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Local chromatic number and topological
properties of graphs
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The local chromatic number of a graph, introduced by Erdős et al. in (4), is the minimum number of colors that
must appear in the closed neighborhood of some vertex in any proper coloring of the graph. This talk, based on the
papers (14; 15; 16), would like to survey some of our recent results on this parameter. We give a lower bound for
the local chromatic number in terms of the lower bound of the chromatic number provided by the topological method
introduced by Lov́asz. We show that this bound is tight in many cases. In particular, we determine the local chromatic
number of certain odd chromatic Schrijver graphs and generalized Mycielsky graphs. We further elaborate on the
case of4-chromatic graphs and, in particular, on surface quadrangulations.
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1 Introduction
In 1978, proving the conjecture of Kneser, Lovász (7) introduced a topological technique to bound the
chromatic numberχ(G) of a graphG from below. In the same year, Báŕany (2) found another short proof
of Kneser’s conjecture, also using topology. Still in 1978 this latter proof was generalized by Schrijver
(13) showing that the same lower bound is true for the chromatic number of a family of induced subgraphs
of Kneser graphs, that not only have their chromatic number equal to the so obtained lower bound, but
are also vertex color-critical. Recall that Kneser graphsKG(n, k) are defined on thek-element sets of an
n-set as vertices and two vertices form an edge if the correspondingk-subsets are disjoint. The family of
vertex color-critical induced subgraphs discovered by Schrijver is the following.
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Definition 1 (13) TheSchrijver graphSG(n, k) is defined as follows. Its vertices are thosek-element
subsets of the set[n] = {1, . . . , n} that do not contain cyclically consecutive elementsi, i + 1 or n, 1.
Two such vertices are adjacent if they represent disjointk-subsets.

The above mentioned results state thatχ(SG(n, k)) = χ(KG(n, k)) = n− 2k + 2.
Later the chromatic number of other families of graphs were also determined by this topological

method. Two examples are generalized Mycielski graphs in (17), (5) and some finite subgraphs of Borsuk
graphs in (8). (For the definition of Borsuk graphs we also refer to (8), while the definition of generalized
Mycielski graphs can be found in (5), (9), or (18).)

By now the topological method for bounding the chromatic number from below has several variations.
Many of them can be described via introducing a so-called boxcomplex assigned to the graph and express
the lower bound on the chromatic number in terms of topological invariants of this complex. The paper
(10) analyzes several of the possible box complexes and establishes a hierarchy of the bounds one can ob-
tain by their use. All these bounds give the same sharp estimation of the chromatic number for the graphs
mentioned above. We single out two of these possible topological bounds that we now simply denote
by b0(G) andbs(G) for graphG. They satisfybs(G) ≤ b0(G) ≤ χ(G). We call a graph topologically
t-chromatic ifb0(G) ≥ t and strongly topologicallyt-chromatic ifbs(G) ≥ t. (By bs(G) ≤ b0(G) strong
topologicalt-chromaticity implies topologicalt-chromaticity.)

Our results show that if a graph is topologicallyt-chromatic then this implies a lower bound on another
graph coloring parameter, its local chromatic number, and this bound is also sharp in many cases. In fact,
the results of (14) also have implications on yet another coloring parameter, the circular chromatic number
(cf. (20)) that we do not discuss here. The talk is based on theupcoming papers (14; 15; 16).

2 Local chromatic number
In short, the local chromatic number is the fewest number of colors that can appear in the most colorful
closed neighborhood of a vertex in a proper coloring of the graph. Introduced by Erd̋os, F̈uredi, Hajnal,
Komjáth, R̈odl, and Seress (4), the formal definition is as follows.

Definition 2 (4) Thelocal chromatic numberψ(G) of a graphG is

ψ(G) := min
c

max
v∈V (G)

|{c(u) : u ∈ N(v)}|+ 1,

whereN(v) = {u : uv ∈ E(G)} and the minimum is taken over all proper coloringsc ofG.

It is obvious that the chromatic numberχ(G) is an upper bound onψ(G). It is less obvious, that
ψ(G) < χ(G) is possible, moreover, there exist graphsG with ψ(G) = 3 andχ(G) arbitrarily large, cf.
(4).

It was observed in (6) that the fractional chromatic numberχf (G) (see (12) for definitions) bounds
the local chromatic number from below, that is,χf (G) ≤ ψ(G) is always true. This motivates the
study of the local chromatic number of graphs that have a large gap between their fractional and ordinary
chromatic numbers. Standard examples of such graphs are Kneser graphs and Mycielski graphs (see
(12)), and one easily sees that their variants, Schrijver graphs and generalized Mycielski graphs also have
this property. These are all graphs the chromatic number of which can be determined by the topological
method discussed above.
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This is how we were led to investigate the relevance of topological lower bounds of the chromatic
number for the local chromatic number. It turned out that ifG is a topologicallyχ(G)-chromatic graph,
that is one for which the topological method gives the chromatic number exactly, then its local chromatic
number should be at least about the half of its chromatic number, and this lower bound is tight in many
cases. In particular, we have the following result for Schrijver graphs.

Theorem 3 (14) If t = n− 2k + 2 > 2 is odd andn ≥ 4t2 − 7t then

ψ(SG(n, k)) =

⌈

t

2

⌉

+ 1.

This theorem easily implies that for event = n − 2k + 2 > 2 and large enoughn the value of
ψ(SG(n, k)) is one oft/2 + 1 andt/2 + 2.

The following proposition shows that some lower bound onn is really needed in Theorem 3.

Proposition 4 (14)ψ(SG(n, 2)) = n− 2 = χ(SG(n, 2)) for everyn ≥ 4.

While the lower bound part of Theorem 3 is topological, the matching upper bound is obtained via
combinatorial methods. Both the upper and the lower estimation work in a more general setting resulting
in similar results for generalized Mycielski graphs and Borsuk graphs of certain parameters. We refer to
(14) for further details, as well as, for some topological consequences.

3 4-chromatic graphs and surface quadrangulations
Theorem 3 leaves open the question whether (large enough)4-chromatic Schrijver graphs have local
chromatic number3 or 4. In other words, Theorem 3 does not decide whether the smallest chromatic
numbert for which a t-chromatic Schrijver graph with smaller local than ordinary chromatic number
exists is4 or 5. In (15) we have shown that this smallest number is5, thus the following holds.

Theorem 5 (15)
ψ(SG(2k + 2, k)) = 4.

This theorem is again true in a more general setting. In fact,we show that all strongly topologically
4-chromatic graphs have local chromatic number4. The same implication does not hold ifG is only
topologically4-chromatic. For further details we refer to (15).

It is known that generalized Mycielski graphs of chromatic number4 quadrangulate the projective
plane. It turns out that4-chromatic Schrijver graphs are closely related to quadrangulations of the Klein
bottle. The chromatic number of surface quadrangulations is a widely investigated topic, see (1; 11;
19), and the above mentioned connections suggest that analogs of Theorem 5 may be true for certain
quadrangulations of non-orientable surfaces. Indeed, onecan show that non-bipartite quadrangulations of
the projective plane have local chromatic number4, generalizing a celebrated result of Youngs (19) stating
that such graphs are never3-chromatic. In (16) we use the technique of non-commutativelocal tensions
(cf. (3)) to prove that certain quadrangulations of the Klein bottle that are shown to be4-chromatic in (1)
and (11) have local chromatic number4. Surprisingly, however, quadrangulations of other non-orientable
surfaces exist that are 4-chromatic by the same results but their local chromatic number is 3. For further
details we refer the reader to (16).
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References
[1] D. Archdeacon, J. Hutchinson, A. Nakamoto, S. Negami, K.Ota, Chromatic numbers of quadran-

gulations on closed surfaces,J. Graph Theory, 37 (2001), no. 2, 100–114.
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