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Abstract

We improve both main results of the paper “Non-Deterministic Communication Com-
plexity with Few Witnesses ” by M. Karchmer, I. Newman, M. Saks and A. Wigderson,
appeared in JCSS Vol. 49, pp. 247-257.

1 Introduction

Randomness is an often studied resource in a wide variety of computation models. Non-
determinism is another important computational resource: for example, the P vs. NP ques-
tion addresses the power of non-determinism in Turing-machine computation. In communi-
cation games non-determinism is proven to be stronger than determinism (see [7], [5], [2]).
Analogously to the study of the power of the bounded randomness, the study of the power
of the bounded non-determinism has nice results [4] or [3]. In [4] Karchmer, Newman, Saks
and Wigderson examined communication games with bounded non-determinism: for a posi-
tive integer k they introduced ng(f) the length of the shortest nondeterministic protocol for
computing the function f subject to the condition that each input has at most k witnesses
(defined below). They studied how this complexity measure relates to old measures such as
the deterministic communication complexity and the rank of the communication matrix of
the function f. For the exact statements of their results, see Theorems 3 and 4 below. In
this note we prove a tighter relation between these quantities (Theorems 5 and 6) slightly
improving on the earlier results.

1.1 Notation and Preliminaries

We follow the notations of [4]:

rk(A) denotes the rank of matrix A over the complex numbers.

trk(A) is the triangular rank of matrix A: the size of the largest non-singular lower
triangular submatrix of A.

A rectangle is a rank-1 or rank-0 Boolean matrix. We say that a rectangle covers a position
if its entry in that position is 1. Notice that the set of positions covered by a rectangle forms
a submatrix. A set of rectangles Ry, Ro, ..., R; covers the Boolean matrix A if the matrix A
and the matrix Zle R; has entry 0 exactly in the same positions.
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A rectangle-cover Ry, Ro,...,R; is a k-cover if every entry of Zle R; is at most k.
(Alternatively, any position is covered by at most k of the rectangles R;.) Let ki(A) denote
the minimum cardinality of a k-cover of A.

Readers unfamiliar with the basic definitions in communication complexity are referred
to the paper [4] or monographs [5] or [2]. We just list here the notations used in paper [4].

For a function f : {0,1}* x {0,1}* — {0,1}, let My denote its 2" x 2" communication-
matrix: this matrix contains the value f(z,y) € {0,1} in the intersection of the row, cor-
responded to z and the column, corresponded to y, where z,y € {0,1}". Let ¢(f) denote
the deterministic communication complexity of f, and let n(f) denote its non-deterministic
communication complexity.

Every non-deterministic communication protocol for computing f corresponds to a cover
of My by rectangles [4], [1]. These rectangles are called witnesses. Let ny(f) denote the
minimum complexity of a non-deterministic protocol, computing f such that every entry of
M are covered by at most k rectangles (has at most k witnesses).

We need the following two results, the first from [4]:

Lemma 1 (KNSW) For k > 1 and if tk(My) > 1 we have ni(f) = [log ki (My)].

a

The second result is the following Lemma of [6] Here f denotes the complementary func-
tion of f,ie., f=1—f.

Lemma 2 (Lovész-Saks) c(f) = O(n(f)log(trk(My))).

O

2 Lower bounds for restricted non-deterministic complexity
Two different lower bounds were given in [4] for ng(f):

Theorem 3 (KNSW) For any function f : X xY — {0,1} and integer k > 1:
c
n(f) =0 ( ,f”) ;

c(f) = O((knk(£))?)-

or, equivalently,

The other main result of paper [4] is the following

Theorem 4 (KNSW) For any non-zero function f : X x Y — {0,1} and integer k > 1,

ni(f) > w ~1.

We prove here the following stronger bounds for ng(f). Our Theorem 5 improves Theorem



Theorem 5 For any function f: X xY — {0,1} and integer k > 1:

_ c(f) ).
nk(f)—Q( T)’

Our Theorem 6 tightens Theorem 4:

or, equivalently,

Theorem 6 For any function f: X xY — {0,1} and integer 1 < k < logrk(My)/2,

log tk(M
ni(f) > Ong(f)-l-logk—Z

3 Proofs

Our improvement of Theorem 4 relies on the following improvement of a statement used by
Karchmer, Newman, Saks and Wigderson (Lemma 1 in [4]):

Lemma 7 For any Boolean matriz A and positive integer k:

ki (A) ki (A) ki (A)
rk(A)S(kl >+<’“2 >+---+<’“k )

Proof: Consider a set of rectangles R;. Observe that the intersection of the sets of
positions covered by R; is a (possibly empty) submatrix. We call the rectangle R covering
exactly the positions in this intersection the intersection of the rectangles R;.

Note also, that if a matrix M can be given as a linear combination of ¢ rectangles, then
rk(M) < t, simply by the sub-additivity of the rank function.

Now, let us consider matrix A, and its k-cover by s = ki rectangles Ry,..., R;. For a
K c{1,2,...,s} let Rg denote the intersection of the rectangles R; with i € K.

From the inclusion-exclusion formula:

A= > Rg — > Rg + -+ (-1 > Rg

KC{1,2,...,s},| K|=1 KC{1,2,...,s},| K|=2 KC{1,2,0.8},| K| =k

The right-hand-side of this formula is a combination of (7) +--- + (}) rectangles, thus the
left-hand-side has rank rk(A) bounded by this number, as claimed.

O
Proof of Theorem 6. Let A = My, and apply Lemma 7, with s = s (MjF):

k
k(M) <Y (f)
=1

Clearly, rk(Mj) < 2° follows, thus k < s/2. Now we use () < () < (%)k Taking logarithms,
and applying Lemma 1 we get:

logrk(My) < kny(f) — klogk + 2k



as claimed.
O

Proof of Theorem 5.

If f is constant (i.e. 0 or 1), then — both deterministic, and non-deterministic — com-
munication complexities of f are 0, so we are done. In what follows, we assume that f is
non-constant.

For any k > 1, n(f) < ng(f), consequently, from Lemma 2:

c(f) = O(n(f)log(trk(My))) = O(ny(f) log(trk(My)) = O(nk(f)log(rk(Mp)).

However, since My = J — My, where J is the all-1 matrix, the ranks of My and M 7 may
differ by at most 1. Consequently,

c(f) = O(nk(f) log(rk(My)) = O(kny),

where the last equation comes from Theorem 6.
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