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Abstract

Let P be an N -element point set in the plane. Consider N (pointlike)
grasshoppers sitting at different points of P . In a “legal” move, any one
of them can jump over another, and land on its other side at exactly the
same distance. After a finite number of legal moves, can the grasshoppers
end up at a point set, similar to, but larger than P? We present a linear
algebraic approach to answer this question. In particular, we solve a
problem of Brunck by showing that the answer is yes if P is the vertex
set of a regular N -gon and N 6= 3, 4, 6. Some generalizations are also
considered.

1 Introduction

In 2001, at the Moscow Oral Team Mathematics Olympiad [3], the following
question was asked: Four grasshoppers are sitting at the vertices of a square.
Every minute, one of them jumps over another and lands at the point symmetric
to it. Prove that the grasshoppers can never end up sitting at the vertices of a
larger square.

The solution is simple. Suppose, for contradiction, that the grasshoppers can
end up at the vertices of a larger square. Since the moves are reversible, starting
with the final position and reversing the sequence of moves, we can get from a
square to a smaller square. However, this is impossible. Indeed, we can assume
by scaling that the initial positions of the grasshoppers are (0, 0), (0, 1), (1, 0),
and (1, 1). Then they will keep jumping around on the points of the integer grid
Z2, which has no four points that form a square of sidelength smaller than 1.

The same argument works when we have six grasshoppers sitting at the
vertices of a regular hexagon T . The only difference is that now the possible
positions of the grasshoppers belong to a triangular lattice induced by two ad-
jacent side vectors of T . As T is the smallest regular hexagon in this lattice,
the grasshoppers can never reach a regular hexagonal position of smaller—and,
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therefore, by reversibility—of larger side length than T . Exactly the same ar-
gument works if we start with a regular triangle (or with an arbitrary triangle).
However, in this case, we have an even simpler argument: a legal move never
changes the area of the triangle determined by the three pieces. Therefore, after
any number of steps, the positions of the pieces must form a triangle whose area
is the same as that of the initial triangle.

As far as we know, it was Florestan Brunck [1] who first asked: what hap-
pens if there are 5 grasshoppers, and their starting position is the vertex set
of a regular pentagon? Can they be taken into the vertices of a larger regular
pentagon?

Somewhat surprisingly, the answer to this question is affirmative.

Theorem 1.1. Let N ≥ 3, and let CN denote a configuration consisting of N
pieces sitting at the vertices of a regular N -gon. In a legal move, any piece can
jump over any other piece and land at the point centrally symmetric about it.

Unless N = 3, 4, or 6, there is a finite number of moves that take the pieces
of CN into a strictly larger similar configuration.

One can raise the following more general question. Given any two N -element
point sets in the plane or in higher dimensions, is it possible to transform the
first one to the second by a sequence of legal moves? In Section 3, we develop
a linear algebraic approach to answer this question.

Throughout this note, we fix an orthogonal system of coordinates in Rd. Let
P ⊂ Rd be a configuration of N = n+ 1 points. The position of each piece can
be described by a column vector of length d. Assume without loss of generality
that initially one of the pieces is at the origin 0. We distinguish this piece
and call it stationary or special. All other pieces are said to be ordinary. The
movement of the stationary piece is artificially restricted: any ordinary piece is
allowed to jump over it, but this piece is not allowed to jump. Note that it is
not forbidden for two or more pieces to sit at the same point at the same time.

Enumerate the elements of P by the integers 0, 1, 2, . . . , n, where 0 denotes
the stationary piece. We identify P with the d×n real matrix, whose ith column
gives the position of the ordinary piece i for 1 ≤ i ≤ n. Without any danger of
confusion, we denote both the configuration and the corresponding matrix by P .
Part 1 of Theorem 3.1, stated in the next section, characterizes all configurations
P that can be reached from the initial position under the restriction that piece
0 is stationary. In part 2, we get rid of this unnatural condition.

In the special case where we want to transform P into a larger configuration
similar to it, we obtain the following result.

Theorem 1.2. Let P be a configuration of N = n + 1 points in Rd, one of
which initially sits at the origin but it is still allowed to jump. Let P also denote
the d× n matrix associated with it.

Then P can be transformed into a similar but larger configuration, using legal
moves, if and only if there is an n × n integer matrix A with |detA| = 1 such
the configuration associated with PA is similar to and larger than the initial
configuration P .
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In Sections 4 and 5, we apply this result to prove Theorem 1.1 and the
following very similar statement, respectively.

Theorem 1.3. Let n ≥ 5, and let C∗n be a configuration consisting of n + 1
pieces sitting at the vertices and the center of a regular n-gon.

Unless n = 6, there is a finite number of legal moves that take the pieces of
C∗n into a similar but larger configuration.

Our paper is organized as follows. In Section 2, we prove a simple lemma
for matrices. It is instrumental for our general linear algebraic approach to the
reconfiguration problem, presented in Section 3. The next two sections contain
the proofs of Theorems 1.1 and 1.3, while in the last section we mention some
open problems and make a few remarks.

2 Admissible transformations of matrices

We follow the notation introduced above: A configuration P consisting of n
ordinary pieces and a stationary piece at the origin in Rd is identified with
a d × n matrix, also denoted by P , the columns of which correspond to the
positions of the ordinary pieces.

The legal move by which the ordinary piece i (1 ≤ i ≤ n) jumps over piece

j (0 ≤ j ≤ n, i 6= j) brings configuration P to PAij , where Aij = (a
(ij)
kl )nk,l=1 is

the n× n real matrix defined as follows.

a
(ij)
kl =


1 for k = l 6= i
−1 for k = l = i
2 for k = j, l = i
0 otherwise.

For example, for n = 4, we have

A2,4 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 2 0 1

 and A2,0 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 ,
where the first matrix corresponds to the jump of piece 2 over piece 4, and the
second matrix to the jump of 2 over the stationary piece 0. Indeed, denoting
the position vectors of 2 and 4 by v2 and v4 ∈ Rd, resp., after the first move, the
new position of 2 will be v4 + (v4− v2) = −v2 + 2v4. This change of coordinates
is reflected by the second column of A2,4.

We call the matrices Aij for 1 ≤ i ≤ n, 0 ≤ j ≤ n, i 6= j, elementary
involutions. (Note that they are indeed involutions, that is, A2

ij = I holds,
reflecting the fact that all legal moves are reversible. Here I stands for the
identity matrix.) The positions reachable from an initial position P (with the
piece at the origin remaining stationary) are precisely the configurations PA,
where A belongs to the matrix group generated by the elementary involutions.
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Our first lemma gives a simple characterization of this matrix group. It will
be used in the next section. We write detA for the determinant of the square
matrix A.

Lemma 2.1. An n × n integer matrix A = (aij) is generated by elementary
involutions if and only if

(i) |detA| = 1;

(ii) aij is even if i 6= j and it is odd if i = j.

Proof. All elementary transpositions have determinant −1 and all are equal to
the identity matrix I modulo 2. This proves the “only if” part of the lemma.

It is instructive to think of the elementary involutions as column operations:
For 1 ≤ i ≤ n multiplying by Ai0 from the right is the same as multiplying
column i by −1. If we further have 1 ≤ j ≤ n, j 6= i, then multiplying by AijAi0
is the same as subtracting twice column j from column i, while multiplying by
Ai0Aij is the same as adding column j twice to column i. We call these column
operations admissible.

We prove the “if” part of the lemma by showing that any matrix satisfying
conditions (i) and (ii) in the lemma can be transformed into the identity matrix
I by admissible operations. We do this by induction on n. For n = 1, the
statement is trivially true. Suppose now that n > 1 and that our statement
holds for n− 1. Let A be an n× n matrix satisfying conditions (i) and (ii).

Consider the last row of A. As long as we can find two entries ani and anj
with |ani| > |anj | > 0, by subtracting or adding twice the jth column to the
ith column, we can reduce the value of |ani|. In this step, no other entry of
the last row changes. Hence, the sum of the absolute values of the elements of
the last row strictly decreases. After a finite number of such steps (admissible
operations), we will get stuck. At this point, every entry of the last row is either
0 or ±a for some integer a > 0. During this process, the absolute value of the
determinant of the matrix has remained 1. Now it is divisible by a, so we must
have a = 1. Since the parities of the elements have not changed, all entries of
the last row must be 0, with the exception of the last element, which is either +1
or −1. Applying a single admissible transformation if necessary, we can achieve
that this last element is +1.

Let B denote the matrix constructed so far, and let B′ be the (n−1)×(n−1)
submatrix of B, obtained by deleting its last column and last row. Expanding
the determinant of B along its last row, we get that |detB| = |detB′| =
1. Clearly, B′ also satisfies condition (ii) of the lemma. Thus, we can apply
the induction hypothesis to B′, and conclude that B′ can be transformed to
an (n − 1) × (n − 1) identity matrix by performing a number of admissible
transformations. These transformations can, of course, be extended to the whole
matrix B. During this process, the last row of B remains the same: all of its
entries, except the last one, remain 0. Its last column also remains unchanged.

The matrix obtained so far coincides with the identity matrix I, apart from
the non-last entries of its last column that are arbitrary even integers. We can
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make them vanish by adding or subtracting each of the first n − 1 columns by
an even number of times. Thus, by a sequence of admissible transformations,
A can be transformed into I, as required.

3 Characterization of all reachable positions

Our next theorem gives a complete linear algebraic description of all configu-
rations that can be obtained from a given initial position of the pieces by a
sequence of legal moves.

Theorem 3.1. Let P be a d×n matrix associated with the initial configuration
of the n+ 1 pieces in Rd, one of them in the origin.

1. The configurations that can be reached by a sequence of legal moves that
keep the stationary piece at the origin, are exactly the positions corre-
sponding to a matrix PA, where A is a matrix generated by the elementary
involutions.

2. If we drop the assumption that the stationary piece must stay at the origin
and allow it to jump over any of the remaining n pieces, every reach-
able configuration is a translate of some configuration that can be reached
without moving the stationary piece. Moreover, a translate of such a con-
figuration is reachable if and only if the translation vector is of the form
2Pw for an integer vector w.

Proof. Part 1 is immediate from the observation made in the previous section,
according to which the effect of a legal jump by an ordinary piece on the matrix
associated with the configuration is exactly a multiplication by an elementary
involution.

Consider now the case when piece 0 can also jump over other pieces. We
cannot call it the stationary piece any more, so we will call it the special piece.
For a configuration Q we denote the translate of Q where the special piece is at
the origin Q0 and as above we identify Q0 with a matrix.

First we show that if the configuration Q can be reached then, Q0 can be
reached without ever jumping with the special piece. This will prove the first
statement in part 2 of the theorem.

Indeed if configuration Q′ is reached from configuration Q by jumping the
ordinary piece j over any other piece j, then the same jump also reaches Q′0
from Q0. If Q′ is reached from Q by jumping the special piece over the ordinary
piece i, then special piece is moved by the vector 2vi, where vi is the ith column
of Q0 (i.e., the vector from the position of the special piece to piece i in Q). We
move instead all ordinary pieces with the vector −2vi to achieve a translate Q′′

of Q. This we can do by letting the ordinary pieces j 6= i first jump over piece
i and then over the special piece and then jumping with piece i over the special
piece. As Q′′ is a translate of Q′ we have Q′′0 = Q′0 and this configuration can
be achieved from Q0 using the same jumps.
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Whenever a configuration Q in which the special piece is at v is reachable by
legal moves, we have Q0 = PA, for some A generated by elementary involutions.
We can, therefore, use part 1 of the theorem to reach any other configuration
Q′ with Q′0 = PB, where B is generated by the elementary involutions and the
special piece is at the same point v. To complete the proof of the theorem, it
remains to show that the places where the special piece can go are exactly the
points 2Pw with some integer vector w.

As all pieces start in the additive subgroup S = {Pw | w ∈ Zn} of d-space,
they must always remain in S. At each jump, every piece moves by twice a
vector in S. The special piece starts at the origin, so it must always arrive at
a point in 2S, namely ar 2Pw with an integer vector w. (Note that S may or
may not be a discrete lattice depending on the initial configuration P .)

Finally, we need to show that the special piece can indeed arrive at any
vector of the form 2Pw with w integer. For this, it is enough to show that if
it can arrive at a position v, then it can also arrive at v + 2pi and v − 2pi for
any column vector pi of P . However, we proved that if a configuration with the
special piece at v is reachable, then by applying further legal moves which keep
the special piece at v, we can achieve a configuration Q with Q0 = P . At this
point, a single jump by the special piece will move it to v+ 2pi, for any column
pi of P . If we jump piece i over the special piece first, and then jump the special
piece over piece i, it will land on v − 2pi. This finishes the proof.

Theorem 1.2 provides a simpler condition for the special case where the final
configuration is a similar but larger copy of the initial one. A configuration is
similar to but larger than the one identified with the matrix P if its matrix is
λSP , where |λ| > 1 and S is a d× d orthogonal matrix.

Proof of Theorem 1.2. The proof of this result would be an immediate conse-
quence of Theorem 3.1 and Lemma 2.1 if we had also required that the matrix
A satisfies the parity condition that it agrees with the identity matrix I modulo
2. The main thing here is that this requirement can be dropped.

To see this, assume that A satisfies the conditions of Theorem 1.2. We
have |detA| = 1, but as the parity condition is dropped, A is not necessarily
generated by elementary involutions.

Consider the matrix A modulo 2. Its determinant is 1, so it is an element
of the n × n matrix group GL(n, 2). As GL(n, 2) is a finite group, A must
have a finite order t ≥ 1, for which At agrees with the identity matrix modulo
2. We also have |det(At)| = |detA|t = 1. Hence, At satisfies both conditions
in Lemma 2.1 and is, therefore, generated by elementary involutions. Hence,
by Theorem 3.1, PAt is reachable from the original configuration P by legal
jumps (leaving the special piece stationary). By our assumption on A, we have
PA = λSP , for some |λ| > 1 and some orthogonal matrix S. This implies that
PAt = λtStP , which means that the configuration PAt is similar to but larger
than P . This completes the proof.
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4 Regular polygons—Proof of Theorem 1.1

Let N = n + 1 and let p0, p1, p2, . . . , pn ∈ R2 denote the vertices of a regular
N -gon in the plane, enumerated in positive (counter-clockwise) cyclic order, and
suppose that p0 = 0. The initial position with the N pieces at these vertices is
identified with the 2×n matrix P , the ith column of which is pi, for 1 ≤ i ≤ n.

Let M denote the n× n matrix

M =


−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Note that the ith column of PM is pi+1 − p1 for 1 ≤ i < n and −p1 for i = n
and thus can be obtained as the rotation of pi with the positive angle 2π/N .
Let

S =

cos 2π
n+1 − sin 2π

n+1

sin 2π
n+1 cos 2π

n+1


be the orthogonal matrix representing this rotation. Now we have PM = SP .

At this point, we are almost done. We have |detM | = 1, and the position
PM is similar to P , that is, it is also a regular (n + 1)-gon. If it was also
larger than P , we could apply Theorem 1.2 and finish the proof. Unfortunately,
the configuration PM = SP is of exactly the same size as P , because S is a
rotation.

We solve this problem by considering polynomials f(M) of M . Obviously,
we have Pf(M) = f(S)P . Notice that all polynomials f(S) of the matrix S are
of the form [

a −b
b a

]
= λT,

for some reals a, b, λ and for an orthogonal matrix T . So, the configuration
Pf(M) is similar to P , i.e., it is a (possibly degenerate) regular (n+1)-gon. We
can finish the proof by applying Theorem 1.2 if we find an integer polynomial
f such that

(i) |det f(M)| = 1, and

(ii) the regular (n+ 1)-gon identified with Pf(M) is larger than P .

For a positive integer k, consider the matrix

Bk =

k−1∑
j=0

M j .
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Note that the characteristic polynomial of M is
∑n
j=0 t

j . Recall that N = n+1.
Thus, we have BN = 0. We further have

BkN = BN

k−1∑
j=0

M jN = 0,

for all k > 0, and
BkN+1 = I +MBkN = I.

Let us fix an integer i with 1 ≤ i < N which is coprime to N . We can find
positive integers l and k such that il = kN + 1, and

Bi

l−1∑
j=0

M ij = Bil = BkN+1 = I.

This shows that the integer matrix Bi is invertible and its inverse is also an
integer matrix. Therefore, we have |detBi| = 1. This was condition (i) above
that a polynomial of M had to satisfy to finish the proof.

It remains to verify condition (ii) and check that the configuration identified
with PBi (a regular N -gon) is strictly larger than the starting configuration.
The side length of the N -gon associated with the configuration PBi is the
distance between p1Bi, the position of piece 1, and the special piece at the
origin. Here, p1M

j = pj+1 − pj for 0 ≤ j < N − 1, so that

p1Bi =

i−1∑
j=0

p1M
j =

i−1∑
j=0

(pj+1 − pj) = pi.

Therefore, the side length of the regular (n+ 1)-gon corresponding to the con-
figuration PBi is equal to |pi|. This is the length of a proper diagonal of the
original configuration P provided that 1 < i < N − 1, so strictly larger than
original side length of |p1|, .

To complete the proof of Theorem 1.1, it is enough to observe that there
always exists an integer i, 1 < i < N − 1, which is coprime to N , provided that
N ≥ 5 and N 6= 6. �

5 Adding the center—Proof of Theorem 1.3

As another application of Theorem 1.2, we consider the case where we have N+1
grasshoppers, originally sitting at the vertices and center of a regular N -gon. If
N = 3, 4 or 6, the grasshoppers jump around on the points of a triangular or
square lattice, which implies that they cannot end up at the vertices and center
of a smaller regular n-gon. Hence, by the reversibility of the moves, they cannot
end up at the vertices and center of a larger regular n-gon either. Theorem 1.3
claims that this can be achieved in all remaining cases. Its proof is similar to
the proof of Theorem 1.1 presented in the previous section.
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Proof of Theorem 1.3. Denote by q1, . . . , qN the vertices of a regular n-gon,
listed in positive cyclic order. Assume that the center of the N -gon is the
origin. We put a piece in the vertices and the center of this N -gon. The piece
at the origin is treated as the special (stationary) piece and the ith piece starts
at qi for i = 1, . . . , n. As before, the position of the pieces is always identified
with a matrix. This time we have N + 1 pieces, so we identify their configu-
rations with a 2 × N matrix. In particular, let Q denote the matrix identified
with the initial configuration having qi as column i for 1 ≤ i ≤ N . Consider the
N ×N matrix

M ′ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .
The ith column of QM ′ is qi−1 for 1 < i < N and the first column of QM
is qN . This represents a rotation with a negative angle of 2π/N , so we have
QM ′ = S−1Q, where S is the rotation matrix as in the proof of Theorem 1.1.
For 0 < i < N , let Di =

∑i−1
j=0M

′j . We have

QDi =

i−1∑
j=0

S−j

Q.

Thus, QDi is similar to the configuration Q. To figure out its side length,
note that in the configuration QM ′j , (0 ≤ j ≤ N − 2), pieces 1 and 2 are at

qj+1 and qj+2, respectively. Therefore, in QDi, they are at r =
∑i
j=1 qj and

s =
∑i+1
j=2 qj , respectively. Thus, the side length of the configuration QDi is

|r−s| = |qi+1−q1|, which is the length of a proper diagonal and therefore strictly
larger then the side length |q2− q1| of the initial configuration Q, provided that
1 < i < N − 1. In these cases, QDi similar to, but larger than Q.

To complete the proof applying Theorem 1.2, we would need that |detDi| =
1. Unfortunately, this fails even for many values of i that are coprime to N .
We circumvent this difficulty by considering the matrix Di,k = Di + kJ , where
J is the N × N matrix with 1 entries in its last column and zeros everywhere
else. We clearly have QJ = 0. Hence, QDi,k = QD is similar to the initial
configuration Q, and is larger when 1 < i < N − 1. We need to find suitable
integers 1 < i < N−1 and k such that |detDi,k| = 1, and then we can conclude
the proof by Theorem 1.2.

Fix i to be coprime to N . If N ≥ 5 and N 6= 6, we can find such an i with
1 < i < N − 1. For now, we keep k as a free variable, and we try to compute
the determinant of Di,k. First, we subtract the last row of Di,k from all other
rows. This does not alter the determinant. The last entry of the last row of the
resulting matrix D′i,k is 1 + k, but no other entriy of the matrix depends on k.
When we expand detD′i,k along the last row, no summand depends on k, except
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the very last one, which is (k + 1) detEi, where Ei is the matrix obtained from
D′i,k after deleting its last row and last column. The matrix Ei is independent
of k and, by coincidence, it happens to be the transpose of the matrix Bi used
in the proof of Theorem 1.1 for the same value of N . To see this, first note that
both Bi and Ei are (N − 1) × (N − 1) matrices and it is not hard to evaluate

and compare their entries. For the entries of Ei = (e
(i)
lm) we have

e
(i)
lm =

 1 for max(i, l) ≤ m < i+ l
−1 for i+ l −N ≤ m < min(i, l)
0 otherwise.

This means that |detEi| = |detBi| = 1, which implies that detDi,k = detD′i,k
can be made 1 by an appropriate integer choice of k. With that choice, Di,k

satisfies the conditions of Theorem 1.2. This finishes the proof.

6 Remarks and further questions

In the present note, we defined a game with grasshoppers jumping over each
other and discussed when a configuration of the grasshoppers can be reached
from another configuration but we neglected the question of how many jumps it
takes to reach the desired configuration. Here, we list several problems related
to this latter question.

A. The smallest special case of Theorem 1.1 is that of the regular pentagon.
One can implement the steps of the proof above to find a concrete sequence
of jumps for the grasshoppers starting at the vertices of a regular pentagon
that yields a larger regular pentagon, but the sequence so obtained is very long.
Here we give short such sequence. We number the grasshoppers 0 through 4
and denote by Jij the jump of grasshopper i over grasshopper j. The following
sequence of jumps results in a regular pentagon that is

√
5+2 times larger than

the original:
J42J20J31J21J10J41J32J23J30J13J31J34J14J10

We do not know whether there exists a shorter such sequence.

B. The same question can be asked more generally:

Problem 6.1. Given an integer N which is either 5 or larger than 6, and N
pieces sitting at the vertices of a regular N -gon, what is the smallest number of
legal moves that takes them into the vertex set of a larger regular N -gon?

How many legal moves are needed to turn a configuration consisting of the
vertices and the center of regular N -gon to a similar but larger configuration?

We can turn the proofs of Theorems 1.1 and 1.3 to give explicit bounds but
these bounds will be exponential in N for two reasons. First, the application
of Lemma 2.1 may itself yield exponentially long sequences; see more on this
below. Second, in the proof of Theorem 1.2 we take an integer matrix A and
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raise it to a power that is the order of A in GL(n, 2). But GL(n, 2) has elements
of order 2n − 1.

Still, we conjecture that a regular N -gon (N > 6) with or without the center
can be transformed to a similar but larger configuration in polynomially many
moves in N .

C. We can also ask how many legal jumps are needed to bring a given configu-
ration P to another configuration Q whenever this is possible. Here we cannot
hope for a bound that depends only on the number N of pieces in the config-
urations. Theorem 3.1 claims that if P can be transformed to Q at all, then
Q = PA for an (N −1)× (N −1) matrix A generated by the elementary involu-
tions. (Here we assume both P and Q have a stationary piece in the origin and
we identify the configurations with matrices as usual.) It would be interesting
to bound the number of legal moves needed in terms of N and the maximum
absolute value of an entry in A. This is the same as asking how long a product
of elementary transformations may be needed to obtain a specific matrix with
bounded entries.

As before, our proof of Theorem 3.1 can be turned into a explicit bound,
but that bound will be exponential. This is because the recursive nature of the
algorithm turning a matrix into the identity matrix using admissible operations
that we use to prove Lemma 2.1 may result in the size of entries growing sub-
stantially throughout the procedure. We do not know whether better bounds
are possible.

D. What if we are given a single configuration of N pieces and we are promised
that it can be transformed to a similar but larger configuration by legal jumps?
Can we bound the number of jumps needed solely in terms of N?

E. And finally a question that is not about the number of jumps needed to
arrive to a configuration.

Problem 6.2. For what Platonic solids T can we start this game at the vertices
of T and achieve a similar but larger configuration with legal jumps?

There is no way to arrive to a similar but larger configuration in case T is a
tetrahedron, a cube or an octahedron, because the vertices of these solids can be
on a cubic lattice. If we start with a configuration on the cubic lattice forming
the vertex set of the smallest solid similar to T , then we cannot arrive to an
even smaller such configuration, and by reversibility, neither can we arrive to a
larger similar configuration.

We conjecture that starting from the vertices of either of the remaining two
Platonic solids: the dodecahedron or the icosahedron one can arrive to a similar
but larger configuration.
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