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Abstract

The (A, D) duality pairs play a crucial role in the theory of general relational struc-
tures and in Constraint Satisfaction Problems. The case where both idasta
is fully characterized. The case where both sides are infinite seems tojtmowe
plex. Itis also known that no finite-infinite duality pair is possible if we make the
additional restriction that both classes are antichains. In this paper (vehibb
first one of a series) we start the detailed study of the infinite-finite case.

Here we concentrate on directed graphs. We prove some elementaeytg®p
of the infinite-finite duality pairs, including lower and upper bounds on the size
of D, and show that the elements df must be equivalent to forests i is an
antichain. Then we construct instructive examples, where the elementsacd
paths or trees. Note that the existence of infinite-finite antichain dualities etas n
previously known.
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Constraint Satisfaction Problem; regular languages; nondeterministic finite
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1. Introduction

In this paper we considatirected graphshomomorphisméetween them, and
especiallyduality pairs We start with the definitions.

A directed graplt is a pair(V, E) with V' = V(G) the set of vertices anfl =
E(G) C V2 the set of (directed) edges. Unless stated otherwise “graph” refers to
finite directed graphs in this paper. Forgetting about the orientation of eseshe
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gets theunderlying undirected graphFor simplicity we drop the term “oriented”
when referring to (oriented)aths (oriented)treesand (orientedjorests these are
(directed) graphs whose underlying undirected graphs are path, tespectively
forests in the traditional sense. In particular, paths, trees and fosstb loops

and no pair of vertices is connected in both directions. Similarly, when wecall
graphconnectedrefer to theconnected components the girth of a graph or to
acyclein a graph we mean the corresponding notion in the underlying undirected
graph.

A homomorphisny between graph& and H is a mapf : V(G) — V(H)
satisfying that for every edger, y) € E(G) we have(f(x), f(y)) € E(H). We
write f : G — H to express thaf is a homomorphism frontr to H and we write
G — H to express that such a homomorphism exists. This is clearly a transitive
and reflexive relation. We writ€' -~ H if no homomorphism frontz to H exists
and call a family of graphs aantichainif no homomorphism exists between any
two distinct members.

If both G — H and H — G hold for a pair of graphs we say and H are
equivalent This is clearly an equivalence relation. In any equivalence class the
graph with the fewest vertices is unique up to isomorphism. We call suclph gra
a core and also thecore ofany graph in its equivalence class. It is easy to see
that a graphz is a core if and only if every homomorphisih: G — G is an
isomorphism.

We say a graplz is minimal in a family A of graphs ifG € A and any
graphH € A satisfyingH — G is equivalent taG. We define the dual notion
of maximalin a family of graphs similarly, but with the homomorphism condition
reversed. Note that there are two-way infinite chains of graphs, siténfiasses
do not always have minimal or maximal elements.

A duality pair is a pair(.A, D) of families of graphs satisfying that for every
graphG we have eitheld — G for someA € A or G — D for someD € D
but not both. If(4,D) is a duality pair we callD a dual of .A. Note, however,
that this relation is not symmetric. Duality pairs were first introduced in [6] and
investigated in detail in [7] for the special case whé = 1.

Clearly, each graph inl andD in a duality pair(.A, D) can be replaced with
its core to obtain another duality pdid’, D’) so we can (and often will) assume
that both sides of a duality pair consist of cores. Furthet if> A’ with A # A’
andA, A" € Awe can remove!’ from A without ruining the duality pair property.
This way, if A is finite we can replace it with the antichaid’ of its minimal
elements and the resulting pdid’, D) is still a duality pair. Similarly, ifD is
finite we can replace it with the s&’ of its maximal elements to obtain a duality
pair (A, D) with D’ being an antichain. Note, however, that such transformation
is not possible in general for infinite families.

It is a trivial observation that any famil has a dual seD, simply takeD =
{G |2A € A: A — G}. For any familyD of graphs one can similarly set
A ={G |AD € D : G — D} making (A, D) a duality pair. Because of this
abundance it is not reasonable to hope for a meaningful charactemizstiall
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duality pairs. But characterization of restricted classes of duality pairs been
done successfully already.

Theorem 1.1 ([7]). Each treeT has a well-defined, unique (up to equivalence)
graph D(T') making({T'},{D(T)}) a duality pair. In all singleton duality pairs
({A},{D}) the graphA is equivalent to a tree.

Theorem 1.2 ([5]). For any given finite family4 of forests there exists a unique
(up to the equivalence) antichain duBi(.4) and it is finite. For any duality pair
(A, D) with both .4 and D finite antichains all graphsA € A are equivalent to
forests.

We saw above that having antichains as the members of duality pairs can be
considered as a relaxation of the finiteness condition. Having charactdtie
duality pairs with both sides finite it is natural to consider this relaxation. We star
with quoting a result showing that there are probably too many infinite-infinite
antichain duality pairs for a meaningful characterization.

Theorem 1.3 ([1]). Each finite antichain4 of graphs that is not maximal can be
extended

(i) to a duality pair (B,C) such thatA C B and bothB8 and C are infinite
antichains;

(i) to a maximal infinite antichain, which is not a union of the sides of any duality
pair.

This naturally leads to the question of finding or characterizing antichailitydua
pairs with one side finite while the other is an infinite antichain.dSrand Soukup
[2] proved that no finite-infinite antichain duality pair exists and asked if iiigfin
finite ones do.

Theorem 1.4 ([2]). There exists no duality paif.4, D) with A finite andD an
infinite antichain.

In this paper we answer the question of &dnd Soukup by giving several
examples of infinite-finite antichain duality pairs and also study what families can
appear in the left side of such a duality pair. The final answer (a clesization
of such families) will follow from the upcoming paper [4] that studies the faob
in the more general context of relational structures.

In Section 2 we limit the complexity of any graph appearing in an antichain
with a finite dual: it must be equivalent to a forest. For finite antichains this is
implied by Theorem 1.2. We also show that such a family has to have bounded
maximum degree and bounded number of components.

When the forests in a duality pair have only one component and maximum
degree two we deal with families of paths. In Section 3 we exhibit specifidtafin
antichains of paths, some with, and some without a finite dual.
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In Section 4 we give a simple transformation turning the duality pairs in Sec-
tion 3 into ones with non-path trees on the left side. However, these treasilar
close to paths. We also give examples of infinite-singleton duality pairs vitwere
left side consists of more complex trees constructed from arbitrary bireeg.

One of these examples has an antichain on the left side. In another exadmple o
an infinite-finite antichain duality pair the left side consists of forests withra¢ve
components.

2. Why forests?

In this section we prove that all graphs in the left side of an infinite-finite aiic
duality pair must be equivalent to forests. This is an extension of thespmneling
result for finite antichains in Theorem 1.2.

Theorem 2.1. Let (A, D) be a duality pair, whereD is finite and.A consists of
cores. Then for each grapA € A that is not a forest there exists another graph
B e AwithB — AbutA 4 B.

This result can be proved from the Directed Sparse Incomparability Lerseea,
[1, 2]. We present a self contained proof instead.

Proof. Let A € A be a graph that is not a forest. Let,y) be an edge ofA
contained in a cycl&€’. Let A’ be the graph obtained from by removing this
edge, adding a new vertex and the edgéz’, y). Notice that the map moving'
to x and fixing all other vertices is at’ — A homomorphism.

Let X be an arbitrary tournament with more vertices than any of the (finitely
many) graphs irD. Let us consider the vertex s&t X ) (no edges yet) and dis-
joint copiesA!, of A’ for every edg€u,v) € E(X). We obtain the grapl” by
identifying the copy ofr in A/, with v and the copy of:’ in A, with v for all
(u,v) € B(X).

Note that the natural/ — A homomorphism can be applied to each copy
Al of A" as all the identified vertices are mappeditoThis gives us a natural
homomorphisny : Y — A.

As (A, D) is a duality pair we either have a graghe A with B — Y or a
graphD € D with Y — D. In the latter case we hay&' (X)| > |V(D)|, so by
the pigeonhole principle we must hayéu) = f(v) for an edgg(u,v) € E(X).
But this means thaf restricted toA/,, is an A — D homomorphism, a clear
contradiction. This leaves the former possibility only. We show fhat A with
B — Y satisfies the statement of the theorem.

Indeed we havéd3 — Y — A. We will showA 4 Y and this impliesd 4~ B.
In the degenerate case wharconsists of a single loop edge /4 Y holds, since
Y is a tournament in this case. So we may assutrig not a loop and as it is a
core it does not even contain a loop. In particuta y andC' has length at least
2. Assume for a contradiction that a homomorphitmA — Y exists. AsA is a
core the homomorphisrfio g : A — A must be an automorphism. Modifying
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appropriately, one can assume without loss of generalityfthatis the identity, so
f(z) € g~1(z) for each vertex € V(A). We must havef (z) € g~ (z) = V(X)
andf(z) ¢ V(X) for any other vertex of A. The vertices of the cyclé' exceptr
itself must be mapped in a single connected componeYit\of (X ), in particular,
in a single copy!,,, of A’. The imagef(y) of y must be the copy af in A, soto
have(f(x), f(y)) € E(Y) we must havef(x) = v. This forces the image of the
other edge incident t@ in the cycleC outsideE(Y'). The contradiction finishes

the proof of the theorem. O

Note that this theorem implies that if we have antichains in an infinite-finite du-
ality pair of cores, then the left side contains forests only. Furthermoneething
can be said without restricting attention to antichains. (L&tD) be an infinite-
finite duality pair of cores. We can remove frashall the graphs which are not
forests but are “dominated” by one: the graphs A for which a forestB € A
exists withB — A, but A itself is not an forest. Clearly, the set of graphs to which
a homomorphism exists from a member of the remaining famtilglid not change,
so(A’, D) is still a duality pair. This duality pair may still contain a graghe A’
that is not a forest, but such a graph must hafaitely manydistinct graphs
B € A" with B — A. Indeed, ifA has only finitely many such dominatirg}, then
any minimal graph in this finite set would violate the preceding theorem. From the
Directed Sparse Incomparability Lemma one can also show that if a grapbhl’
is imbalancedcontaining a cycle with an unequal number of forward and reverse
oriented edges), then the underlying undirected graphs of the gifaghsl’ have
unbounded girth.

In the following lemma we state the connection between having connected
graphs on the left side of a duality pair and having a single graph on the righ
side. Recall that we call a graglonnectedf the underlying undirected graph is
connected and use the tenonnected componeint a similar way.

Lemma2.2. Let(.A, D) be an antichain duality pair wittd consisting of cores. If
agraphA € A hask connected components we hai > k. But if all graphs in
A are connected, thefD| = 1.

Proof. Take a grapd € A. Let Ay, ..., Ax be the graphs obtained frow by
removing a single one of its components. For any < i < k we haveA /4 A;
(sinceA is a core) furthermore we havg — A, so asA is an antichain it contains
no graph that has a homomorphism4p As (A, D) is a duality pair eachl; has a
graphD; € Dwith A; — D;. If we haveD; = D, forsomel <i < j < kwe can
construct amM — D; homomorphism by extending thé; — D; homomorphism
to the missing component using the corresponding restriction ofithe- D;
homomorphism. Since we must haste/4 D for D € D all graphsD; are distinct
and thugD| > k as claimed.

Now assume that everyl € A is connected but still we have two graphs
D1 # Dy inD. AsD is an antichain the disjoint uniob of D, and D, does not
have a homomorphism to any memberaf By the duality pair property we must



have a grapd € A such thatA — D. As A is connected this homomorphism
mapsA either toD; or to D», giving A — D7 or A — D,, a contradiction. [

An immediate corollary of this lemma is that if an antichain has a finite dual its
members have a bounded number of components. For this we do not ndeldl the
strength of the antichain condition, it is enough to assume that we do noiahave
homomorphism between two graphs.étthat avoids an entire connected compo-
nent of the target graph. While replacing the left hand side of a dualityyiran
equivalent antichain is not always possible, it is easy to see that repldareft
hand side of a duality pair with an equivalent family satisfying this constraint is
always possible. If the right side is finite, then after this transformationridyehg
in the left side have a bounded number of components.

We end this section by showing that the maximum degree is also bounded in
an antichain of core graphs that has a finite dual.

Lemma 2.3. Let (A, D) be a duality pair with4 an antichain consisting of cores
and D finite. Any vertex of any grapA € A has total degreéthis is the sum of
the in-degree and out-degreat mostdy = >, p [V (D).

Proof. Let A € A andv € V(A) and suppose the total degréef v is larger
thandy. By Theorem 2.14 is a forest, sa cuts its component ol into d parts.
Let us form the subgraphdi, ..., A; of A by removing a single one of these
parts fromA. That is, eachd; is obtained fromA by removing an edge from

A that connect® to another vertexv (with either orientation) and also removing
the connected component offrom the resulting graph. Asgl is an antichain of
cores no member ofl has a homomorphism to any of these subgraphso by
the duality pair property, there must be homomorphiginsA; — D, from A; to
certain graph®); € D. Fromd > dy we must have < i < j < d with D; = D;
andf;(v) = f;(v). We construct anl — D; homomorphism by extending with
the restriction off; to the part ofA missing fromA;. The contradiction finishes
the proof. O

3. Antichains of paths

In this section we give concrete examples of infinite antichains of paths with or
without a finite dual. As paths are connected, Lemma 2.2 tells us that whengdookin
for a finite dual it is always enough to consider duals consisting of a sgrgfeh.

To speak of (oriented) paths we use the natural correspondencedretiaem
and words over the binary alphalet, —}. We use standard notation with respect
to these words, namely a word is a membef of —}* = Up>o{+, —}*, where
{+, —1* is the set of lengttk sequences from the alphabet. koy € {+, —}*
andk > 0 we write zy for the concatenation of andy andz* for the word
obtained by concatenatirigcopies ofz.

The correspondence is given by the mamapping{+, —}* to paths. For a
wordz = x1...2; € {+,—}* let p(x) stand for the path consisting éfedges
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with thei’th edge oriented forward if; = + and backward otherwise. A bit infor-
mally we will refer to the first and last vertices pfz) in their obvious meaning,
although formally the end vertices of the patlr) cannot be distinguished without
knowingz. We say that a homomorphisfn: p(z) — G mapsp(x) fromwu to v if

the image of the first vertex @f(x) isu € V(G) and the image of the last vertex is

v € V(G). Note that although all (isomorphism classes of) paths will be obtained
as images in this map the correspondence is not onegamaps up to two distinct
words to isomorphic paths (with the role of the first and last vertices reggrior
examplep(+ + —) andp(+ — —) are isomorphic.

3.1. Antichains without a finite dual

The following observation is trivial: Take any infinite antichain of paths (as w
will see such antichains are easy to find). The cardinality of the set oftitetsiis
continuum, and no two can have the same set for dual. Thus many haveteo fin
dual, as the set of finite families of graphs is countable. This cardinalityraagti
gives no explicit family without a finite dual. Here we set out to construchsu
set.

Lemma 3.1. LetG be a graph withV(G)| < k and assume that for somec
{+, —}* we havep(z*) — G. Then for eaclf > 0 we also have(z’) — G.

Proof. There is nothing to prove if is the empty string. Otherwise, by considering
the homomorphism(z*) — G, one can find verticesy, . . . , v in G such that for
eachl < i < k asuitable restriction of the homomorphism mafs) fromv;_; to

v;. By the pigeonhole principle we fing = v; for some0 < < j < k. Thus, we
can map thep(z7~*) to G with both endpoints mapping to the same vertex. This
closed walk can take the homomorphic image(@f) for any?. O

Example 3.2. Let Qx = p((+(+—)¥)* + +) and consider any infinite family
A C{Qx | k> 1}. ThenA is an antichain of paths and has no finite dual.

Proof. To see thatA4 is an antichain observe that theightof a path defined as
the maximal difference between the number of forward edges and the nafbe
backward edges in a sub-path cannot be decreased by a homomorpEghe
height of Qy is k + 2 we haveQ;, 4 Q, for £ < k. Butp(+(+—)¥ + +) is a
sub-path of);, and even this sub-path does not magxofor ¢ > k. A similar
argument also shows that @i, are cores: as deleting either the first or the last
edge of(Q;, decreases its height any homomorphi@mn — @ must be onto and
thus an isomorphism.

Assume(A, D) is a duality pair. Let), € .Aand conside®), = p((+(+-)*)k).
Clearly, @, — Qr, so we have), 4 Q). for ¢ # k by the antichain property
andQy 4 Q) sinceQy is a core. So we must hav®@ € D with Q) — D.

We claim that|V(D)| > k. Indeed, otherwise by Lemma 3.1 we hayg —
p((+(+—)")F*1) — D, a contradiction. AsA is infinite k£ could be chosen ar-
bitrarily large, soD must have arbitrarily large graphs and, thus, cannot be finite.
O



3.2. Infinite antichains of paths with a finite dual

Our first infinite-finite antichain duality pair, the = 3 case of the next ex-
ample, is the smallest possible such example in the sense that the dual is a single
graph on four vertices, while no graph or family of graphs on fewetices is a
dual of an infinite antichain.

Example 3.3. Let P = p(+°(—+°*"1)*+) for s > 1, k > 0 and letDs be the
graph obtained from the transitive tournamentonl vertices by deleting the edge
connecting the source and the sink. TH¢®; | £ > 0}, {D,}) is an antichain
duality pair of cores fors > 3.

Proof. To see that the infinite side is an antichain of cores we partfjpimto k2
parts, the first being the directed paih+*), the nextk parts beingp(—+°51), the
last part being a single edge. In aRy — P; homomorphism the first part af;
must not map to last edges ofP; because that would make the mapping of the
next part impossible. So it must be mapped identically to the first pafy cind
then the nexk parts of P} must also map identically to the nexparts of 7. This
only works if¢ > k. Butif £ > k the last edge of’; cannot be mapped anywhere.
So we must havé = ¢ and the homomorphism must be the identity.

To see thatD; is also a core it is enough to note that it is acyclic and has a
directed Hamiltonian path. Let us denote the vertices along this patf by. , vs.

We showP; /4 D, similarly to the antichain property. Indeed, the first part
of P} (forming a directed path) has a single homomorphisnbtoending atv,.
Each of the nexk parts must map to the pathv,vs - - - vs. But asv, is a sink, this
homomorphism cannot be extended to the last eddg&’ of

Let G be an arbitrary graph. By the statement in the last paragraph we cannot
haveP; — G — D, foranyk > 0. So it remains to prove that eith&}, — G for
somek > 0 or we haveG — D,

We call a vertexw € V(G) typei for 0 < i < s if it is the image under a
homomorphism of the last vertex of a pattw-(+5~1—)*+%) for somek > 0.
Note that fori > 1 a typei vertex is the image of the last vertex of the path-*)
so itis also a type — 1 vertex.

If there is a types vertex inG we clearly haveP; — G for somek > 0 and
we are done.

If there is no types vertex inG we definep : V(G) — V(D;) by setting
d(v) = v if vis nottype 0 and foi < i < s settinggp(v) = v; if v is not typei
butv is typei — 1.

We claim thatp is aG — D, homomorphism.

Let (u,v) be an edge ofz. This makesv the endpoint of an edge, so it is
type 0. Moreover, ifu is typei, then the pathp(+(+5~'—)*+?) mapping toG
and ending at. can be extended by the, v) edge, making a typei + 1 vertex.
Thus if ¢(u) = v; and¢(v) = vy we must havg < j'. It remains to prove that
¢(u) = vo ando(v) = vy is impossible. Indeedp(v) = v, impliesw is type
s—1, soitis the image of the last vertex of a path-(+°~'—)¥+*~1). Extending



this with the (u, v) edge we get that is the image of the last vertex of the path
p(4(+*~1=)k*1) makingu a type 0 vertex. This finishes the proof. O

3.3. Regularity

From the two examples considered so far one can notice the relevarag of r
ular languages. Indeed, while the family of worgs®(—+°"1)*+ | k > 0} is
a regular language for any the family {+(+—)¥)* + + | k > 1} or any of its
infinite subfamilies are not regular. This connection was the basis of aamup
ing paper [3] that establishes regularity as a necessary and sufficiedition for
having a finite dual in this case. We state the following easy observatiordiega
regularity to further motivate this connection.

Lemma 3.4. LetG be an arbitrary graph. The stz € {+, —}* | p(z) — G} is
a regular language.

Proof. We turn the grapld- into a nondeterministic finite automaton. The states of
the automaton are the vertices@fand each state is an initial and also a terminal
state. For each edde, v) of G we make the transition fromto v possible for the
letter+ and the transition from to u possible for the letter. It is straightforward

to see that this automaton accepts the language in the lemma. O

4. Antichainsof trees

In this section we give infinite-finite antichain duality pairs where the infinite side
has trees that are not paths. The following lemma is instructive for this.

Lemma4.l. Let(A, D) be a duality pair. Let us modify each € .4 by enriching

it with new vertices and edges: from each sinkdfve start a new edge to a
separate new vertex . Let’ be the family of these modified graphs. Let us modify
each graphD € D by adding a single new vertex and edges to this vertex from
every vertex ofD. LetD’ be the family of these modified graphs. Thietl, D’)

is a duality pair. If A is an antichain so is4’, if D is an antichain, so i,
furthermore if. A andD consist of cores so dd’ andD’.

Proof. Let A’ € A’ be the modification oft € A andD’ € D’ be the modification
of D € D. If we have a homomorphisnfi : A’ — D’, then its restriction tod
must map taD as the single vertex dd’ \ D is a sink inD’, but no vertex of4 is
a sink inA’. But the existence of ad — D homomorphism contradicts the fact
that(.A, D) is a duality pair.

Let G’ be an arbitrary graph. We cannot hate— G’ — D’ forsomed’ € A’
andD’ € D’ by the previous paragraph. It remains to show tat> G’ for some
A e A orG’ — D' for someD’ € D'.

Let G be the subgraph @’ induced by the non-sink vertices. Agl, D) is a
duality pair we either havd — G for someA € A or G — D for someD € D.
In the former case we can extend the homomorphism G to a homomorphism



A" — @, whered’ € A’ is the modified version ofl. In the latter case we can
extend the homomorphistd — D to a homomorphisn&’ — D', whereD’ € D’

is the modified version ab, by sending all vertices af’ \ G to the single vertex
in D"\ D.

To see that the antichain and core properties are inherited to the modified sets
consider two graphX andY from the same family4 or D and their modifications
X’ andY’. Restricting a homomorphisti’ — Y’ to X we get a homomorphism
X — Y. Indeed, all vertices iy’ \ Y are sinks and no vertex i is sink in
X'. So if the family was antichain, thel = Y and so the modified family is also
an antichain. IfX = Y is a core, then th&( — Y homomorphism must be an
isomorphism and it is easy to see that the origiial— Y’ homomorphism must
also be an isomorphism. a

Applying this lemma (possibly several times) to our earlier examples of infinite-
finite antichain duality pairs we get several new such examples. Although the
graphs on the left side of these pairs are no longer paths, they are stilinglar

to paths in structure.

The examples in the next lemma show better the complexity that families with a
finite dual can exhibit.

Let us consider the famil§y of all finite rooted (undirected) binary trees sat-
isfying that each vertex is either a leaf (it has no children) or it has tworehilca
left child and a right child. Although these are “trees” of some kind, theynat
in the category of finite directed graphs we study here and we will not dpply
momorphisms to these binary trees. To emphasize the difference we dersgte the
binary trees by lower case letters as opposed to using capitals for digraigis.
Note that the smallest memberff has a single vertex.

Let z,y,s,z € {+,—}" be words. We define the family of oriented trees
T(x,y, s,z) = {t(z,y,s,2) | t € Tp}, wheret(z,y,s,z) is an oriented tree
obtained fromt by

(A) replacing each edge connecting a veriebo its left childv by a copy ofp(x)
from w to v,

(B) replacing each edge connecting a verteto its right childw by a copy of
p(y) fromu to w,

(C) adding a path(s) from each leaf vertex afand

(D) adding a path(z) from the root oft.

Let G; andG+ be the graphs depicted on Figures 1 and 2, furthermore let
Ti=T(+—,—+,——,++) and b =T(+—-—,—+—,——,+++).

Theorem 4.2. (i) (71,{G1}) is a duality pair of core graphs.
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Figure 2: The grapld7s.

(i) (73,{G2}) is an antichain duality pair of core graphs.

Proof. We leave the simple proofs that all involved graphs are cores and that
75 is an antichain to the diligent reader. Note tlatis not an antichain: if
t € Ty andt’ is subtree oft containing the root, then(+—, —+, ——, ++) —
t'(+—,—+,——,++). As aresult (once (i) is proved) one also has tHat(+—,
—+,——,++) | kK > 100}, {G1}) is a duality pair ift;, € Tj is the depthk full
binary tree with2* leaves.

Assume for a contradiction thgt : ¢(+—, —+, ——,++) — G1. We claim
that all vertices oft must map to the vertices or r. This is certainly true for
the leaves because of the attached paths—) could not map ta&; otherwise.
Working with a bottom up induction assume that both the left and the right childre
of the vertexu map toa or r. In this case the paths fromto its children must be
mapped ta7; from f(u) to eithera or r. Then we must havé(u) = a as from no
other vertex ofG; is there both a path(+—) and a pattp(—+) to eithera or r.
So the root vertex must also be mapped tur  and the contradiction comes from
there being no place i for the pathp(++) attached to the root.

For (i) it is left to prove that for any grapX we either haved — X for an
A € T, or we haveX — G;. For this we define the “levelL; C V(X) to
consist of the vertices ok with a homomorphisnP; — X ending atu but no
homomorphismP;,; — X ending atu. Here P, = p(+?) is the directed path of
i edges and the levels), L1, Ly and L3 partitionV (z) or we haveP; — X and
we are done sincey € 7;.
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We construct the map : V(X) — V(G)) as follows:

(1) Setp(u) = a for any vertexu € L, that has & € T, and a homomorphism
f:t(+—,—+,——, ) — X mapping the root of to a. Heree stands for the
empty word.

(2) Seto(u) = bforany vertexu € Ly not yet mapped te that either has an edge
(u,v) to a vertexv € L3 or two edgesu, v) and(w, v) with w € L; already
mapped taz.

(3) Setp(u) = ¢ for the remaining vertices € L.

(4) Setp(u

)
(u) = z if u € Ly and there exists an edge, v) with ¢(v) = b.
(5) Setp(u) = y for the remaining vertices € Ly.
(u)

(6) Setp(u) = aif u € Ly and there is n@ € Ly with ¢(u) = a and(v,u) an
edge.

(7) Setp(u) = r for all remaining vertices iV (X).

If ¢ is a homomorphisnX — G we are done. Otherwise one of the steps above
made an edge iX map outsideX.

Steps 1-3 map the independent 5etso they caused no problem. Step 4 can
create a problem if a vertex € Ly has edgesu, v) and (u, w) with v,w € Ly,
¢(v) = band¢(w) = a. Butin this case the homomorphisms triggeritl@) = b
and¢(w) = ain steps 2 and 1 can be combined (together withithe path) with
a homomorphism triggering(v) = a in the first step, a contradiction.

Step 5 cannot cause trouble as bajha) and(y, ¢) are edges ;.

Steps 6 or 7 cause trouble if there is a vertex Lo U L with (v, u) an edge
from a vertexv € Lo with ¢(v) = x. But then there is a vertex € L; with (v, w)
an edge ané(w) = b. Here again, the homomorphismgf+ + —+) to X ending
in the verticesuvw can be combined to the homomorphism triggeriig) = b
to obtain a homomorphism triggeringw) = a, a contradiction.

Finally in step 7 we can map both ends of(@anv) edge tor. This happens if
there exists an eddev, u) from a vertexw € L, with ¢(w) = a. This may indeed
happen, but then the homomorphism triggerifiay) = a can be combined to the
directed pathvuv to getA — X for a treeA € 7;. This finishes the proof of part
().

(ii) The proof of this part is only slightly more complicated.

Assume for a contradiction thét: t(+ — —, — + —, ——,+ + +) — Ga. We
claim that all vertices of must map to the verticas, » or s. This can be shown
exactly like the corresponding statement in part (i). So the root vertexafagsbe
mapped ta: or  and the contradiction comes from there being no plac&sitior
the pathp(+ + +) attached to the root.
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Finally we assumg& is graph with nad — X homomorphism for anyl € 7.
We construct the homomorphisin: X — G5 similarly to part (i). We partition
V(X) into levelsL; as we did above. A®; € 7, does not map to, V(X) is
partitioned into the setBq, L1, Lo, Lz and Ly.

(1) Setp(u) = a for any vertexu € L, that has & € T, and a homomorphism
fit(+—-—,—+—,——,¢) — X mapping the root of to a.

(2) Setp(u) = b for any vertexu € L; not yet mapped ta that has either a
homomorphism mapping(+ — — — —) to G from « or a homomorphism of
p(+ — —) to G2 fromu to a vertexv € Ly with ¢(v) = a.

(3) Setp(u) = cfor the remaining vertices € L.

(4) Setp(u) = x if u € Lo and there exists an edge, v) with ¢(u) = b.

(u)
(u)

(5) Setp(u) = y for the remaining vertices € Ly.
(u)

(6) Setp(u) = aif u € Ly and there is n@ € Ly with ¢(u) = a and(v,u) an
edge.

(7) Setp(u) = r for all remaining vertices € Lo.

(8) Also setp(u) = r for verticesu € L3 with no edge(v,u) from a vertex
v € Lo with gb(v) =T.

(9) Setp(u) = s for all remaining vertices € V (X).

The proof that is indeed a homomorphism is almost identical to the correspond-
ing argument in part (i). a

We finish the paper with a simple observation that shows how to combine duality
pairs to obtain new pairs with several graphs on the right side. For simplieity w
restrict attention to combining two duality pairs with single graphs on the right
hand side that are incomparable.

In the following proposition and examplé; U As denotes the disjoint union
of the graphs4; and As.

Proposition 4.3. Let (A;,D;) and (A, D) be duality pairs and let us partition
A; intoA; = {A e A; ‘ dB € ./4371 :B— A} andAg’ =A; \.A; fori = 1,2.

() (A, D) is a duality pair, whereD = Dy |JD; and A = {A; U Ay | A; €
A, Ag € AQ}.

(i) (A’,D) is also a duality pair, whered’ = A} |JALU{41 U Ay | A1 €
" "
1,A2 S A2}.
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(i) If each.A; is an antichain andD,| = |D;| = 1, then A’ can be made an
antichain by removing possible duplicates: leaving one member only from
each equivalent pair of graphs froph; and A,.

Proof. For (i) it is enough to note that; U A, — Bifand only if A; — B and
Ay — B.

For (ii) take Ay € A} and a graptd; € A; with A; — As. As A3 U Ay is
equivalent toA; we can putAs into the left side of the duality paitA, D). But
then all graphsd| U A can be removed from there als maps to these graphs.
Doing this for all As € A/, and similar changes for the graphs.4} one obtains
A" and (ii) is proved.

To prove (iii) takeA € A’ and consider the set5(A) = {B € A; | B — A}
fori = 1,2. For a graph4d = A; U Ay with 4; € A, Ay € A we have
S1(A) = {A;} and S2(A) = {A2} since the graphs i, | J A are connected
(Lemma 2.2), thus they map tif and only if they map ta4; or A;. ForA € A
andi = 1 or 2 we haveS;(A) = {A}. SinceA — A’ impliesS;(A) C S;(A’) for
A, A" € A andi = 1,2 the only possibility of such a map with # A’ is A € A
andA’ € A;_,. FromA € A} we haveA” € Az_; with A” — A — A’. As A3_;
is an antichain we must hav&’ = A and thusA and A’ are equivalent. O

We can apply this lemma to combine any two of the several examples of
infinite-finite duality pairs in this paper or even one such example with a sim-
ple duality with a single tree on the left hand side. We chose the duality pairs
({P}!| k > 0},{D4}) from Example 3.3 an@7;, {G>}) from Theorem 4.2. Note
that P§ is the directed path with five edges and it appear&ibut no homomor-
phism exist from a member @ to someP,j with £ > 1 or vice versa. Thus from
Lemma 4.3 we get the following

Example 4.4. The following is an antichain duality pair of core graphs:

{PYU{PMUA | k>1,A€ T\ {PY),{Ds,Go}).
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