
Tight Bounds for Lp Samplers, Finding Duplicates in
Streams, and Related Problems

Hossein Jowhari
Simon Fraser University

School of Computing Science
Burnaby, BC, Canada

hjowhari@cs.sfu.ca

Mert Sağlam
Simon Fraser University

School of Computing Science
Burnaby, BC, Canada

mert.saglam@sfu.ca

Gábor Tardos
∗

Rényi Institute of Mathematics
Budapest, Hungary

and
Simon Fraser University

School of Computing Science
Burnaby, BC, Canada
tardos@renyi.hu

ABSTRACT
In this paper, we present near-optimal space bounds for Lp-
samplers. Given a stream of updates (additions and sub-
traction) to the coordinates of an underlying vector x ∈
R

n, a perfect Lp sampler outputs the i-th coordinate with
probability |xi|

p/‖x‖p
p. In SODA 2010, Monemizadeh and

Woodruff showed polylog space upper bounds for approxi-
mate Lp-samplers and demonstrated various applications of
them. Very recently, Andoni, Krauthgamer and Onak im-
proved the upper bounds and gave a O(ǫ−p log3 n) space ǫ
relative error and constant failure rate Lp-sampler for p ∈
[1, 2]. In this work, we give another such algorithm requir-
ing only O(ǫ−p log2 n) space for p ∈ (1, 2). For p ∈ (0, 1),
our space bound is O(ǫ−1 log2 n), while for the p = 1 case
we have an O(log(1/ǫ)ǫ−1 log2 n) space algorithm. We also
give a O(log2 n) bits zero relative error L0-sampler, improv-
ing the O(log3 n) bits algorithm due to Frahling, Indyk and
Sohler.

As an application of our samplers, we give better upper
bounds for the problem of finding duplicates in data streams.
In case the length of the stream is longer than the alphabet
size, L1 sampling gives us an O(log2 n) space algorithm, thus
improving the previous O(log3 n) bound due to Gopalan and
Radhakrishnan.

In the second part of our work, we prove an Ω(log2 n)
lower bound for sampling from 0, ±1 vectors (in this spe-
cial case, the parameter p is not relevant for Lp sampling).
This matches the space of our sampling algorithms for con-
stant ǫ > 0. We also prove tight space lower bounds for the
finding duplicates and heavy hitters problems. We obtain
these lower bounds using reductions from the communica-
tion complexity problem augmented indexing.

∗Supported by NSERC grant 329527, OTKA grants T-
046234, AT-048826, and NK-62321

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’11, June 13–15, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0660-7/11/06 ...$10.00.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and Problem Complex-

ity]: General; E.4 [Coding and Information Theory]:
Formal models of communication; E.m [Data]: Miscella-
neous

General Terms
Algorithm, Design, Theory

Keywords
Streaming Algorithms, Sampling, Finding Duplicates

1. INTRODUCTION
Sampling has become an indispensable tool in analysing

massive data sets, and particularly in processing data streams.
In the past decade, several sampling techniques have been
proposed and studied for the data stream model [3, 11, 5, 10,
22, 1]. In this work, we study Lp-samplers, a new variant of
space efficient samplers for data streams that was introduced
by Monemizadeh and Woodruff in [22]. Roughly speaking,
given a stream of updates (additions and subtraction) to the
coordinates of an underlying vector x ∈ R

n, an Lp-sampler
processes the stream and outputs a sample coordinate of x
where the i-th coordinate is picked with probability propor-
tional to |xi|

p.
In [22], it was observed that Lp-samplers lead to alterna-

tive algorithms for many known streaming problems, includ-
ing heavy hitters and frequency moment estimation. Here in
this paper, we focus on a specific application, namely finding
duplicates in long streams; although our Lp samplers work
and often give better space performance for all applications
listed in [22]. We refer the reader to [22] and [1] for further
applications of Lp-samplers.

Observe that we allow both negative and positive updates
to the coordinates of the underlying vector. In the case
where only positive updates are allowed and p = 1, the prob-
lem is well understood. For instance the classical reservoir
sampling [19] from the 60’s (attributed to Alan G. Water-
man) gives a simple solution as follows. Given a pair (i, u),
indicating an addition of u to the i-th coordinate of the un-
derlying vector x, the sampler having maintained s, the sum
of the updates seen so far, replaces the current sample with
i with probability u/s, otherwise does nothing and moves to

the next update. It is easy to verify that this is a perfect
L1-sampler and the space usage is only O(1) words.

With the presence of negative updates, sampling becomes
a non-trivial problem. In this case, it is not clear at all how
to maintain samples without keeping track of the updates
to the individual coordinates. In fact, the question regard-
ing the mere existence of such samplers was raised few years
ago by Cormode, Muthukrishnan, and Rozenbaum in [9].
Last year in SODA 2010, Monemizadeh and Woodruff [22]
answered this question affirmatively, however in an approx-
imate sense. Before stating their results we give a formal
definition of Lp-samplers.

Definition 1. Let x ∈ R
n be a non-zero vector. For

p > 0 we call the Lp distribution corresponding to x the
distribution on [n] that takes i with probability

|xi|
p

‖x‖p
p
,

with ‖x‖p = (
Pn

i=1 |xi|
p)1/p. For p = 0, the L0 distribution

corresponding to x is the uniform distribution over the non-
zero coordinates of x.

We call a streaming algorithm a perfect Lp-sampler if it
outputs an index according to this distribution and fails only
if x is the zero vector. An approximate Lp-sampler may fail
but the distribution of its output should be close to the Lp

distribution. In particular, we speak of an ǫ relative error
Lp-sampler if, conditioned on no failure, it outputs the index
i with probability (1± ǫ)|xi|

p/‖x‖p
p + O(n−c), where c is an

arbitrary constant. For p = 0 the corresponding formula
is (1 ± ǫ)/k + O(n−c), where k is the number of non-zero
coordinates in x. Unless stated otherwise we assume that
the failure probability is at most 1/2.

In this definition one can consider c to be 2, but all existing
constructions of Lp-samplers work for an arbitrary c with
just a constant factor increase in the space, so we will not
specify c in the following and ignore errors of probability
n−c.

Previous work.
A zero relative error L0-sampler which uses O(log3 n) bits

was shown in [?]. In [22], the authors gave an ǫ relative error
Lp-sampler for p ∈ [0, 2] which uses poly(ǫ−1, log n) space.
They also showed a 2-pass O(polylog n) space zero relative
error Lp-sampler for any p ∈ [0, 2]. In addition to these,
they demonstrated that Lp-samplers can be used as a black-
box to obtain streaming algorithms for other problems such
as Lp estimation (for p > 2), heavy hitters, and cascaded
norms [14]. Unfortunately, due to the large exponents in
their bounds, the Lp-samplers given there do not lead to
efficient solutions for the aforementioned applications.

Very recently, Andoni, Krauthgamer and Onak in [1] im-
proved the results of [22] considerably. Through the adap-
tation of a generic and simple method, named precision
sampling, they managed to bring down the space upper
bounds to O(1

ǫp log3 n) bits for ǫ relative error Lp-samplers
for p ∈ [1, 2]. Roughly speaking, the idea of precision sam-
pling is to scale the input vector with random coefficients so
that the i-th coordinate becomes the maximum with prob-
ability roughly proportional to |xi|

p. Moreover the max-
imum (heavy) coordinate is found through a small-space
heavy hitter algorithm. In more detail, the input vector

(x1, . . . , xn) is scaled by random coefficients (t−1
1 , . . . , t−1

n),
where each ti is picked uniformly at random from [0, 1]. Let
z = (x1t

−1
1 , . . . , xnt−1

n) be the scaled vector. Here the im-
portant observation is Pr[t−1

i ≥ t] = 1/t and hence, for
instance, by replacing t with ‖x‖1/|xi|, we get Pr[|zi| ≥
‖x‖1] = |xi|/‖x‖1. (In the same manner, one can scale xi

by t
−1/p
i instead of t−1

i and get a similar result for general p.)
It turns out, we only need to we have a constant approxima-
tion to ‖x‖1 and look for a coordinate in z that has reached
a limit of Ω(‖x‖1). On the other hand it is shown that the
heaviest coordinate in z has a weight of Ω(log−1 n)‖z‖1 (with
constant probability), and thus a small-space heavy hitter
computation can be used to find the maximum. In partic-
ular, the Lp-sampler of [1] adapts the popular count-sketch
scheme [6] for this purpose.

Our contributions.
In this paper, we give Lp-samplers requiring only O(ǫ−p log2 n)

space for p ∈ (1, 2). For p ∈ (0, 1), our space bound is
O(ǫ−1 log2 n), while for the p = 1 case we have an O(log(1/ǫ)
ǫ−1 log2 n) space algorithm. In essence, our sampler follows
the basic structure of the precision sampling method ex-
plained above. However compared to [1], we do a sharper
analysis of the error terms in the count-sketch, and through
additional ideas, we manage to get rid of a log factor and
preserve the previous dependence on ǫ. Roughly speaking,
we use the fact that the error term in the count-sketch is
bounded by the L2 norm of the tail distribution of z (the
heavy coordinates do not contribute). On the other hand,
taking the distribution of the random coefficients into ac-
count, we bound this by O(‖x‖p), which enables us to save
a log factor. Additionally, to preserve the dependence on ǫ,
we have to use a slightly more powerful source of random-
ness for choosing the scaling factors (in contrast with the
pairwise-independence of [1]), and take care of some subtle
issues regarding the conditioning on the error terms which
are not handled in the previous work (Lemma 3).1

As p approaches zero, precision sampling becomes very

inefficient, as the random coefficients t
−1/p
i tend to infinity.

For the p = 0 case, we present a zero relative error sam-
pler through a completely different approach. Briefly, our
L0-sampler tries to detect a non-zero coordinate by pick-
ing random subsets of [n]. The non-zero coordinates are
found by an exact sparse recovery procedure and Nisan’s
PRG [24] is applied to decrease the randomness involved.
Our O(log2 n) space bound compares favorably to the pre-
vious algorithms, which use respectively O(log3 n) space [?]
and poly(log n, ǫ−1) space [22] (the latter one gives only ǫ-
relative error sampling).

In Section 4, we prove that sampling from 0, ±1 vectors
requires Ω(log2 n) space, by a reduction from the communi-
cation complexity problem augmented indexing. In this spe-
cial case p is not relevant for Lp-sampling, hence this shows
that our L0-sampling algorithm uses the optimal space up to
constant factors, and our Lp-sampler for p ∈ (0, 2) has the
optimal space (up to constant factors) for ǫ > 0 a constant.

1Further we note that our algorithm not only produces a
sample i from the Lp distribution, but also approximates xi.
Similar approximation is also produced by the Lp sampler of
[1], but they claim to give an approximation of |xi|

p/||x||pp.
However, this claim for p < 2 cannot hold as it would con-
tradict with the Ω(ǫ−2) space lower bound for estimating
Hamming distance.

Given a stream of length n + 1 over the alphabet [n],
finding duplicates problem asks to output some a ∈ [n] that
has appeared at least twice in the stream. Observe that
by the pigeon-hole principle, such a always exists. Prior
to our work, the best upper bound for finding duplicates
was due to Gopalan and Radhakrishnan [13], who gave a
one-pass O(log3 n) bits randomized algorithm with constant
failure rate. Here we settle the one-pass complexity of this
problem by giving an O(log2 n) space algorithm via a direct
application of our L1 sampler, and by giving an Ω(log2 n)
lower bound afterwards. Combined with a sparse recovery
procedure, our solution also generalizes to a near-optimal
O(log2 n + s log n) space algorithm for finding duplicates in
streams of length n− s, improving on the O(s log3 n) result
of [13].

Finally, we prove lower bounds for the problem of find-
ing heavy hitters in update streams, which is closely re-
lated to the Lp-sampling problem. This lower bound is
also obtained by a reduction from the augment indexing
and proves that any Lp heavy hitters algorithm (defined in
Section 4.4) must use Ω(1

φp log2 n) space, even in the strict
turnstile model. Our lower bound essentially matches the
known upper bounds [8, 6, 15] which work in the general
update model.

Related work.
In [3, 5], the authors have studied sampling from sliding

windows, and the recent paper of Cormode et al. [10] gener-
alizes the classical reservoir sampling to distributed streams.
These works only consider insertion streams. The basic idea
of random scaling used in [1] and in our paper has appeared
earlier in the priority sampling technique [11, 7], where the
focus is to estimate the weight of certain subsets of a vector,
defined by a sequence of positive updates.

Finding duplicates in streams was first considered in the
context of detecting fraud in click streams [20]. Muthukr-
ishnan in [23] asked whether this problem can be solved in
O(polylog n) space using a constant number of passes. In
[26], Tarui showed that any k-pass deterministic algorithm

must use Ω(n
1

2k−1) space to find a duplicate.
Heavy hitter algorithms have been studied extensively.

The work of Berinde et al. [4] gives tight lower bounds
for heavy hitters under insertion only streams. We are not
aware of similar works on general update streams, although
the recent works of [2, 27], where the authors show lower
bounds for respectively approximate sparse recovery, and
Johnson-Lindenstrauss transforms (via augmented indexing)
is closely related.

Notation.
We write [n] for the set {1, . . . , n}. An update stream is

a sequence of tuples (i, u), where i ∈ [n] and u ∈ R. The
stream of updates implicitly define an n-dimensional vector
x ∈ R

n as follows. Initially, x is the zero vector. An update
of the form (i, u) adds u to the coordinate xi of x (leaving the
other coordinates unchanged). In the strict turnstile model
we are guaranteed that all coordinates of x are non-negative
at the end of the stream (although negative updates are still
allowed), in the general model such guarantee does not exist.
Our algorithms (like most other algorithms in the literature)
work by maintaining a linear sketch L : R

n → R
m. When

computing the space requirement of such a streaming algo-

rithm, we assume all the updates are integers (u ∈ Z) and
the coordinates of the vector x throughout the stream re-
main bounded by some value M = poly(n). We make sure
that the matrix of L has also polynomially bounded integer
entries, this way maintaining L(x) requires updating m in-
teger counters and requires O(m log n) bits with fast update
time (especially since the matrices we consider are sparse).
This discretization step is standard and thus we omit most
details.

In the standard model for randomized streaming algo-
rithms the random bits used (to generate the random linear
map L, for example) are part of the space bound. In con-
trast, our lower bounds do not make any assumption on the
working of the streaming algorithm and allow for the ran-
dom oracle model, where the algorithm is allowed free access
to a random string at any time. All lower bounds are proved
through reductions from communication problems.

We say an event happens with low probability if the proba-
bility can be made less than n−c. Here c > 0 is an arbitrary
constant, for example one can set c = 2. The actual value of
c has limited effect on the space of our algorithm: it changes
only the unspecified constants hidden in the O notation. We
will routinely ignore low probability events, sometime even
O(n) of them, which is okay as we leave c unspecified. Events
complementary to low probability events are referred to as
high probability events.

For 0 ≤ m ≤ n we call the vector x ∈ R
n m-sparse if

all but at most m coordinates of x are zero. We define
Errm

2 (x) = min ‖x − x̂‖2, where x̂ ∈ R
n ranges over all the

m-sparse vectors.

2. THE LP SAMPLER
In this section, we present our Lp sampler algorithm. In

the following, we assume p ∈ (0, 2). This particular method
does not seem to be applicable for the p = 2 case and we
know of no O(log2 n) space L2-sampling algorithm. We treat
the p = 0 case separately later.

We start by stating the properties of the two streaming
algorithms we are going to use. Both are based on maintain-

ing L(x) for a well chosen random linear map L : R
n → R

n′

with n′ < n.
The count-sketch algorithm [6] is so simple we cannot re-

sist the temptation to define it here. For parameter m, the
count-sketch algorithm works as follows. It selects indepen-
dent samples hj : [n] → [6m] and gj : [n] → {1,−1} from
pairwise independent uniform hash families for j ∈ [l] and
l = O(log n). It computes the following linear function of
x for j ∈ [l] and k ∈ [6m]: yk,j =

P

i∈[n],hj(i)=k gj(i)xi.

Finally it outputs x∗ ∈ R
n as an approximation of x with

x∗
i = median(gj(i)yh(i),j : j ∈ [l]) for i ∈ [n].
The performance guarantee of the count-sketch algorithm

is as follows. (For a compact proof see a recent survey by
Gilbert and Indyk [12].)

Lemma 1. [6] For any x ∈ R
n and m ≥ 1 we have |xi −

x∗
i | ≤ Errm

2 (x)/m1/2 for all i ∈ [n] with high probability,
where x∗ is the output of the count-sketch algorithm with
parameter m. As a consequence we also have

Errm
2 (x) ≤ ‖x − x̂‖2 ≤ 10 Errm

2 (x)

with high probability, where x̂ is the m-sparse vector best ap-
proximating x∗ (i.e., x̂i = x∗

i for the m coordinates i with

|x∗
i | highest and is x̂i = 0 for the remaining n − m coordi-

nates).

We will also need the following result for the estimation
of Lp norms.

Lemma 2. [?] For any p ∈ (0, 2] there is a streaming
algorithm based on a random linear map L : R

n → R
l with

l = O(log n) that outputs a value r computed solely from
L(x) that satisfies ‖x‖p ≤ r ≤ 2‖x‖p with high probability.

Our streaming algorithm on Figure 1 makes use of a single
count-sketch and two norm estimate algorithms. The count-
sketch is for the randomly scaled version z of the vector x.
One of the norm approximation algorithms is for ‖x‖p, the
other one approximates Errm

2 (z) through the almost equal
value ‖z − ẑ‖2. A standard L2 approximation for z works
if we modify z by subtracting ẑ in the recovery stage. One
can get arbitrary good approximations of Errm

2 (x) this way.
First we estimate the probability that the algorithm aborts

because s > βm1/2r. This depends on the scaling that re-
sulted in z and it will be important for us that the bound
holds even after conditioning on any one scaling factor.

Lemma 3. Conditioned on an arbitrary fixed value t of ti

for a single index i ∈ [n] we have Pr[s > βm1/2r | ti = t] =
O(ǫ + n−c).

Proof. First note that by Lemma 2 we have r ≥ ‖x‖p

and s ≤ 2‖z − ẑ‖2 with high probability. By Lemma 1 we
have ‖z − ẑ‖ ≤ 10Errm

2 (z) also with high probability. We
may therefore assume that all of these inequalities hold, and
in particular r ≥ ‖x‖p and s ≤ 20 Errm

2 (z). It is there-
fore enough to bound the probability that 20Errm

2 (z) >

βm1/2‖x‖p.
For simplicity (and without loss of generality) we assume

that the fixed scalar is tn = t and will freely use i for indexes
in [n − 1].

Let T = β‖x‖p. For each i ∈ [n−1] we define two variables
z′

i and z′′
i determined by zi as follows. The indicator variable

z′
i = 1 if |zi| > T and 0 otherwise. We set z′′

i = z2
i (1 −

z′
i)/T 2 ∈ [0, 1]. Let S′ =

P

i∈[n−1] z
′
i and S′′ =

P

i∈[n−1] z
′′
i .

Note that T 2S′′ = ‖z−w‖2
2, where w is defined by wi = ziz

′
i

for i ∈ [n − 1] and wn = zn. Here w is (S′ + 1)-sparse, so

we have Errm
2 (z) ≤ TS′′1/2 unless S′ ≥ m. It is therefore

enough to bound the probabilities of the events S′ ≥ m and
S′′ > mβ2‖x‖2

p/(20T)2 = m/400, each with O(ǫ).
We have E[z′

i] = |xi|
p/T p, E[S′] ≤ β−p = ǫ1−p. By our

choice of m and the concentration of S′ provided by k-wise
independence we have Pr[S′ ≥ m] = O(ǫ) as needed. The
calculation for S′′ is similar. We have

E[z′′
i] <

Z ∞

|xi|p/T p

x2
i t

−2/pT−2dt =
p

2 − p
|xi|

pT−p.

Thus E[S′′] ≤ p
2−p

‖x‖p
pT−p = O(β−p) = O(ǫ1−p). Note

that the z′′
i are not indicator variables as the z′

i, but they
are still k-wise independent random variables from [0, 1] and
we can bound the probability of large deviation for S′′ as we
did for S′. This completes the proof of the lemma.

The fact that our algorithm is an approximate Lp-sampler
with both relative error and success probability Θ(ǫ) follows
from the following lemma. Indeed, if the probabilities were
exactly ǫ|xi|

p/rp and if ‖x‖p ≤ r ≤ 2‖x‖p would always
hold, we would make no relative error and the success prob-
ability would be E[ǫ‖x‖p

p/rp] ≥ ǫ/2p.

Lemma 4. The probability that the algorithm of Figure 1
outputs the index i ∈ [n] conditioned on a fixed value for
r ≥ ‖x‖p

p is (ǫ+O(ǫ2))|xi|
p/rp +O(n−c). The relative error

of the estimate for xi is at most ǫ with high probability.

Proof. Optimally, we would output i ∈ [n] if |zi| >

ǫ−1/pr. This happens if ti < ǫ|xi|
p/rp and has probability

exactly ǫ|xi|
p/rp. We have to estimate the probability that

something goes wrong and the algorithm outputs i when this
simple condition is not met or vice versa.

Three things can go wrong. First, if s > m1/2βr the
algorithm fails. This is only a problem for our calculation if
it should, in fact, output the index i. Lemma 3 bounds the
conditional probability of this happening.

Having dealt with the s > βm1/2r case we may assume
now s ≤ βm1/2r. We also make the assumptions (high prob-
ability by Lemma 2) that ‖z − ẑ‖2 ≤ s and thus Errm

2 (z) ≤

‖z − ẑ‖2 ≤ s ≤ βm1/2r. Finally, we also assume |z∗
i − zi| ≤

Errm
2 (z)/m1/2 ≤ βr for all i ∈ [n]. This is satisfied with

high probability by Lemma 1.
A second source of error comes from this βr possible dif-

ference between z∗
i and zi. This can only make a problem if

ti is close to the threshold, namely (ǫ−1/p + β)−p|xi|
p/rp ≤

ti ≤ (ǫ−1/p − β)−p|xi|
p/rp. The probability of selecting ti

from this interval is O(β/ǫ1+1/p|xi|
p/rp) = O(ǫ2|xi|

p/rp) as
required.

Finally, the third source of error comes from the possibil-
ity that i should be output based on |zi| > ǫ−1/pr, yet we
output another index i′ 6= i because z∗

i′ ≥ z∗
i . In this case we

must have ti′ < (ǫ−1/p − β)−p|xi|
p/rp. This has probability

O(ǫ|xi′ |
p/rp). By the union bound the probability that such

an index i′ exists is O(ǫ‖x‖p
p/rp) = O(ǫ). Pairwise indepen-

dence is enough to conclude that the same bound holds after
conditioning on |zi| > ǫ−1/pr. This finishes the proof of the
first statement of the lemma.

The algorithm only outputs an index i if s ≤ βm1/2r and
|z∗

i | ≤ ǫ−1/pr. The first implies that the absolute approx-
imation error for zi is at most βr, while the second lower
bounds the absolute value of the approximation itself by
ǫ−1/pr, thus ensuring a βǫ1/p = ǫ relative error approxima-

tion. Our approximation for xi = zit
1/p
i is z∗

i t1/p, so the
relative error is the same. Note that the inverse polyno-
mial error probability comes from the various low probabil-
ity events we neglected. The same is true for the additive
error term in the distribution.

Theorem 1. For δ > 0 and ǫ > 0, 0 < p < 2 there is
an O(ǫ) relative error one pass Lp-sampling algorithm with
failing probability at most δ and having low probability that
the relative error of the estimate for the selected coordinate is
more than ǫ. The algorithm uses Op(ǫ−max(1,p) log2 n log(1/δ))
space for p 6= 1 while for p = 1 the space is O(ǫ−1 log(1/ǫ) log2 n
log(1/δ)).

Proof. Using Lemma 4 and the fact that ‖x‖p ≤ r ≤
2‖x‖p with high probability one obtains that the failure
probability of the algorithm in Figure 1 is at most 1−ǫ/2p +
O(n−c). Conditioning on obtaining an output, returning i
has probability (1 + O(ǫ))|xi|

p/‖x‖p
p + O(n−c). Clearly, the

latter statement remains true for any number of repetitions
and the failure probability is raised to power v for v repeti-
tions. Thus using v = O(log(1/δ)/ǫ) repetitions (taking the
first non-failing output), the algorithm is an O(ǫ) relative
error δ failure probability Lp-sampling algorithm. Here we

Initialization Stage:

1. For 0 < p < 2, p 6= 1 set k = 10⌈1/|p − 1|⌉ and m = O(ǫ−max(0,p−1)) with a large
enough constant factor.
2. For p = 1 set k = m = O(log(1/ǫ)) with a large enough constant factor.

3. Set β = ǫ1−1/p and l = O(log n) with a large enough constant factor.
4. Select k-wise independent uniform scaling factors ti ∈ [0, 1] for i ∈ [n].
5. Select the appropriate random linear functions for the execution of the count-sketch
algorithm and L and L′ for the norm estimations in the processing stage.

Processing Stage:

1. Use count-sketch with parameter m for the scaled vector z ∈ R
n with zi = xi/t

1/p
i .

2. Maintain a linear sketch L(x) as needed for the Lp norm approximation of x.
3. Maintain a linear sketch L′(z) as needed for the L2 norm estimation of z.

Recovery Stage:

1. Compute the output z∗ of the count-sketch and its best m-sparse approximation ẑ.
2. Based on L(x) compute a real r with ‖x‖p ≤ r ≤ 2‖x‖p.
3. Based on L′(z − ẑ) compute a real s with ‖z − ẑ‖2 ≤ s ≤ 2‖z − ẑ‖2.
4. Find i with |z∗

i | maximal.

5. If s > βm1/2r or |z∗
i | < ǫ−1/pr output FAIL.

6. Output i as the sample and z∗
i t

1/p
i as an approximation for xi.

Figure 1: Our approximate Lp-sampler with both success probability and relative error Θ(ǫ)

assume v < n as otherwise recording the entire vector x is
more efficient.

The low probability of more than ǫ relative error in esti-
mating xi also follows from Lemma 4. In one round, the al-
gorithm on Figure 1 uses O(m log n) counters for the count-
sketch and this dominates the counters for the norm esti-
mators. Using standard discretization this can be turned
into an O(m log2 n) bit algorithm. For the discretization we
also have to keep our scaling factors polynomial in n. Re-

call that in the continuous model these factors t
−1/p
i were

unbounded. But we can safely declare failure if t−1
i > nc

for some i ∈ [n] as this has low probability n1−c. We have
to do the v repetitions of the algorithm in parallel to obtain
a single pass streaming algorithm. This increases the space
to O(vm log2 n) which is the same as the one claimed in the
theorem.

Note that the hidden constant in the space bound of the
theorem depends on p, especially that 1/(2 − p), 1/p and
1/|1 − p| factors come in. The last can always be replaced
by a log(1/ǫ) factor but the former ones are harder to handle.
For p = 2 an extra log n factor seems to be necessary for an
algorithm along these lines, see [1].

As we will see in Theorem 7, our space bound is tight for
ǫ and δ constants. Note that the lower bound holds also if
we only require the overall distribution of the Lp-sampler to
be close to the Lp distribution as opposed to the much more
strict definition of ǫ relative error sampling.

2.1 The L0 Sampler
For p near zero, the method of precision sampling becomes

intractable. This is because our scaling factors are t
−1/p
i

which clearly rules out p = 0. In the following we present a
L0 using a different approach. First we state the following
well-known result on exact recovery of sparse vectors.

Lemma 5. Let 1 ≤ s ≤ n. There is a choice k = O(s)
and random linear function L : R

n → R
k (generated from

O(k log n) random bits) and a recovery procedure that on
input L(x) outputs x′ ∈ R

n or DENSE such that for any
s-sparse vector x the output is x′ = x with probability 1 and
for any vector x that is not s-sparse the output is DENSE
with high probability.

Theorem 2. There exists a zero relative error L0 sam-
pler which uses O(log2 n log(1/δ)) bits and outputs a coordi-
nate i ∈ [n] with probability at least 1 − δ.

Proof. We first present our algorithm assuming a ran-
dom oracle, and then we remove this assumption through
the use of the pseudo-random generator of Nisan [24]. Let Ik

for k = 1, . . . , ⌊log n⌋ be subsets of [n] of size 2k chosen uni-
formly at random and I0 = [n]. For each k we run the sparse
recovery procedure of Lemma 5 on the vector x restricted to
the coordinates in Ik with s set to ⌈4 log(1/δ)⌉. We return a
uniform random non-zero coordinate from the first recovery
that gives a non-zero s-sparse vector. The algorithm fails if
each recovery algorithm returns zero or DENSE.

Let J be the set of coordinates i with xi 6= 0 (the support
of x). Disregarding the low probability error of the proce-
dure in Lemma 5 this procedure returns each index i ∈ J
with equal probability and never returns an index outside J .
To bound the failure probability we observe that for |J | ≤ s
failure is not possible, while for |J | > s one has k ∈ [⌊log n⌋]
such that E[|Ik ∩J |] = 2k|J |/n is between s/3 and 2s/3. For
this k alone 1 ≤ |Ik ∩ J | ≤ s is satisfied with probability at
least 1−δ by the Chernoff bound limiting failure probability
by δ.

To get rid of the random oracle we use Nisan’s generator
[24] that produces the random bits for the algorithm (in-
cluding the ones describing Ik and the ones for the eventual
random choice from Ik ∩ J) from an O(log2 n) length seed.
It fools every logspace tester including the one that tests
for a fixed set J ⊆ [n] and i ∈ [n] if the algorithm (assum-
ing correct reconstruction) would return i. Thus this ver-
sion of the algorithm, now using O(log2 n) random bits and

O(log2 log(1/δ)) total space, is also a zero relative error L0-
sampler with failure probability bounded by δ+O(n−c).

As we will see in Theorem 7, this space bound is also tight
for δ a constant and better sampling is not possible even if
we allow constant relative error or a small overall distance
of the output from the L0 distribution.

3. FINDING DUPLICATES
Recall that, given a data stream of length n + 1 over the

alphabet [n], finding duplicates problem asks to output some
a ∈ [n] that has appeared at least twice in the stream.

Theorem 3. For any δ > 0 there is a O(log2 n log(1/δ))
space one-pass algorithm which, given a stream of length n+
1 over the alphabet [n], outputs an i ∈ [n] or FAIL, such
that the probability of outputting FAIL is at most δ and the
algorithm outputs a letter i ∈ [n] that is no duplicate with
low probability.

Proof. Let x be an n-dimensional vector, initially zero
at each coordinate. We run the L1-sampler of Theorem 1 on
x, with both relative error and failure probability set to 1/2.
Before we start processing the stream, we subtract 1 from
each coordinate of x; i.e., we feed the updates (i,−1) for
i = 1, . . . n to the L1 sampling algorithm. When a stream
item i ∈ [n] comes, we increase xi by 1; i.e., we generate the
update (i, 1).

Observe that when the stream is exhausted, we have xi ≥
1 for items i that have at least two occurrences in the stream,
xi = 0 for items that appear once, and xi = −1 for items
that do not appear. Note that our L1-sampler, if it does not
fail, outputs an index i and an approximation x∗ of xi. If x∗

is positive, we output i, if it is negative or the L1-sampler
fails, we output FAIL. We have

Pn
i=1 xi = 1, hence a perfect

L1 sample from x is positive with more than half probability.
Taking into account that our L1-sampler has 1/2 relative
error and failure probability (and neglecting for a second
the chance that x∗ has different sign from xi) we conclude
that we output a duplicate with probability at least 1/4.
The event that x∗ does not have the same sign as xi (and
thus the relative error is at least 1) has low probability. This
low probability can increase the failure probability and/or
introduce error when we output non-duplicate items.

Repeating the algorithm O(log(1/δ)) times in parallel and
accepting the first non-failing output reduces the failure rate
to δ but keeps the error rate low.

As we will see in Theorem 6, our space bound is tight for
δ < 1 a constant.

It is natural to study the duplicates problem for other
ranges of parameters. Assume that we have a stream of
length n − s ≤ n over the alphabet [n]. For this problem,
Gopalan et al. [13] gave an O((s + 1) log3 n) bits algorithm
and an Ω(s) lower bound. Here we give an algorithm which
uses O(s log n + log2 n) space.

Theorem 4. For any δ > 0 there is an O(log2 n log 1/δ+
s log n) space one-pass algorithm which, given a stream of
length n−s over the alphabet [n], outputs NO-DUPLICATE
with probability 1 if the input sequence has no duplicates,
otherwise it outputs i ∈ [n] or reports FAIL. The returned
number is a duplicate with high probability while the proba-
bility of returning FAIL is at most δ.

Proof. Let x be an n-dimensional vector updated ac-
cording to the description in the proof of Theorem 3; i.e.,
xi is one less than the number of times i appears in the
stream. In parallel, we run the exact recovery procedure
from Lemma 5 with parameter 5s and the 1/2 relative error
L1-sampler of Theorem 1 with failure rate 1/2, both on the
vector x. If the recovery algorithm returns a vector (as op-
posed to DENSE) we proceed and give the correct output
assuming we have learned the entire x. Otherwise we con-
sider the output of the sampling algorithm. If it is (i, x∗)
with x∗ > 0 we report i as a duplicate otherwise (if x∗ ≤ 0
or the sampling algorithm fails) we output FAIL. Define

‖x‖+
1 =

X

i:xi>0

|xi| and ‖x‖−1 =
X

i:xi<0

|xi|.

Note that ‖x‖+
1 −‖x‖−1 =

Pn
i=1 xi = −s. If ‖x‖+

1 + ‖x‖−1 ≤
5s, then x is 5s-sparse, thus the sparse recovery procedure
outputs x and the algorithm makes no error. Note that
the no repetition case falls into this category. If, however,
‖x‖+

1 + ‖x‖−1 > 5s, then the probability that a perfect L1

sample from x is positive is ‖x‖+
1 /‖x‖1 > 2/5. Taking into

account the relative error and failing probability (but ig-
noring the low probability event of the sampler outputting
a wrong sign or sparse recovery algorithm reporting a vec-
tor), we conclude that with probability at least 1/10 we get
a positive sample and a correct output, otherwise we out-
put FAIL. The failure probability can be decreased to δ by
O(log(1/δ)) independent repetitions of the sampler. Note
that the sparse recovery does not have to be repeated as it
has low error probability.

The sparse recovery procedure takes O(s log n) bits by
Lemma 5 for s > 0 (it takes O(log n) bits for s = 0) and
each instance of the L1-sampler requires O(log2 n) bits by
Theorem 4, totaling O(s log n + log2 n log 1/δ) bits.

Here we do not have a matching lower bound, but only the
Ω(log2 n + s) that follows from the Ω(s) bound in [13] and
our Ω(log2 n) bound on the original version of the duplicates
problem.

We remark the last two theorems can be stated in a bit
more general form. Instead of considering repetitions in
data streams one can consider the problem of finding an
index i with xi > 0 for a vector x ∈ Z

n given by an up-
date stream. Let s = −

Pn
i=1 xi. If s < 0, then a positive

coordinate exists and the algorithm of Theorem 3 finds one
using O(log2 n log(1/δ)) space with low error and at most δ
failure probability. If s ≥ 0 a positive coordinate does not
necessarily exist, but the algorithm of Theorem 4 finds one,
report none exists or fails with the error, failure and space
bounds claimed there.

Let us consider finally the version of the duplicates prob-
lem, where we have a stream of length n+s > n over the al-
phabet [n]. Our lower and upper bounds are even farther in
this case. A duplicate can be found using O(min{log2 n, (n/s) log n})
bits of memory in one pass with constant probability as fol-
lows. If we sample a random item from the stream, it will
appear again unless that was the last appearance of the let-
ter. As there are at most n last appearances in the stream of
length n+s, the probability for a uniform random sample to
repeat later is at least s/(n + s). Therefore, if n/s < log n,
we can sample 4⌈n/s⌉ items from the stream uniformly at
random and check if one of them appears again to obtain

a constant error algorithm for finding duplicates. If on the
other hand n/s ≥ log n, we use the algorithm in Theorem 3.

Combining our lower bound for the original version of the
duplicates problem with the simple lower bound of Ω(log n),
we conclude that any streaming algorithm that finds a du-
plicate in length n+s streams must use Ω(log2(n/s)+log n)
bits.

4. LOWER BOUNDS
All our lower bounds follow from the augmented indexing

problem. This problem is defined as follows. Let k and m
be positive integers. The first player Alice, is given a string
x ∈ [k]m, while the second player Bob is given an integer
i ∈ [m] and xj for j < i. Alice sends a single message to
Bob and Bob should output xi.

Lemma 6. [21] In any one-way protocol in the joint ran-
dom source model with success probability at least 1 − δ >
3
2k

, Alice must send a message of size Ω((1 − δ)m log k).

We will use this lemma by reducing augmented indexing
to other communication or streaming problems.

4.1 Universal Relation
Consider the following two player communication game.

Alice gets a string x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n with
the promise that x 6= y. The players exchange messages and
the last player to receive a message must output an index
i ∈ [n] such that xi 6= yi. We call this the universal relation
communication problem and denote it by URn.

This relation has been studied in detail for determinis-
tic communication, as it naturally arises in the context of
Karchmer-Wigderson games [18]. We note however that our
definition is slightly unusual: in most settings both players
must obtain the same index i such that xi 6= yi, whereas
we are satisfied with the last player to receive a message
learning such an i. Clearly, the stronger requirement can
be met in ⌈log n⌉ additional bits and one additional round.
The additional bits are needed in deterministic case but we
are not concerned with O(log n) terms for our bounds, so
the two models are almost equivalent up to the shift of one
in the number of rounds.

The best deterministic protocol for URn is due to Tardos
and Zwick [25]. Improving a previous result by Karchmer
[17], they gave a 3 round deterministic protocol using n + 2
bits of communication with both players learning the same
index i and showed that n + 1 bits is necessary for such
a protocol. They also gave an n − ⌊log n⌋ + 2 bit 2 round
deterministic protocol for our weaker version of the problem,
which is also tight except for the +2 term. They also gave
an n − ⌊log n⌋ + 4 bit 4 round protocol, where both players
find an index where x and y differ—but not necessarily the
same index. This shows that finding the same difference is
harder.

Let Rk
δ (U) denote the k-round δ-error communication com-

plexity of the communication problem U . We write Rδ(U)
to denote the δ-error communication complexity when the
number of rounds is not bounded. The next proposition
follows from similar ideas that were used in Theorem 2.

Proposition 1. It holds that R1
δ(URn) = O(log2 n log 1

δ
)

and R2
δ(URn) = O(log n log 1

δ
).

Proof (sketch). One way to deduce the one round pro-
tocol is from Theorem 2. Alice and Bob run a single pass
L0-sampling algorithm on x − y. This can be achieved by
a single message from Alice to Bob containing the memory
after the first set of updates as in the proof of Theorem 8.
The sample i Bob finds is an (almost uniform random) index
with xi 6= yi.

A closer look shows that the algorithm of Theorem 2
makes ⌈log n⌉ + 1 guesses for the number of non-zero co-
ordinates of x − y and picks a random subset I ⊆ [n] of
proper size for each such guess. If the players are allowed two
rounds, the number of bits sent can be reduced to O(log n log δ−1)
as follows. In the first round, the players estimate the num-
ber of non-zero coordinates of x− y up to a factor of 2 via a
standard Hamming distance estimation protocol (this takes
O(log n log δ−1) bits). In the second round, Bob picks a ran-
dom subset of I of proper size and sends a recovery matrix
about I of size O(log n log δ−1) to Alice.

We remark that along similar lines one can find an Õ(log n log 1/δ)
space two-pass zero relative error L0-sampling algorithm, by
estimating L0 of the vector defined by the stream in the first
pass using [16]. Next we will show that the above proposi-
tion is best possible up to the O(log δ−1) terms. We start
with an averaging lemma.

Lemma 7. Any protocol for URn can be turned into one
that outputs every index i ∈ [n] with xi 6= yi with the same
probability. The new protocol uses a joint random source.
The number of bits sent, the number of rounds and the error
probability does not change.

Proof. Using the joint random source the players take a
uniform random permutation π of [n] and use it to permute
the digits of x and y. Further they take a uniform random
subset S ⊆ [n] and flip the digits with coordinates in S.
This requires no communication. Then they run the original
protocol on the modified inputs and report π−1(i) if the
original protocol reports i. All indices where x and y differ
are reported with equal probability by symmetry.

Theorem 5. For any δ < 1 constant we have R1
δ(URn) =

Ω(log2 n) and Rδ = Ω(log n).

Proof. The second bound comes from considering a uni-
form random pair (x, y) with Hamming distance 1. Either
player needs to get log n bits of information to learn the only
index where the strings differ.

To prove the first bound suppose Alice and Bob wants to
solve the augmented indexing problem with Alice receiving
z ∈ [2t]s and Bob getting i ∈ [s] and zj for j < i.

Let them construct real vectors u and v as follows. Let
eq ∈ R

2t

be the standard unit vector in the direction of
coordinate q. Alice forms the vectors wj by concatenating
2s−j copies of ezj

, then she forms u by concatenating these

vectors wj for j ∈ [s]. The dimension of u is n = (2s − 1)2t.
Bob obtains v by concatenating the same vectors wj for
j ∈ [i− 1] (these are known to him) and then concatenating
enough zeros to reach the same dimension n.

Now Alice and Bob perform the R1
δ(URn) length δ error

one round protocol for URn. By Lemma 7 we may assume
the protocol returns a uniform random index where u and v
differ. Note that each such index reveals one coordinate zj ∈
[2t] to Bob for j ≥ i. As zj is revealed by 2s−j such indices
more than half the time when the URn protocol does not err

Bob learns the correct value of zi. This yields a R1
δ(URn)

length one way protocol for augmented indexing with error
probability (1 + δ)/2. By Lemma 6 we have R1

δ(URn) =
Ω(st). Choosing s = t proves the theorem.

4.2 Finding Duplicates

Theorem 6. Any one-pass streaming algorithm that out-
puts a duplicate with constant probability uses Ω(log2 n) space.
This remains true even if the stream is not allowed to have
an element repeated more than twice.

Proof. We show our claim by a reduction from the uni-
versal relation. Each of Alice and Bob is given a binary
string of length n, respectively x and y. Further, the players
are guaranteed that x 6= y. Alice sends a message to Bob,
after which Bob must output an index i ∈ [n] such that
xi 6= yi. By Theorem 5, to solve this problem with 1/2 error
probability requires Ω(log2 n) bits for one-way communica-
tion. Alice constructs the set S = {2i−1+xi | i ∈ [n]} ⊆ [2n]
and Bob constructs T = {2i − yi | i ∈ [n]} ⊆ [2n]. Observe
that |S| = |T | = n and xi 6= yi if and only if either 2i or
2i − 1 is in both S and T .

Next, using the shared randomness, players pick a random
subset P of [2n] of size n. We have

Pr[|S ∩ P | + |T ∩ P | ≥ n + 1] > 1/8.

To see this let i ∈ S ∩ T and j ∈ [2n] \ (S ∩ T). We have
|P ∩ {i, j}| = 1 with probability more than 1/2. The sets P
satisfying this can be partitioned into classes of size four by
putting Q∪{i}, Q∪{j} and their complements in the same
class for any Q ⊆ [2n] \ {i, j}, |Q| = n − 1. Clearly, at least
one of the four sets P in each class satisfies |S∩P |+|T∩P | >
n.

Given a streaming algorithm A for finding duplicates, Al-
ice feeds the elements of S ∩ P to A and sends the memory
contents over to Bob, along with the integer |S ∩ P |. If
|S ∩ P | + |T ∩ P | < n + 1, Bob outputs FAIL. Otherwise,
feeds arbitrary n+1− |S ∩P | elements of T ∩P to A. Note
that no element repeats more than twice.

On the other hand |P | = n and we always give n + 1 ele-
ments of P to the algorithm. Also with constant probability,
Bob finds an a ∈ S ∩T , which in turn reveals an i such that
xi 6= yi. Therefore by Theorem 5, any algorithm for finding
duplicates must use Ω(log2 n) bits.

4.3 Lp-sampling
Our algorithm for the duplicates problem (Theorem 3)

is based on L1-sampling, thus the matching lower bound
for the duplicates problem implies a similar bound for L1-
sampling. Here we show an Ω(log2 n) lower bound for Lp-
sampling for all p. Notice that the Lp distribution corre-
sponding to 0,±1 vectors are independent of p, so p does
not have to be specified for the next theorem.

Theorem 7. Any one pass Lp-sampler with an output
distribution, whose variation distance from the Lp distribu-
tion corresponding to x is at most 1/3, requires Ω(log2 n)
bits of memory. This holds even when all the coodinates of
x are guaranteed to be −1, 0 or 1.

For constants δ < 1 and ǫ < 1 the same lower bound holds
for any ǫ relative error Lp-sampler with failure probability δ.

Proof. Consider the L1 sampling algorithm that we used
to prove Theorem 3. Given a stream of items from [n] we

turned it to an update stream for an n dimensional vector
x by first producing an update (i,−1) for all i ∈ [n] and
then for any letter i in the stream producing an update
(i, 1). Assuming that no item appears more than twice in
the stream all coordinates of the final vector x are −1, 0 or 1.
The L1 distribution for x puts weight more than 1/2 on the
coordinates having value 1. These are the duplicates. Thus
if we have another algorithm such that the variation distance
of its output is at most 1/3 from this L1 distribution, then
it returns a coordinate with value 1 with probability at least
1/6. For an ǫ relative error δ failure probability approximate
Lp-sampler the same probability is at least (1 − ǫ)(1 − δ) −
n1−c. Finding a coordinate in x with value 1 is the same
as finding a duplicate in the original stream, so we need
Ω(log2 n) memory by Theorem 6.

4.4 Heavy Hitters
The heavy hitters problem in the streaming model is de-

fined as follows. Let x be an n-dimensional integer vector
given by an update stream. A heavy hitters algorithm with
parameters p > 0 and φ > 0 is required to output a set
S ⊆ [n] that contains all i with |xi| ≥ φ‖x‖p and no i such
that |xi| ≤

φ
2
‖x‖p. We call such S a valid heavy hitter set.2

In this part, we show a tight lower bound for the space com-
plexity of randomized algorithms (assuming constant proba-
bility of error) for the heavy hitter problem. First we briefly
review the upper bounds.

The count-median algorithm from [8] gives a O(φ−1 log2 n)
space upper bound for the case of p = 1. Here we note the
count-sketch [6] in fact gives a O(φ−p log2 n) space upper
bound for all p ∈ (0, 2]. The case of p = 2 easily follows

from Lemma 1. Let d = Errm
2 (x)/m1/2. In general it holds

d ≤ ||x||p/m1/p for any p ∈ (0, 2]. Indeed, let H ⊂ [n]
be the set of indices for which d2 =

P

i∈H x2
i /m and let

c = maxi∈H |xi|. Then we have ||x||pp/m =
P

i∈[n] |xi|
p/m ≥

cp +
P

i∈H |xi|
p/m ≥ cp + cp−2 P

i∈H x2
i /m = cp + cp−2d2 ≥

cp((1 − p/2) + (p/2)c−2d2 ≥ cp(c−2d2)p/2 = dp. Therefore
setting m = 1/φp in the count-sketch scheme gives the de-
sired result.

We remark that a similar upper bound for the heavy hitter
problem is shown in [15] (cf. Theorem 1), albeit via different
arguments. In the next theorem, we show that the above
upper bound is tight for any reasonable range of parameters.
Our lower bound holds even in the strict turnstile model and
even for very short streams.

Theorem 8. Let p > 0 and φ ∈ (0, 1) be a reals. Any
one pass heavy hitter algorithm in the strict turnstile model
uses Ω(φ−p log2 n).

Proof. Suppose there is a one pass heavy hitter algo-
rithm for parameters p and φ. We allow for a random oracle
and assume the updates are polynomially bounded in n and
integers. We can also restrict the number of updates to be
O(φ−p log n) and assume all coordinates of the final vector
are positive (strict turnstile model). We turn this stream-
ing algorithm into a protocol for augmented indexing in a
similar way as we transformed the protocol for URn to a
protocol for augmented indexing in the proof of Theorem 5.

2In general, the parameter 1
2
φ can be replaced by any ǫ < φ.

Since here our focus is on lower bounds, we have simplified
the definition.

The exponential growth is now achieved not by repetition
but by multiplying the coordinates with a growing factor.

Suppose Alice and Bob wants to solve the augmented in-
dexing problem and Alice receives y ∈ [2t]s and Bob gets
i ∈ [s] and yj for j < i. Let them construct real vectors u

and v as follows. Let b = (1 − (2φ)p)−1/p and let eq ∈ R
2t

be the standard unit vector in the direction of coordinate q.
Alice obtains u by concatenating the vectors ⌈bs−j⌉eyj

for

j ∈ [s]. The dimension of u is n′ = s2t. Bob obtains v by
concatenating the same vectors for j ∈ [i− 1] and then con-
catenating enough zeros, namely (s − i + 1)2t, to reach the
same dimension n′. Now Alice and Bob perform the heavy
hitter algorithm for the vector x = u − v as follows. Alice
generates the necessary updates to increase the initially zero
vector x ∈ Z

n to reach x = u, maintains the memory con-
tent throughout these updates and sends the final content to
Bob. Now Bob generates the necessary updates to decrease
x = u to its final value x = u−v and maintains the memory
throughout. Finally Bob learns the heavy hitter set S the
streaming algorithm produces and outputs z ∈ [2t] if the
smallest index in S is (i − 1)2t + z.

We claim that the above protocol errs only if the streaming
algorithm makes an error. Notice that all coordinates of xl

of x = u−v are zero except the ones of the form xlj = ⌈bs−j⌉

for lj = (j − 1)2t + yj , where i ≤ j ≤ s. Thus xli is the first
non-zero coordinate. So the claim is true if xli ≥ φ‖x‖p.
Using ⌈v⌉ < 2v for v ≥ 1 we get exactly this:

φp‖x‖p
p = φp

s
X

j=i

⌈bs−j⌉p

< (2φ)pbp(s−i+1)/(bp − 1)

= bp(s−i) (since bp = 1/(1 − (2φ)p))

≤ xp
li

Let us now choose s = ⌈(2φ)−p log n⌉ and t = ⌈log n/2⌉.
For large enough n this gives n′ = s2t < n and all coordi-
nates of x throughout the procedure remain under n. Still
if the streaming algorithm works with probability over 1/2,
then by Lemma 6 the message size of the devised protocol
is Ω(st) = Ω(φ−p log2 n). This proves the theorem as the
message size of the protocol is the same as the memory size
of the streaming algorithm.

5. REFERENCES
[1] Alex Andoni, Robert Krauthgamer, and Krzysztof

Onak. Streaming algorithms via precision sampling.
Manuscript, 2010.

[2] Khanh Do Ba, Piotr Indyk, Eric Price, and David P.
Woodruff. Lower bounds for sparse recovery. In
SODA, pages 1190–1197, 2010.

[3] Brian Babcock, Mayur Datar, and Rajeev Motwani.
Sampling from a moving window over streaming data.
In SODA, pages 633–634, 2002.

[4] Radu Berinde, Graham Cormode, Piotr Indyk, and
Martin J. Strauss. Space-optimal heavy hitters with
strong error bounds. In PODS, pages 157–166, 2009.

[5] Vladimir Braverman, Rafail Ostrovsky, and Carlo
Zaniolo. Optimal sampling from sliding windows. In
PODS, pages 147–156, 2009.

[6] Moses Charikar, Kevin Chen, and Martin

Farach-Colton. Finding frequent items in data
streams. Theor. Comput. Sci., 312(1):3–15, 2004.

[7] Edith Cohen, Nick G. Duffield, Haim Kaplan, Carsten
Lund, and Mikkel Thorup. Stream sampling for
variance-optimal estimation of subset sums. In SODA,
pages 1255–1264, 2009.

[8] Graham Cormode and S. Muthukrishnan. An
improved data stream summary: the count-min sketch
and its applications. J. Algorithms, 55(1):58–75, 2005.

[9] Graham Cormode, S. Muthukrishnan, and Irina
Rozenbaum. Summarizing and mining inverse
distributions on data streams via dynamic inverse
sampling. In VLDB, pages 25–36, 2005.

[10] Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin
Zhang. Optimal sampling from distributed streams. In
PODS, pages 77–86, 2010.

[11] Nick G. Duffield, Carsten Lund, and Mikkel Thorup.
Priority sampling for estimation of arbitrary subset
sums. J. ACM, 54(6), 2007.

[12] Anna Gilbert and Piotr Indyk. Sparse recovery using
sparse matrices. In Proceeding of IEEE, 2010.

[13] Parikshit Gopalan and Jaikumar Radhakrishnan.
Finding duplicates in a data stream. In Proceedings of
the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’09, pages 402–411,
Philadelphia, PA, USA, 2009. Society for Industrial
and Applied Mathematics.

[14] T. S. Jayram and David P. Woodruff. The data
stream space complexity of cascaded norms. In FOCS,
pages 765–774, 2009.

[15] Daniel M. Kane, Jelani Nelson, Ely Porat, and
Woodruff David P. Fast moment estimation in data
streams in optimal space. Manuscript, 2010.

[16] Daniel M. Kane, Jelani Nelson, and David P.
Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the twenty-ninth
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems of data, PODS ’10,
pages 41–52, New York, NY, USA, 2010. ACM.

[17] Mauricio Karchmer. A New Approach to Circuit
Depth. PhD thesis, MIT, 1989.

[18] Mauricio Karchmer and Avi Wigderson. Monotone
circuits for connectivity require super-logarithmic
depth. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages
539–550, New York, NY, USA, 1988. ACM.

[19] Donald E. Knuth. The Art of Computer Programming,
Volume II: Seminumerical Algorithms.
Addison-Wesley, 1969.

[20] Ahmed Metwally, Divyakant Agrawal, and Amr El
Abbadi. Duplicate detection in click streams. In
WWW, pages 12–21, 2005.

[21] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and
Avi Wigderson. On data structures and asymmetric
communication complexity. In Proceedings of the
twenty-seventh annual ACM symposium on Theory of
computing, STOC ’95, pages 103–111, New York, NY,
USA, 1995. ACM.

[22] Morteza Monemizadeh and David P. Woodruff. 1-pass
relative-error lp-sampling with applications. In SODA,
pages 1143–1160, 2010.

[23] S. Muthukrishnan. Data Streams: Algorithms and
Applications.

[24] N. Nisan. Pseudorandom generators for
space-bounded computations. In Proceedings of the
twenty-second annual ACM symposium on Theory of
computing, STOC ’90, pages 204–212, New York, NY,
USA, 1990. ACM.

[25] Gabor Tardos and Uri Zwick. The communication
complexity of the universal relation. In Proceedings of
the 12th Annual IEEE Conference on Computational
Complexity, pages 247–, Washington, DC, USA, 1997.
IEEE Computer Society.

[26] Jun Tarui. Finding a duplicate and a missing item in a
stream. In Jin-Yi Cai, S. Cooper, and Hong Zhu,
editors, Theory and Applications of Models of
Computation, volume 4484 of Lecture Notes in
Computer Science, pages 128–135. Springer Berlin /
Heidelberg, 2007.

[27] David Woodruff and T. S. Jayram. Optimal bounds
for johnson-lindenstrauss transforms and streaming
problems with low error. In SODA, 2011.

