
A Note on Non-Deterministi
 Communi
ation Complexity with

Few Witnesses

Vin
e Grolmusz

�

G�abor Tardos

y

Abstra
t

We improve both main results of the paper \Non-Deterministi
 Communi
ation Com-

plexity with Few Witnesses " by M. Kar
hmer, I. Newman, M. Saks and A. Wigderson,

appeared in JCSS Vol. 49, pp. 247-257.

1 Introdu
tion

Randomness is an often studied resour
e in a wide variety of 
omputation models. Non-

determinism is another important 
omputational resour
e: for example, the P vs. NP ques-

tion addresses the power of non-determinism in Turing-ma
hine 
omputation. In 
ommuni-


ation games non-determinism is proven to be stronger than determinism (see [7℄, [5℄, [2℄).

Analogously to the study of the power of the bounded randomness, the study of the power

of the bounded non-determinism has ni
e results [4℄ or [3℄. In [4℄ Kar
hmer, Newman, Saks

and Wigderson examined 
ommuni
ation games with bounded non-determinism: for a posi-

tive integer k they introdu
ed n

k

(f) the length of the shortest nondeterministi
 proto
ol for


omputing the fun
tion f subje
t to the 
ondition that ea
h input has at most k witnesses

(de�ned below). They studied how this 
omplexity measure relates to old measures su
h as

the deterministi
 
ommuni
ation 
omplexity and the rank of the 
ommuni
ation matrix of

the fun
tion f . For the exa
t statements of their results, see Theorems 3 and 4 below. In

this note we prove a tighter relation between these quantities (Theorems 5 and 6) slightly

improving on the earlier results.

1.1 Notation and Preliminaries

We follow the notations of [4℄:

rk(A) denotes the rank of matrix A over the 
omplex numbers.

trk(A) is the triangular rank of matrix A: the size of the largest non-singular lower

triangular submatrix of A.

A re
tangle is a rank-1 or rank-0 Boolean matrix. We say that a re
tangle 
overs a position

if its entry in that position is 1. Noti
e that the set of positions 
overed by a re
tangle forms

a submatrix. A set of re
tangles R

1

; R

2

; : : : ; R

t


overs the Boolean matrix A if the matrix A

and the matrix

P

t

i=1

R

i

has entry 0 exa
tly in the same positions.
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A re
tangle-
over R

1

; R

2

; : : : ; R

t

is a k-
over if every entry of

P

t

i=1

R

i

is at most k.

(Alternatively, any position is 
overed by at most k of the re
tangles R

i

.) Let �

k

(A) denote

the minimum 
ardinality of a k-
over of A.

Readers unfamiliar with the basi
 de�nitions in 
ommuni
ation 
omplexity are referred

to the paper [4℄ or monographs [5℄ or [2℄. We just list here the notations used in paper [4℄.

For a fun
tion f : f0; 1g

u

� f0; 1g

u

! f0; 1g, let M

f

denote its 2

u

� 2

u


ommuni
ation-

matrix: this matrix 
ontains the value f(x; y) 2 f0; 1g in the interse
tion of the row, 
or-

responded to x and the 
olumn, 
orresponded to y, where x; y 2 f0; 1g

n

. Let 
(f) denote

the deterministi
 
ommuni
ation 
omplexity of f , and let n(f) denote its non-deterministi



ommuni
ation 
omplexity.

Every non-deterministi
 
ommuni
ation proto
ol for 
omputing f 
orresponds to a 
over

of M

f

by re
tangles [4℄, [1℄. These re
tangles are 
alled witnesses. Let n

k

(f) denote the

minimum 
omplexity of a non-deterministi
 proto
ol, 
omputing f su
h that every entry of

M

f

are 
overed by at most k re
tangles (has at most k witnesses).

We need the following two results, the �rst from [4℄:

Lemma 1 (KNSW) For k � 1 and if rk(M

f

) > 1 we have n

k

(f) = dlog �

k

(M

f

)e.

2

The se
ond result is the following Lemma of [6℄ Here

�

f denotes the 
omplementary fun
-

tion of f , i.e.,

�

f = 1� f .

Lemma 2 (Lov�asz-Saks) 
(f) = O(n(f) log(trk(M

�

f

))):

2

2 Lower bounds for restri
ted non-deterministi
 
omplexity

Two di�erent lower bounds were given in [4℄ for n

k

(f):

Theorem 3 (KNSW) For any fun
tion f : X � Y ! f0; 1g and integer k � 1:

n

k

(f) = 


 

p


(f)

k

!

;

or, equivalently,


(f) = O((kn

k

(f))

2

):

The other main result of paper [4℄ is the following

Theorem 4 (KNSW) For any non-zero fun
tion f : X � Y ! f0; 1g and integer k � 1,

n

k

(f) �

log rk(M

f

)

k

� 1:

We prove here the following stronger bounds for n

k

(f). Our Theorem 5 improves Theorem

3:

2



Theorem 5 For any fun
tion f : X � Y ! f0; 1g and integer k � 1:

n

k

(f) = 


0

�

s


(f)

k

1

A

;

or, equivalently,


(f) = O(k(n

k

(f))

2

):

Our Theorem 6 tightens Theorem 4:

Theorem 6 For any fun
tion f : X � Y ! f0; 1g and integer 1 � k < log rk(M

f

)=2,

n

k

(f) �

log rk(M

f

)

k

+ log k � 2:

3 Proofs

Our improvement of Theorem 4 relies on the following improvement of a statement used by

Kar
hmer, Newman, Saks and Wigderson (Lemma 1 in [4℄):

Lemma 7 For any Boolean matrix A and positive integer k:

rk(A) �

 

�

k

(A)

1

!

+

 

�

k

(A)

2

!

+ � � �+

 

�

k

(A)

k

!

:

Proof: Consider a set of re
tangles R

i

. Observe that the interse
tion of the sets of

positions 
overed by R

i

is a (possibly empty) submatrix. We 
all the re
tangle R 
overing

exa
tly the positions in this interse
tion the interse
tion of the re
tangles R

i

.

Note also, that if a matrix M 
an be given as a linear 
ombination of t re
tangles, then

rk(M) � t, simply by the sub-additivity of the rank fun
tion.

Now, let us 
onsider matrix A, and its k-
over by s = �

k

re
tangles R

1

; : : : ; R

s

. For a

K � f1; 2; : : : ; sg let R

K

denote the interse
tion of the re
tangles R

i

with i 2 K.

From the in
lusion-ex
lusion formula:

A =

X

K�f1;2;:::;sg;jKj=1

R

K

�

X

K�f1;2;:::;sg;jKj=2

R

K

+ � � �+ (�1)

k+1

X

K�f1;2;:::;sg;jKj=k

R

K

The right-hand-side of this formula is a 
ombination of

�

s

1

�

+ � � �+

�

s

k

�

re
tangles, thus the

left-hand-side has rank rk(A) bounded by this number, as 
laimed.

2

Proof of Theorem 6. Let A =M

f

, and apply Lemma 7, with s = �

k

(M

f

):

rk(M

f

) �

k

X

i=1

 

s

i

!

:

Clearly, rk(M

f

) � 2

s

follows, thus k < s=2. Now we use

�

s

i

�

�

�

s

k

�

�

�

se

k

�

k

. Taking logarithms,

and applying Lemma 1 we get:

log rk(M

f

) � kn

k

(f)� k log k + 2k

3



as 
laimed.

2

Proof of Theorem 5.

If f is 
onstant (i.e. 0 or 1), then { both deterministi
, and non-deterministi
 { 
om-

muni
ation 
omplexities of f are 0, so we are done. In what follows, we assume that f is

non-
onstant.

For any k � 1, n(f) � n

k

(f), 
onsequently, from Lemma 2:


(f) = O(n(f) log(trk(M

�

f

))) = O(n

k

(f) log(trk(M

�

f

)) = O(n

k

(f) log(rk(M

�

f

)):

However, sin
e M

�

f

= J �M

f

, where J is the all-1 matrix, the ranks of M

f

and M

�

f

may

di�er by at most 1. Consequently,


(f) = O(n

k

(f) log(rk(M

f

)) = O(kn

2

k

);

where the last equation 
omes from Theorem 6.
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