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Abstract

Let T be a tiling of the plane with equilateral triangles no
two of which share a side. We prove that if the side lengths of
the triangles are bounded from below by a positive constant, then
T is periodic and it consists of translates of only at most three
different triangles. As a corollary, we prove a theorem of Scherer
and answer a question of Nandakumar. The same result has been
obtained independently by Richter and Wirth.

1 Introduction
A collection of compact convex sets with nonempty interiors is said to
tile a region R if no two of them share an interior point and their union is
equal to R.
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In 1934, during his first visit to Trinity College, Cambridge, P. Erdős
[19] raised the following question: Is it possible to tile a unit square with
finitely many smaller squares, no two of which are congruent? It has
taken a few years before four promising students at Trinity College, R.
L. Brooks, C. A. B. Smith, A. H. Stone, and W. T. Tutte [4], all of whom
became prominent mathematicians, managed to answer Erdős’s question
in the affirmative. They discovered and explored an intimate relationship
between tilings and flows in networks, and constructed several tilings
with the required properties. In any such tiling T of a unit square S,
there is a unique smallest square. This square cannot share a side with
the boundary of S, otherwise one of its neighbors would be congruent to
it. Scaling up T so that the side length of its smallest square becomes
1, and tiling this unit square with a congruent copy of T , we obtain a
tiling T ′ ⊃ T of a larger square with pairwise noncongruent squares.
Repeating this procedure infinitely many times, we obtain the following.

Corollary. The plane can be tiled by infinitely many pairwise noncon-
gruent squares whose side lengths are bounded from below by a positive
constant.

Tutte [20] extended the technique developed in [4] to tilings of an
equilateral triangle with equilateral triangles. In particular, he proved
that no such tiling exists with pairwise noncongruent triangles. However,
this does not answer the corresponding question for tilings of the entire
plane, which was raised by R. Nandakumar [13] (June 14, 2016).

Problem 1. (Nandakumar) Is it possible to tile the plane with pairwise
noncongruent equilateral triangles whose side lengths are bounded from
below by a positive constant?

In fact, we do not even know whether there exists a tiling of the plane
with pairwise noncongruent equilateral triangles if we replace the condi-
tion that they cannot be arbitrarily small by the weaker assumption that
the tiling is locally finite, that is, every bounded region intersects only
finitely many triangles. Without assuming local finiteness, it is easy to
find a tiling of the “punctured” plane and with a little more work of the
whole plane; see [16].

Proposition 2. (Klaassen [9]) There exists a tiling of the plane minus a
single point with equilateral triangles of pairwise distinct sizes.
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Proof: Let α be the only real root of the polynomial x3 + x2− 1. Let P
and A be distinct points in the Euclidean plane. Let φ be the similarity
transformation of the plane that has P as its fixed point, rotates the plane
with angle π/3 and shrinks the distances with factor α . Let T0 be the
equilateral triangle with vertices A, φ(A) and a third vertex in the half
plane bounded by the line Aφ(A) and containing P.

The equilateral triangles Ti = φ i(T0), where i ranges over all inte-
gers, form a tiling of the plane minus the point P, and the sizes of these
triangles are pairwise distinct. �

Figure 1: Illustration to Theorem 3.

The aim of this note is to answer Nandakumar’s above mentioned
question (Problem 1).

Theorem 3. Let T be a tiling of the plane with equilateral triangles
such that the side lengths of the triangles are bounded from below by a
positive constant and no two triangles share a side. Then the triangles
in T have at most three different side lengths, a, b and c with a = b+ c
(where c may be equal to b), and the tiling is periodic.
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Corollary 4. There is no tiling of the plane with pairwise noncongruent
equilateral triangles whose side lengths are bounded from below by a
positive constant.

The weaker statement that there is no tiling satisfying the condi-
tions of Corollary 4, in which there is a smallest triangle, was proved
by Scherer [18].

Nandakumar [12, 13], who teaches undergraduates at a local college
in Cochin, India, raised several other interesting questions about tilings.
They have triggered a lot of research in geometry and topology; see [1,
2, 5, 8, 10, 11, 14].

After completing our note, it has come to our attention that Theorem
3 has also been proved independently and probably slightly earlier by
Richter and Wirth [17]. Their proof is somewhat different from ours, but
in the last step we both use martingales. We are grateful to Richter and
Wirth to their helpful remarks on our manuscript.

2 Proof of Theorem 3
Let us fix tiling T satisfying the requirements of Theorem 3. We will
prove the statement of the theorem through a sequence of lemmas about
T . First, we agree about the terminology.

We call an edge of a triangle T ∈T subdivided if some interior point
of this edge is a vertex of another triangle T ′ ∈T . Otherwise, it is called
uncut. Note that a vertex in the tiling is the interior point of at most one
edge and in that case it is the vertex of exactly three triangles.

We say that the edge AB of a triangle continues at A if A is the inte-
rior point of an edge e of another triangle of our tiling and e also contains
some interior points of the edge AB. Clearly, at most one of the two
edges of a triangle meeting at a vertex can continue there. By our as-
sumptions, the same segment cannot be the edge of two triangles in the
tiling. Therefore, every uncut edge must continue at least at one of its
endpoints.

We will use the following simple observation several times.

Lemma 5. If an edge AB is subdivided and does not continue at A, then
there is a unique triangle ADE in the tiling such that D is an interior
point of AB. The edge AD is uncut. �
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We call a triangle of the tiling small if all three of its sides are uncut.
We call it large if all three sides are subdivided. We call it improper if it
has an uncut side and also a side that does not continue in either direction.

C

A D D
′

B

uncut

E

F

Figure 2: Illustration to Lemma 6.

Lemma 6. For any improper triangle T ∈ T , there are two other trian-
gles, U,V ∈ T such that U is improper and the sum of the side lengths
of U and V does not exceed the side length of T .

Proof: let T = ABC and assume that the edge BC is uncut and AB does
not continue at either endpoint. As we noted, AB must be subdivided in
this case and, by Lemma 5, we can find distinct triangles ADE and D′BF
such that D and D′ are (not necessarily different) interior points of the
segment AB. See Figure 2. We clearly have AD+D′B≤ AB and we are
done, unless neither of these triangles is improper. Assume that they are
not improper. Their edges AD and D′B are uncut, so all their edges have
to continue in at least one direction. The edge AD continues at D, so DE
cannot continue there, so it must continue at E. Therefore, the edge AE
must continue at A. Similarly, FB must continue at B. As BC is uncut it
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must continue at one of its endpoints. As FB continues at B, the edge BC
cannot continue there, so it must continue at C. The edge AC does not
continue in either direction, since AE continues at A and BC continues at
C.

As in the previous paragraph, we can find the triangles AGH and G′CI
in the tiling with G,G′ interior points of the segment AC and we are done,
unless neither of them is improper. But, as we have seen earlier, in this
case IC would continue at C, contradicting the fact BC continues there.
This contradiction completes the proof of the lemma. �

Lemma 7. There is no improper triangle in the tiling.

Proof: Suppose T0 is improper. By Lemma 6, for every i ≥ 1 we can
recursively find triangles Ti and Vi ∈ T such that Ti is improper and the
sum of the side lengths of Ti and Vi does not exceed the side length of
Ti−1. Since the sum of the side lengths of all triangles Vi is at most
the side length of T0, this sum must be convergent, contradicting our
assumption that the sizes of all triangles in T are separated from zero.
The contradiction proves the lemma. �

Lemma 8. If the edge AB of a triangle ABC in T continues at B, then
BC is uncut.

Proof: As AB continues at B, BC does not continue there, so if it is
subdivided, then we have a triangle BDE such that D is an interior point
of BC (Lemma 5). The edge BE does not continue at B (AB continues
there), and DE does not continue at D (BD continues there). At most one
of BE and DE can continue at E, so the triangle ADE must have at least
one edge that does not continue in either direction. It also has an uncut
edge, BD, so it is improper. The contradiction with Lemma 7 proves
Lemma 8. �

Lemma 9. Every triangle in T is either large or small. The sides of
the large triangles do not continue in either direction, and each of them
contains in its interior precisely one vertex.

Proof: Assume first that the triangle ABC has an edge that continues in
at least one direction, say AB continues at B. By Lemma 8, BC is uncut,
so it must also continue in one direction. It cannot continue at B, hence
it continues at C. By the same lemma, AC must be uncut and it must
continue at A. Finally, using Lemma 8 again, we obtain that AB is uncut
and, therefore, ABC is a small triangle.
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Assume next that none of the edges of ABC continues in either di-
rection. Then all edges must be subdivided and ABC is a large triangle.
It remains to prove that all three edges contain exactly one subdividing
vertex. Indeed, if AB contains more than one, then by an observation
similar to Lemma 5, we have a triangle DEF where both D and E are
interior vertices of the edge AB. In this case, DF and EF do not continue
at D and E, respectively, (DE continues at both vertices), and at most
one of DF and EF can continue at F . So, DEF has an edge that does
not continue in either direction. It also contains an uncut edge DE, so
it is improper. The contradiction with Lemma 7 completes the proof of
Lemma 9. �
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large large

large

large

largelarge
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smallsmall
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Figure 3: The combinatorial structure of T .

According to Lemma 9, the combinatorial structure of the triangula-
tion T is completely determined. A small part of the tiling is depicted
in Figure 3. Each vertex of the triangulation is the vertex of exactly one
large triangle and exactly two small triangles, and it is contained in ex-
actly one further triangle: it is an interior vertex of an edge of a large
triangle.
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The following observation is immediate, using the fact that no trian-
gles in the tiling are improper.

Lemma 10. Let T = ABC be a large triangle in the tiling and T1, T2
and T3 be the large triangles containing A, B and C, respectively, in the
interior of one of their edges. Then the side length of T is the average of
the side lengths of T1, T2 and T3. �

Proof of Theorem 3: Consider two large triangles T and T ′. We claim
that they must be congruent.

Assume for contradiction that the side length a of T is smaller than
the side length a′ of T ′. Start a random walk at T0 = T . After visiting the
large triangle Ti, choose the next large triangle Ti+1 uniformly at random
from among the three triangles that contain a vertex of Ti in the interior
of one of its edges. Stop the random walk at the first time when Ti = T ′

holds.
According to a well known extension of Pólya’s recurrence theo-

rem [15], this random walk is recurrent; see [7], Theorem 8.2 on p. 138.
Thus, choosing N large enough, we can make sure that after N steps it
reaches T ′ with probability at least a/a′. We stop the process at step N,
even if T ′ has not been reached.

The side lengths of Ti form a martingale by Lemma 10. So the ex-
pected side length at the end of the process is exactly the side length a of
T0 = T . At the end, this side length is a′ with probability at least a/a′ and
it is always positive, so we have a > (a/a′)a′. This contradiction proves
that all large triangles must be of the same size.

In view of Lemma 8, every side of a large triangle is subdivided into
two segments belonging to two small triangles. Since the structure of the
tiling is uniquely determined, the small triangles must fall into at most
two congruence classes, and the tiling is periodic (in fact, it is the union
of three latticelike arrangements; see [6]). �
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