solution of the fingerprinting capac-
ity game under the marking assumption, in Proceedings of the IEEE
International Symposium on Information Theory (ISIT 2009).

[6] P. Moulin, Universal fingerprinting: capacity and random-coding expo-
nents, in Proceedings of the IEEE International Symposium on Informa-
tion Theory (ISIT 2008), 220-224.

[7] K. Nuida, S. Fujitsu, M. Hagiwara, T. Kitagawa, H. Watanabe, K.
Ogawa, H. Imai, An improvement of the discrete Tardos fingerprinting
codes, Cryptology ePrint Archive, Report 2008/338.

[8] K. Nuida, M. Hagiwara, H Watanabe, H. Imai, Optimization of Tardos’s
fingerprinting codes in a viewpoint of memory amount, in: Information

Hiding, LNCS 4567, Springer Berlin, Heidelberg, 2008, pp. 279-293.

[9] B. Skorié, S. Katzenbeisser, M.U. Celik, Symmetric Tardos fingerprinting
codes for arbitrary alphabet sizes, Designs, Codes and Cryptography
46(2) (2008), 137-166.

[10] B. Skori¢, T.U. Vladimirova, M. Celik, J.C. Talstra, Tardos fingerprint-
ing is better than we thought, IEEE Transactions on Information Theory
54 (8) (2008), 3663-3676.

[11] G. Tardos, Optimal probabilistic fingerprint codes, Journal of the ACM,
to appear. Preliminary version appeared in Proceedings of the 35th An-
nual ACM Symposium on Theory of Computing, (STOC 2003), 116-125.

