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The local chromatic number of a graph, introduced bydSrdt al. in (4), is the minimum number of colors that
must appear in the closed neighborhood of some vertex in any profeeing of the graph. This talk, based on the
papers (14; 15; 16), would like to survey some of our recent resaolthis parameter. We give a lower bound for
the local chromatic number in terms of the lower bound of the chromatidbeuprovided by the topological method
introduced by Lo@sz. We show that this bound is tight in many cases. In particular, wendatethe local chromatic
number of certain odd chromatic Schrijver graphs and generalizedeldigg graphs. We further elaborate on the
case ofd-chromatic graphs and, in particular, on surface quadrangulations.
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1 Introduction

In 1978, proving the conjecture of Kneser, lasz (7) introduced a topological technique to bound the
chromatic numbey (G) of a graphG from below. In the same yearagany (2) found another short proof
of Kneser’s conjecture, also using topology. Still in 19%& tatter proof was generalized by Schrijver
(13) showing that the same lower bound is true for the chrimmammber of a family of induced subgraphs
of Kneser graphs, that not only have their chromatic numigerakto the so obtained lower bound, but
are also vertex color-critical. Recall that Kneser grafiis(n, k) are defined on thk-element sets of an
n-set as vertices and two vertices form an edge if the corretipg k-subsets are disjoint. The family of
vertex color-critical induced subgraphs discovered byrigar is the following.
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Definition 1 (13) The Schrijver graphSG(n, k) is defined as follows. Its vertices are thdselement
subsets of the s¢t] = {1,...,n} that do not contain cyclically consecutive elemeiis+ 1 or n, 1.
Two such vertices are adjacent if they represent disjbintibsets.

The above mentioned results state thetG(n, k)) = x(KG(n, k)) = n — 2k + 2.

Later the chromatic number of other families of graphs wdse a@etermined by this topological
method. Two examples are generalized Mycielski graphsih (5) and some finite subgraphs of Borsuk
graphs in (8). (For the definition of Borsuk graphs we alser&s (8), while the definition of generalized
Mycielski graphs can be found in (5), (9), or (18).)

By now the topological method for bounding the chromatic benfrom below has several variations.
Many of them can be described via introducing a so-calleddooxplex assigned to the graph and express
the lower bound on the chromatic number in terms of topoklgio/ariants of this complex. The paper
(10) analyzes several of the possible box complexes anblisstas a hierarchy of the bounds one can ob-
tain by their use. All these bounds give the same sharp etstimaf the chromatic number for the graphs
mentioned above. We single out two of these possible topmbfounds that we now simply denote
by by(G) andbs(G) for graphG. They satisfyb,(G) < by(G) < x(G). We call a graph topologically
t-chromatic ifbg (G) > t and strongly topologically-chromatic ifos (G) > ¢. (By bs(G) < bo(G) strong
topologicalt-chromaticity implies topologicat-chromaticity.)

Our results show that if a graph is topologicallghromatic then this implies a lower bound on another
graph coloring parameter, its local chromatic number, &igldound is also sharp in many cases. In fact,
the results of (14) also have implications on yet anothesrang) parameter, the circular chromatic number
(cf. (20)) that we do not discuss here. The talk is based onpleeming papers (14; 15; 16).

2 Local chromatic number

In short, the local chromatic number is the fewest numbemtdrs that can appear in the most colorful
closed neighborhood of a vertex in a proper coloring of tlaphr Introduced by Efis, Riredi, Hajnal,
Komijath, Rdl, and Seress (4), the formal definition is as follows.

Definition 2 (4) Thelocal chromatic numbey(G) of a graphG is

0(G) = min max [{e(w) tu € Nw)}|+ 1

whereN (v) = {u : wv € E(G)} and the minimum is taken over all proper coloringsf G.

It is obvious that the chromatic numbgfG) is an upper bound og(G). It is less obvious, that
¥(G) < x(G) is possible, moreover, there exist graghsvith «/(G) = 3 andx(G) arbitrarily large, cf.
(4).

It was observed in (6) that the fractional chromatic numpgfG) (see (12) for definitions) bounds
the local chromatic number from below, that ig;(G) < (G) is always true. This motivates the
study of the local chromatic number of graphs that have a&lgep between their fractional and ordinary
chromatic numbers. Standard examples of such graphs argeKgeaphs and Mycielski graphs (see
(12)), and one easily sees that their variants, Schrijvaplgs and generalized Mycielski graphs also have
this property. These are all graphs the chromatic numbemhadtwcan be determined by the topological
method discussed above.
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This is how we were led to investigate the relevance of tagiold lower bounds of the chromatic
number for the local chromatic number. It turned out that ifs a topologicallyy (G)-chromatic graph,
that is one for which the topological method gives the chricrraumber exactly, then its local chromatic
number should be at least about the half of its chromatic rup@nd this lower bound is tight in many
cases. In particular, we have the following result for Sekrigraphs.

Theorem 3 (14)If t = n — 2k + 2 > 2 is odd andn > 4t¢? — 7t then
t
B(SG(n, k) = M +1.

This theorem easily implies that for evén= n — 2k + 2 > 2 and large enough the value of
Y(SG(n,k)) is one oft/2 + 1 andt/2 + 2.
The following proposition shows that some lower boundhds really needed in Theorem 3.

Proposition 4 (14) ¢(SG(n,2)) = n — 2 = x(SG(n, 2)) for everyn > 4.

While the lower bound part of Theorem 3 is topological, theahatg upper bound is obtained via
combinatorial methods. Both the upper and the lower eskimatork in a more general setting resulting
in similar results for generalized Mycielski graphs and ®dr graphs of certain parameters. We refer to
(14) for further details, as well as, for some topologicalgequences.

3 4-chromatic graphs and surface quadrangulations

Theorem 3 leaves open the question whether (large enclsghjomatic Schrijver graphs have local
chromatic numbeB or 4. In other words, Theorem 3 does not decide whether the sshalfeomatic
numbert for which at¢-chromatic Schrijver graph with smaller local than ordinahromatic number
exists is4 or 5. In (15) we have shown that this smallest numbé, igus the following holds.

Theorem 5 (15)
Y(SG(2k +2,k)) = 4.

This theorem is again true in a more general setting. In faetshow that all strongly topologically
4-chromatic graphs have local chromatic numberThe same implication does not holddf is only
topologically4-chromatic. For further details we refer to (15).

It is known that generalized Mycielski graphs of chromationber4 quadrangulate the projective
plane. It turns out that-chromatic Schrijver graphs are closely related to quaglrktions of the Klein
bottle. The chromatic number of surface quadrangulatisres widely investigated topic, see (1; 11;
19), and the above mentioned connections suggest thatggnaforheorem 5 may be true for certain
quadrangulations of non-orientable surfaces. Indeed¢canshow that non-bipartite quadrangulations of
the projective plane have local chromatic numbegeneralizing a celebrated result of Youngs (19) stating
that such graphs are neverchromatic. In (16) we use the technique of non-commutdtieal tensions
(cf. (3)) to prove that certain quadrangulations of the Klebttle that are shown to bechromatic in (1)
and (11) have local chromatic numberSurprisingly, however, quadrangulations of other noe+table
surfaces exist that are 4-chromatic by the same resultdbintibcal chromatic number is 3. For further
details we refer the reader to (16).
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