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Abstract

We investigate the local chromatic number of shift graphs and prove that it is close to
their chromatic number. This implies that the gap between the directed local chromatic
number of an oriented graph and the local chromatic number of the underlying undi-
rected graph can be arbitrarily large. We also investigate the minimum possible directed
local chromatic number of oriented versions of “topologically t-chromatic” graphs. We
show that this minimum for large enough t-chromatic Schrijver graphs and t-chromatic
generalized Mycielski graphs of appropriate parameters is dt/4e+ 1.



1 Introduction

The local chromatic number of a graph G, defined by Erdős, Füredi, Hajnal, Komjáth,
Rödl, and Seress [6] is a coloring parameter that was further investigated recently in the
papers [13, 23, 24]. (See also [3] for some related results.) Denoting the set of neighbors
of a vertex v by N(v), it is defined as follows.

Definition 1 ([6]) The local chromatic number of a graph G is

ψ(G) := min
c

max
v∈V (G)

|{c(u) : u ∈ N(v)}|+ 1,

where the minimum is taken over all proper vertex-colorings c of G.

Thus ψ(G) is the minimum number of colors that must appear in the most colorful
closed neighborhood of a vertex in any proper coloring that may involve an arbitrary
number of colors. It was shown in [6] that there exist graphs G with ψ(G) = 3 and
χ(G) > k for any positive integer k, where χ(G) denotes the chromatic number of G.

Changing “neighborhood” to “outneighborhood” in the previous definition we arrive
at the directed local chromatic number (of a digraph) introduced in [13]. For a directed
graph F let the set of outneighbors of a vertex v be N+(v) = {u ∈ V (F ) : (v, u) ∈ E(F )}.
By a proper vertex-coloring of a directed graph we mean a proper vertex-coloring of the
underlying undirected graph.

Definition 2 ([13]) The directed local chromatic number of a directed graph F is defined
as

ψd(F ) = min
c

max
v∈V (F )

{c(u) : u ∈ N+(v)}+ 1,

where c runs over all proper vertex-colorings of F .

The directed local chromatic number of a digraph is always less than or equal to the
local chromatic number of the underlying undirected graph and we obviously have equality
if our digraph is symmetrically directed, i.e., for every ordered pair (u, v) of the vertices
(u, v) is an edge if and only if (v, u) is an edge. A digraph F = (V,E) is called oriented if
the contrary is true: (u, v) ∈ E implies (v, u) /∈ E. An orientation of an undirected graph
G is an oriented graph Ĝ that has G as its underlying undirected graph.

It is a natural question whether every undirected graph G has an orientation the
directed local chromatic number of which achieves the local chromatic number of G. In
the first version of this paper we wrote that we knew very little about this question. A
recent development is that Ambrus Zsbán [28] showed that the above is not true for all
graphs. (See [20] for a problem of similar flavor: the relation of Shannon capacity and
the maximum possible Sperner capacity of its orientations.)

In this paper we explore the other extreme: what is the minimum possible directed
local chromatic number that an orientation of a graph can attain.
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In the following section we give some more definitions and summarize some facts about
the investigated parameters. In Section 3 we investigate shift graphs. We observe that
they have an orientation with directed local chromatic number 2 and prove that their
local chromatic number can be arbitrarily large, in particular, it differs at most 1 from
their chromatic number. We also consider the behavior of a symmetrized variant of shift
graphs.

In section 4 we concentrate on Borsuk-like graphs: these are graphs the chromatic
number of which can be determined by applying Lovász’s topological method (cf. [15]),
while, at the same time they admit optimal colorings where no short odd length walks
exist that start and end in the same color class. Several graphs have this property. In [23]
we have shown that the local chromatic number of these graphs is around one half of their
chromatic number. Here we show that the minimum directed local chromatic number of a
Borsuk-like graph of appropriate parameters is about one quarter of its chromatic number.

2 Minimum and maximum directed local chromatic

number

It is natural to define the following extreme values of ψd(G).

Definition 3 For an undirected graph G we define the minimum directed local chromatic
number as

ψd,min(G) := min
Ĝ
ψd(Ĝ)

and the maximum directed local chromatic number as

ψd,max(G) := max
Ĝ

ψd(Ĝ),

where Ĝ, in both cases, runs over all orientations of G.

It is obvious that ψd,max(G) ≤ ψ(G). Equality holds for complete graphs (by the
transitive orientation), and more generally, for all graphs with equal chromatic and clique
number, thus for all perfect graphs, in particular. A less obvious example for equality
is given by Mycielski graphs, see Proposition 19 in Section 4. In the first version of this
paper we wrote that we did not know whether equality holds for all graphs. Recently,
however, Ambrus Zsbán [28] constructed a graph F with ψd,max(F ) < ψ(F ).

Our main concern here is the behavior of ψd,min(G). Clearly, if the graph has any edge,
then ψd,min(G) is already at least 2. We will see in the next section that there are graphs
with ψd,min(G) = 2 and ψ(G) arbitrarily large.

To conclude this section we give two easy estimates on ψd,min(G) in terms of χ(G)
and the clique number ω(G), respectively. Recall that a homomorphism from graph
G to another graph H is a mapping f : V (G) → V (H) such that whenever {a, b} is
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an edge of G, then {f(a), f(b)} is an edge of H. For a detailed introduction to graph
homomorphisms, see [12].

The following relation of ψd,min to the clique number and the chromatic number is
immediate.

Proposition 4 For every graph G⌊
ω(G)

2

⌋
+ 1 ≤ ψd,min(G) ≤

⌊
χ(G)

2

⌋
+ 1.

In particular, if G has equal clique number and chromatic number, then equality holds in
both inequalities.

Proof. Let G be a graph with chromatic number r, which means that there is a homo-
morphism from G to Kr. Orient the edges of Kr so that the maximum outdegree become
as small as possible. Clearly, this minimal maximum outdegree is br/2c.

Let c : V (G)→ V (Kr) be an optimal coloring of G. For each edge {u, v} of G orient
it from u to v if and only if the edge {c(u), c(v)} of Kr is oriented from c(u) to c(v) above.
The set of colors in the outneighborhood of a vertex v of G will be the set of outneighbors
of c(v) in Kr. This proves ψd,min(G) ≤ b r

2
c+ 1.

If the clique number of G is q then some vertex of a q-clique of G must have at least
b q

2
c other vertices of this clique in its outneighborhood. Since all these must have different

colors, it implies ψd,min(G) ≥ b q
2
c+ 1.

Clearly, if χ(G) = ω(G), then the two bounds coincide. �

3 Shift graphs

Shift graphs were introduced by Erdős and Hajnal [7].

Definition 5 ([7]) The shift graph Hm is defined on the ordered pairs (i, j) satisfying
1 ≤ i < j ≤ m as vertices and two pairs (i, j) and (k, `) form an edge if and only if j = k
or ` = i.

Note that Hm is isomorphic to the line graph of the transitive tournament on m
vertices. It is well-known (see, e.g., [16], Problem 9.26) that χ(Hm) = dlog2me.

Shift graphs are relevant for us for two different reasons. One is what we already
mentioned in the Introduction that their minimum directed local chromatic number is
much below their local chromatic number. The other reason is explained below.

While the local chromatic number is obviously bounded from above by the chromatic
number, in [13] it was shown to be bounded from below by the fractional chromatic
number. This motivated the study of the local chromatic number for graphs with a large
difference between the latter two bounds (see [23]). Determining the chromatic number
of such graphs often requires special tricks as one needs some lower bound that is not a
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lower bound for the fractional chromatic number. In case of Kneser graphs this difficulty
was overcome by Lovász [15] thereby introducing his topological method that was later
successfully applied also for other graph families with the above property. Examples
include Schrijver graphs ([22]) and generalized Mycielski graphs ([25, 11]). See also [18]
for an excellent introduction to this method.

In [23] (see also [24]) we investigated the local chromatic number of graphs for which
the chromatic number is far from the fractional chromatic number and can be determined
by a particular implementation of the topological method. If this implementation gave t
as a lower bound of the chromatic number, we called a graph topologically t-chromatic,
and showed that if a graph is topologically t-chromatic, then dt/2e + 1 is an often tight
lower bound for its local chromatic number.

For shift graphs this topological lower bound for the chromatic number is not tight
(except for some very small initial cases), in other words they are not topologically t-
chromatic for t being the actual chromatic number, see Proposition 6 below. On the
other hand, shift graphs do have the property that there is a large gap between their
fractional and ordinary chromatic numbers. Thus the above mentioned result of [13]
equally motivates the investigation of their local chromatic number while the methods of
[23, 24] cannot give good bounds for it.

To see that the fractional chromatic number χf (Hm) is small it is worth defining
the symmetric shift graph Sm (which later will also be considered for its own sake) that
contains all ordered pairs (i, j) where 1 ≤ i, j ≤ m, i 6= j, as vertices (i.e., (i, j) is a
vertex even if i > j) and (i, j) and (k, `) are adjacent again if j = k or ` = i. (Note
that Sm is the line graph of the complete directed graph on m vertices.) It is obvious

that Sm is vertex-transitive, thus χf (Sm) = |V (Sm)|
α(Sm)

(cf., e.g. [21]), where α(G) stands

for the independence number of graph G. Since α(Sm) = dm
2
ebm

2
c (vertices (i, j) with

i ≤ dm
2
e < j form an independent set of this size and one easily sees that no larger one

can be formed), we get χf (Hm) ≤ χf (Sm) = m(m−1)
dm

2
ebm

2
c < 4, where the first inequality follows

from Hm being a subgraph of Sm.
Thus by the inequalities χf (Hm) ≤ ψ(Hm) ≤ χ(Hm) the value of ψ(Hm) could be

anywhere between 4 and dlog2me. Now we show that the lower bound cannot be improved
by the methods used in [23].

The lower bound on ψ(G) in [23] mentioned above is proven by showing (cf. also [9] for
a special case), that if G is a topologically t-chromatic graph, then whatever way we color
its vertices properly (with any number of colors, thus the coloring need not be optimal)
there always appears a complete bipartite subgraph Kdt/2e,bt/2c, all t vertices of which
get a different color. Though we do not give here the exact definition of topological t-
chromaticity, it makes sense to state the following proposition that can be proven using the
result just described. We remark that topological t-chromaticity is a monotone property,
that is, it implies topological (t− 1)-chromaticity.

Proposition 6 The graph Hm is not topologically 4-chromatic and Sm is not topologically
5-chromatic.
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Proof. Let us color the vertex (i, j) with color i. This gives a proper coloring of Hm.
One can easily check that if two vertices (i1, j1) and (i2, j2) of Hm have two common

neighbors (k1, `1), (k2, `2), then either j1 = j2 = k1 = k2 or i1 = i2 = `1 = `2. Thus
Hm can be properly colored in such a way it has no K2,2 subgraph with all four vertices
receiving a different color. By the above described result in [23], this implies that Hm is
not topologically 4-chromatic.

The same coloring (assigning color i to the vertex (i, j)) is also a proper coloring of
Sm but here for m ≥ 4 some K2,2 subgraphs (like the one consisting of the vertices (1, 2),
(2, 3), (3, 4), (4, 1)) receive four distinct colors. However no K2,3 subgraphs receive five
distinct colors, so by the same quoted result Sm is not topologically 5-chromatic. �

We remark that Sm is not even topologically 4-chromatic, but to see this is beyond the
scope of the present paper because every proper coloring of S4 makes a K2,2 subgraph (a 4-
cycle) receive four distinct colors. Every non-bipartite graph is topologically 3-chromatic,
so the graphs Hm for m ≥ 5 and Sm for m ≥ 3 are topologically 3-chromatic.

Although the local chromatic number of shift graphs could be as low as 3 if considering
only the topological lower bound of the local chromatic number given in [23], the main
result of this section below states that it is much higher.

Theorem 7 We have
ψ(Hm) = χ(Hm)

whenever 2k + 2k−1 < m ≤ 2k+1 for some positive integer k. If 2k < m ≤ 2k + 2k−1 holds
for some k instead, then we have

χ(Hm)− 1 ≤ ψ(Hm) ≤ χ(Hm).

We prove this theorem in Subsection 3.2. It shows not only that the local chromatic
number of shift graphs is close to their chromatic number but also that the gap between
the directed local chromatic number and the local chromatic number of the underlying
undirected graph can be arbitrarily large. This statement follows when comparing The-
orem 7 to the following simple observation. (For the appearance of more general shift
graphs in a similar context, see the starting example in [6].)

Proposition 8 For m ≥ 3 we have

ψd,min(Sm) = ψd,min(Hm) = 2.

Proof. As Hm is a subgraph of Sm and ψd,min(Hm) ≥ 2 is obvious for m ≥ 3, it is
enough to prove ψd,min(Sm) ≤ 2. Let S̃m be the oriented version of Sm in which edge
{(a, b), (b, c)} is oriented from vertex (a, b) to vertex (b, c) whenever a, b and c are distinct
while we choose arbitrarily when orienting the edge between the vertices (a, b) and (b, a)
for a 6= b. Color each vertex (x, y) by its first element x. Let (a, b) be an arbitrary
vertex and observe that every element of its outneighborhood is given color b. This shows
ψd(S̃m) ≤ 2 thereby proving the statement. �
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Note the easy fact, that if we modify the directed graph S̃m in the above proof so that
for edges {(a, b), (b, a)} we include both orientations then the so obtained graph Ŝm is a
homomorphism universal graph: it has the property that a digraph F admits a coloring
with m colors attaining ψd(F ) ≤ 2 if and only if there exists a homomorphism from F
to Ŝm. (With the notation of [13] Ŝm is just the graph Ud(m, 2).) We will refer to the
graphs Ŝm as the symmetric directed shift graphs.

3.1 Bollobás-type inequalities

A key observation in proving Theorem 7 will be the close connection between local color-
ings of shift graphs and cross-intersecting set systems. Here we state two classical results
about the latter that will be relevant for us. The first of these is due to Bollobás.

Theorem 9 ([4]) Let A1, . . . , Am and B1, . . . , Bm be finite sets satisfying the property
that Ai ∩ Bj 6= ∅ for all 1 ≤ i, j ≤ m with i 6= j, while Ai ∩ Bi = ∅ for all 1 ≤ i ≤ m.
Then

m∑
i=1

(
|Ai|+ |Bi|
|Ai|

)−1

≤ 1.

Note that if |Ai| = r and |Bi| = s holds for all i then the above statement implies
m ≤

(
r+s
r

)
. This consequence is generalized by Frankl as follows.

Theorem 10 ([10]) Let A1, . . . , Am and B1, . . . , Bm be sets satisfying |Ai| = r, |Bi| =
s, Ai ∩ Bi = ∅ for all 1 ≤ i ≤ m, and the additional property that Ai ∩ Bj 6= ∅ whenever
1 ≤ i < j ≤ m. Then

m ≤
(
r + s

r

)
.

We remark that further relaxing the condition Ai ∩ Bj 6= ∅ whenever 1 ≤ i < j ≤ m
to 1 ≤ i < j ≤ m ⇒ (Ai ∩ Bj 6= ∅ or Aj ∩ Bi 6= ∅), we arrive to a problem that, by our
current knowledge, is not completely solved for r, s ≥ 2, cf. [27].

The following lemma shows the connection between our problem and cross-intersecting
set systems.

Lemma 11 The inequality ψ(Hm) ≤ k is equivalent to the following statement. There
exist finite sets, A1, . . . , Am and B1, . . . , Bm such that Ai ∩ Bi = ∅ for all 1 ≤ i ≤ m and
for all 1 ≤ i < j ≤ m we have Ai ∩Bj 6= ∅ and |Aj ∪Bi| ≤ k − 1.

Proof. Assume first that ψ(Hm) ≤ k and let c : V (Hm) → N be a proper coloring
that attains the local chromatic number. For each 1 ≤ i ≤ m form the sets Ai, Bi by
Ai := {c(i, `) : i < ` ≤ m}, Bi := {c(`, i) : 1 ≤ ` < i}. Since the coloring is proper we
must have Ai∩Bi = ∅ for all i. For 1 ≤ i < j ≤ m we have c(i, j) ∈ Ai∩Bj, thus we have
Ai ∩Bj 6= ∅ for all i < j. A given vertex (i, j) of Hm is adjacent to the vertices (`, i) and
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(j, q) where ` < i < j < q. By our condition on the local chromatic number this implies
|Bi ∪ Aj| ≤ k − 1 for all i < j.

On the other hand, if A1, . . . , Am, B1, . . . , Bm with the above properties exist, then we
can define the coloring c of the vertices of Hm as follows. For each vertex (i, j) ∈ V (Hm)
let c(i, j) be an arbitrary element of the nonempty set Ai ∩ Bj. As Ai ∩ Bi = ∅ for all i
this coloring is proper. By |Aj ∪Bi| ≤ k− 1 the local chromatic number attained by this
coloring is at most k. �

3.2 Proof of Theorem 7

We will show that if the sets A1, . . . , Am and B1, . . . , Bm satisfy the conditions in
Lemma 11, then m ≤ 2k + 2k−1. By Lemma 11 and χ(Hm) = dlog2me, this implies
the statement of Theorem 7.

For obtaining the above upper bound on m we partition the pairs (Ai, Bi) according
to the sizes of the sets Ai, Bi. For every 0 ≤ r set

D(r)
1 = {i : 1 ≤ i ≤ m, |Ai| = r, |Ai|+ |Bi| < k}

and
D(r)

2 = {i : 1 ≤ i ≤ m, |Ai| = r, |Ai|+ |Bi| ≥ k}.

Note that by its definition D(r)
1 = ∅ for r ≥ k and |Aj ∪B1| ≤ k− 1 for 1 < j ≤ m implies

∪r≥kD(r)
2 ⊆ {1}.

Fix some r ≥ 0. Notice that for each i ∈ D(r)
1 we have |Bi| ≤ k − 1 − r and add

k − 1 − r − |Bi| new elements to the set Bi that do not appear elsewhere. Denote the

resulting set by B′i. Note that the pairs (Ai, B
′
i) for i ∈ D(r)

1 satisfy the conditions in

Frankl’s Theorem 10 (with s = k − 1− r), implying |D(r)
1 | ≤

(
k−1
r

)
. This further implies∑

r≥0

|D(r)
1 | ≤ 2k−1.

For bounding the size of sets D(r)
2 observe that the condition |Aj ∪Bi| ≤ k−1 satisfied

for all i < j is equivalent to |Aj ∩ Bi| ≥ |Aj| + |Bi| − k + 1. Fix some 0 ≤ r < k and

notice that for i ∈ D(r)
2 we have |Bi| ≥ k − r. Let B′i be an arbitrary subset of Bi of

size k − r. The pairs (Ai, B
′
i) for i ∈ D(r)

2 still satisfy that Aj ∩ B′i 6= ∅ whenever j > i,
while Ai ∩ B′i = ∅ is also true. Thus the conditions of Theorem 10 hold again (now with

s = k−r and by reversing the order of indices) implying |D(r)
2 | ≤

(
k
r

)
. This further implies

∑
r≥0

|D(r)
2 | ≤

k−1∑
r=0

|D(r)
2 |+ 1 ≤ 2k.

Thus we obtained m =
∑

r≥0 |D
(r)
1 |+

∑
r≥0 |D

(r)
2 | ≤ 2k + 2k−1 completing the proof. �
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3.3 Symmetric shift graphs

In view of the above it is natural to ask what is the local chromatic number of the
symmetric shift graph Sm. We trivially have ψ(Sm) ≥ ψ(Hm). In view of Theorem 7 this

shows that ψ(Sm) is close to χ(Sm) = min
{
k :
(

k
dk/2e

)
≥ m

}
(see, e.g. [16], Problem 9.26.),

but this trivial observation allows for an unbounded difference of the order log(χ(Sm)) or
log logm. In view of Theorem 7 it seems very unlikely that there could be such a large gap
between ψ(Sm) and χ(Sm). In fact, we are inclined to believe that both ψ(Sm) and ψ(Hm)
coincides with the corresponding chromatic numbers, χ(Sm) and χ(Hm), respectively.

In this subsection we apply the method of the preceding section to improve the above
trivial lower bound on ψ(Sm). The improvement we obtain is rather modest: we increase
the lower bound by 1 for some m.

The analogue of Lemma 11 is the following.

Lemma 12 The inequality ψ(Sm) ≤ k is equivalent to the following statement. There
exist finite sets A1, . . . , Am and B1, . . . , Bm such that Ai ∩ Bi = ∅ for all 1 ≤ i ≤ m and
for all 1 ≤ i, j ≤ m with i 6= j we have Ai ∩Bj 6= ∅ and |Ai ∪Bj| ≤ k − 1.

The proof is essentially identical to that of Lemma 11, therefore we omit it.

Theorem 13 The local chromatic number of the symmetric shift graph Sm satisfies

ψ(Sm) ≥ dlog2(m+ 2)e.

Proof. We do the same as in the proof of Theorem 7. By Lemma 12 it is enough to show
that if A1, . . . , Am and B1, . . . , Bm are two families of finite sets satisfying the conditions
there, then m ≤ 2k − 2.

To this end we define D(r) = {i : 1 ≤ i ≤ m, |Ai| = r}.
Note that for r ≥ k D(r) = ∅ follows from the condition |Ai ∪ Bj| ≤ k − 1 for i 6= j.

Similarly, D(0) = ∅ follows from Ai ∩Bj 6= ∅ for i 6= j.
Fix some 0 < r < k and consider i ∈ D(r). If |Bi| > k− r let B′i be an arbitrary subset

of Bi of size k − r, otherwise let B′i = Bi. The conditions imply that the pairs (Ai, B
′
i)

for i ∈ D(r) satisfy the conditions of Theorem 9. Since we have |Ai| = r, |B′i| ≤ k − r for
all i ∈ D(r), this further implies |D(r)| ≤

(
k
r

)
. Summing for all r we obtain

m =
k−1∑
r=1

|D(r)| ≤ 2k − 2

completing the proof. �
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3.4 A homomorphism duality result

In this subsection we prove that the following homomorphism duality statement (see [12]
for more on this term) holds for symmetric directed shift graphs Ŝm (see their definition
after Proposition 8). We need the notion of an alternating odd cycle, which is an oriented
odd cycle with exactly one vertex of outdegree one. It was observed in [13] that a directed
odd cycle has directed local chromatic number 3 if and only if it contains an alternating
odd cycle as a subgraph. (The two may not be equal as a directed odd cycle, unlike
oriented ones, can contain multiple edges.) The following is a straightforward extension
of this observation.

Proposition 14 A directed graph Ĝ admits a homomorphism into Ŝm for some m if and
only if no alternating odd cycle admits a homomorphism to Ĝ.

Proof. It is clear (and also contained in [13]) that alternating odd cycles have directed
local chromatic number 3. By the remark following the proof of Proposition 8 this implies
that there is no homomorphism from any alternating odd cycle to Ŝm for any m, or to
any graph that admits a homomorphism to a symmetric directed shift graph Ŝm for some
m.

On the other hand, we claim that if ψd(Ĝ) > 2 (which is equivalent to Ĝ not having
a homomorphism to any Ŝm), then an alternating odd cycle has a homomorphism to Ĝ.
(We remark that this also implies that Ĝ contains an alternating odd cycle as a subgraph.)
Indeed, call two vertices u and v related if they both belong to the outneighborhood of
the same vertex w. The transitive closure of this relation defines equivalence classes of
the vertices. Let us color the vertices according to the equivalence class they belong to.
Clearly, the outneighborhood of any vertex is monochromatic, so ψd(Ĝ) > 2 implies that
this is not a proper coloring of Ĝ. Let a and b be adjacent vertices in an equivalence class.
There must be a sequence a = u0, u1, . . . , uh = b of vertices such that ui is related to ui+1

for 0 ≤ i < h. Let wi be the vertex having both ui and ui+1 in its outneighborhood. The
vertices of an alternating odd cycle of length 2h+ 1 can be homomorphically mapped to
u0, w0, u1, w1, . . . , uh in this order. �

4 Borsuk-like graphs

Borsuk-graphs were also introduced by Erdős and Hajnal [8].

Definition 15 ([8]) The Borsuk graph B(n, α) is defined for every positive integer n and
0 < α < 2 on the unit sphere Sn−1 of the n-dimensional Euclidean space as vertex set.
Two vertices form an edge if their Euclidean distance is larger than α.

It is easy to see that the statement χ(B(n, α)) ≥ n+1 is equivalent with the celebrated
Borsuk-Ulam theorem, see [8, 17]. It is also well-known and easy to see, that if α is larger
than a certain threshold, than n + 1 colors suffice: inscribe a regular simplex into Sn−1
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and color each point of the sphere with the side of the simplex intersected by the line
segment joining this point to the center of the sphere. Note that besides being proper
this coloring has a further remarkable property: for every s ∈ N there exists αn,s < 2
such that if α > αn,s then there is no walk of length 2s − 1 in B(n, α) between any pair
of vertices that have the same color. Several other interesting graphs also have optimal
colorings with this property, see [23].

Definition 16 ([23], cf. also [1]) Let s be a positive integer. A coloring c of a graph G
is called s-wide if there is no walk of length 2s − 1 in G between any two vertices u and
v with c(u) = c(v).

Observe that 1-wide colorings are exactly the proper colorings, while being 2-wide
means that the neighborhood of each color class is independent. Graphs with colorings
of the latter property were investigated in [11]. 3-wide colorings were simply called wide
in [23] as they had a key role there in bounding the local chromatic number from above.
Namely, we proved in [23] that if a graph G has a 3-wide coloring with t colors then
ψ(G) ≤ bt/2c+ 2. (To see that this bound is sharp for several graphs, cf. [23, 24].)

Recall that the Kneser graph KG(n, k) is defined for n ≥ 2k on all k-element subsets
of the n element set [n] = {1, . . . , n} as vertex set and two such subsets form an edge if
they are disjoint. Their chromatic number is n−2k+2 as conjectured by Kneser [14] and
proved by Lovász [15]. Schrijver found a very nice family of induced subgraphs of Kneser
graphs. They have the same chromatic number as the corresponding Kneser graphs but
at the same time they are also vertex color-critical.

Definition 17 ([22]) The Schrijver graph SG(n, k) is defined for n ≥ 2k as follows.

V (SG(n, k)) = {A ⊆ [n] : |A| = k, ∀i : {i, i+ 1} * A and {1, n} * A}
E(SG(n, k)) = {{A,B} : A ∩B = ∅}

The following generalization of Mycielski’s construction [19] appears in several papers,
see, e.g., [11, 25, 26] for their chromatic properties.

Definition 18 For a graph G and integer r ≥ 1 the generalized Mycielskian Mr(G) of G
is the graph on vertex set

V (Mr(G)) = {(i, v) : v ∈ V (G), 0 ≤ i ≤ r − 1} ∪ {z}

with edge set

E(Mr(G)) = {{(i, u), (j, v)} : {u, v} ∈ E(G) and i = j = 0 or 0 ≤ i = j − 1 ≤ r − 2}∪

{{(r − 1, u), z} : u ∈ V (G)}.
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The Mycielskian M(G) of a graph is identical to M2(G). The main property of this
construction is that while it does not change the clique number for r ≥ 2, the chromatic
number of M(G) is 1 more than that of G. We have χ(Mr(G)) ≤ χ(G)+1 for an arbitrary
r, but χ(Mr(G)) = χ(G) can happen for r ≥ 3 (an example is G = C̄7, see [26], or see
[5] for another example with fewer edges). Stiebitz [25] proved, however, that Lovász’s
topological lower bound on the chromatic number is always 1 more for Mr(G) than for G.
Thus, if this bound is tight for G then the chromatic number of Mr(G) is 1 larger than
χ(G). Moreover, in this case this new bound is also tight for Mr(G), so this argument
can be used recursively.

The chromatic number of the above graphs were determined by using the topological
method, in particular, the Borsuk-Ulam theorem, for getting the appropriate lower bound,
see [15, 22, 25, 11] and also [18]. Another similarity between Schrijver graphs and gen-
eralized Mycielski graphs is that for any given chromatic number χ and parameter s one
can find a member of either family with chromatic number χ having an s-wide χ-coloring.
(We note that a topological similarity of Schrijver graphs and their iterated generalized
Mycielskians that is not shared by Kneser graphs is that their so-called neighborhood
complex, cf. [15, 18], is homotopy equivalent to a sphere, see [2, 25].)

We conclude the introductory part of this section by stating a result about the maxi-
mum directed local chromatic number of Mycielski graphs. It is a rather straightforward
generalization of Proposition 10 in [23]. Though its proof is almost identical to that of
this quoted result, we include it for the sake of completeness.

Proposition 19 For any graph G we have

ψd,max(M(G)) ≥ ψd,max(G) + 1.

In particular, if ψd,max(G) = χ(G), then ψd,max(M(G)) = ψd,max(G) + 1 = χ(M(G)).

Proof. First we give the orientation. Fix an orientation of G that attains ψd,max(G) and
orient the subgraph of M(G) induced by the vertices (0, v) accordingly. Orient each edge
of the form {(1, u), (0, v)} consistently with the corresponding edge {(0, u), (0, v)}, i.e., so
that either both have its head or both have its tail at the vertex (0, v). Finally, orient all
edges {(1, u), z} towards z.

Now consider an arbitrary proper coloring c : V (M(G)) → N. For a subset U ⊆
V (M(G)) let c(U) := {c(u) : u ∈ U}. Consider also the modified coloring c′ of G defined
by

c′(x) =

{
c(0, x) if c(0, x) 6= c(z)
c(1, x) otherwise.

It follows from the construction that c′ is a proper coloring of G, which does not use
the color c(z).

By our orientation of G there is some vertex v of G for which |c′(N+(v))| ≥
ψd,max(G) − 1. (Note that N+(.) and N+(., .) here refer to outneighborhoods in the con-
sidered orientations of G and M(G), respectively.) If there is no vertex u ∈ N+(v) for
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which c(0, u) 6= c′(u), then the color c(z) does not appear in the outneighborhood of (0, v)
in M(G). In this case the set c(N+(1, v)) contains all the colors in c′(N+(v)) plus the
additional color c(z). If, however, there is some u ∈ N+(v) for which c(0, u) 6= c′(u),
then we have c(0, u) = c(z). In this case the set N+(0, v) contains all the colors ap-
pearing in c′(N+(v)) and also the additional color c(z) as the color of (0, u). In ei-
ther case, some vertex has at least ψd,max(G) colors in its outneighborhood, proving
ψd,max(M(G)) ≥ ψd,max(G) + 1.

The second statement trivially follows from the first using the well-known fact
χ(M(G)) = χ(G) + 1 and the obvious inequalities ψd,max(G) ≤ ψ(G) ≤ χ(G). �

Note that Proposition 19 implies that ψd,max(G) = ψ(G) holds whenever G is a My-
cielski graph, that is a graph obtained from a single edge by repeated use of the Mycielski
construction. We also remark that unlike the analogous inequality for χ(G) or ψ(G) the
inequality ψd,max(M(G)) ≤ ψd,max(G) + 1 does not seem to be obvious. Though we do
not have a counterexample we are not completely convinced about its validity.

4.1 Lower bound by topological t-chromaticity

As we have already mentioned in Section 3 we called a graph topologically t-chromatic in
[23] if a particular implementation of the topological method gave t as a lower bound for
its chromatic number. We also mentioned there that a result in [23] shows (cf. also [9])
that in every proper coloring of a topologically t-chromatic graph a complete bipartite
subgraph Kdt/2e,bt/2c occurs, all t vertices of which get a different color. This result was
used in [23] to bound ψ from below. In a similar manner it also gives a lower bound for
ψd,min.

Theorem 20 If G is a topologically t-chromatic graph with t ≥ 2, then

ψd,min(G) ≥ dt/4e+ 1.

Proof. Let G be a topologically t-chromatic graph, c its proper coloring and D its
multicolored complete bipartite subgraph whose existence is guaranteed by the result
mentioned above. The number of edges in D is dt/2ebt/2c implying that for any orien-
tation of D its average outdegree is (1/t)dt/2ebt/2c the upper integer part of which is
dt/4e. Since all vertices of D receive different colors, its maximum outdegree vertex have
at least dt/4e different colors in its outneighborhood in any orientation. This proves that
ψd,min ≥ dt/4e+ 1. �

4.2 Upper bound by wide colorability

4.2.1 Graphs with chromatic number at most six

If a graph G is at most 3-chromatic (but not edgeless), then Proposition 4 implies that its
minimum directed local chromatic number ψd,min(G) = 2. Below we will show that the
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same conclusion holds for 4-chromatic graphs with 2-wide 4-colorings. The same method
will be used to prove the sharpness of our topological lower bound for certain graphs of
chromatic number at most 6.

The following notations and lemmas will be useful. Given a coloring c of a graph G
for each vertex v ∈ V (G) let Sc(v) = {c(u) : {u, v} ∈ E(G)} and sc(v) = |Sc(v)|. That is,
sc(v) is the number of colors given to the neighbors of v.

Lemma 21 If c is a 2-wide coloring and u, v are adjacent vertices of a graph G then
Sc(u) ∩ Sc(v) = ∅. In particular, if c uses t colors, then sc(u) + sc(v) ≤ t.

Proof. Assume indirectly that Sc(u) ∩ Sc(v) 6= ∅, i.e., u has a neighbor x and v has a
neighbor y with c(x) = c(y). But then the walk xuvy connects vertices of the same color
and contradicts the assumption that c is 2-wide. This proves the first statement of the
lemma, that obviously implies the second one completing the proof. �

Lemma 22 If a graph G has a 2-wide coloring using 2h colors with h ≥ 2, then
ψd,min(G) ≤ h.

Proof. Consider G as colored by a fixed 2-wide 2h-coloring c : V (G)→ H with |H| = 2h.
Let us consider the subgraph G′ obtained from G by removing all vertices u ∈ V (G)

with sc(u) < h. We claim that G′ has an orientation Ĝ′ such that the outneighborhood
of any vertex receives at most dh/2e distinct colors by c.

Indeed, by Lemma 21 if {u, v} is an edge ofG′, then Sc(u) and Sc(v) are complementary
sets of colors, each of size h. So each nontrivial component of G′ is a bipartite graph with
one side containing vertices u with Sc(u) = H1 for some fixed set H1 of h colors and with
the other side containing vertices v with Sc(v) = H2 = H \ H1. Clearly, the vertices in
the former side receive colors in H2, while vertices on the latter side have colors in H1.
To prove the claim it is enough to find a suitable orientation for each of the components
separately, so let us fix H1 and H2. Consider the complete bipartite graph KH1,H2 on
the vertex set H consisting of the edges connecting elements of H1 and H2. Orient the
edges of this graph, so that every outdegree is at most dh/2e. Now orient the edge {u, v}
in this connected component of G′ according to the orientation of {c(u), c(v)} in KH1,H2 .
Clearly, this orientation satisfies the requirement of the claim.

Having found the orientation Ĝ′, extend it to an orientation Ĝ of G by orienting each
edge of G not in G′ away from a vertex u with sc(u) < h. The outneighborhood of a
vertex in G′ is the same in Ĝ and in Ĝ′, so it receives at most dh/2e ≤ h− 1 colors at c.
For the rest of the vertices of G their entire neighborhood receives at most h− 1 colors,
so we have ψd(Ĝ) ≤ h. This completes the proof of the lemma.

Notice that the coloring establishing the bound on the directed local chromatic number
is the 2-wide coloring itself. �

Corollary 23 If a non-edgeless graph G has a 2-wide 4-coloring, then ψd,min(G) = 2.
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Proof. The statement immediately follows by applying Lemma 22 with h = 2. �

Corollary 24 If a topologically 5-chromatic graph G has a 2-wide coloring using at most
6 colors, then ψd,min(G) = 3.

Proof. Theorem 20 implies ψd,min(G) ≥ 3. Lemma 22 implies ψd,min(G) ≤ 3. �

4.2.2 General upper bound

In this section we improve Lemma 22 so that the upper bound it gives will match the
lower bound of Theorem 20 for several graphs of higher (local) chromatic number. For
this we need to assume the existence of s-wide colorings for larger values of s. In [23] the
minimal universal graphs for s-wide t-colorability were found. (Cf. [11] for some larger
universal graphs for this property.) We will use them here.

Definition 25 Let s ≥ 1 and t ≥ 2 be integers. The vertex set of the graph W (s, t)
consists of the functions f : {1, . . . , t} → {0, 1, . . . , s} satisfying that f(i) = 0 holds for
exactly one index i and f(i) = 1 holds for at least one index i. Two vertices f and g are
connected in W (s, t) if for every i one has |f(i)− g(i)| = 1 or f(i) = g(i) = s.

The natural coloring of W (s, t) assigns the color i to the vertex f if f(i) = 0.

Lemma 26 ([23], cf. also [1]) For s ≥ 1 and t ≥ 2 the natural coloring of W (s, t) is
an s-wide t-coloring. A graph G admits an s-wide t-coloring if and only if there is a
homomorphism from G to W (s, t).

Theorem 27 For every t ∈ N there is an s = st for which the following is true. If a
graph G has an s-wide coloring with t colors then ψd,min(G) ≤ dt/4e+ 1.

Proof. We will find an orientation Ŵ of W (s, t) with directed local chromatic number
bounded above by dt/4e + 1. This is enough by Lemma 26 and the trivial observation
that if there is a homomorphism from a graph G to another graph W , then we have
ψd,min(G) ≤ ψd,min(W ).

Let χ stand for the natural coloring of W (s, t). This is the coloring establishing our
bound on ψd(Ŵ ). We write τ for dt/4e. We will define a set S(f) of colors for every
vertex f of W (s, t). We make sure that

1. |S(f)| ≤ τ for every vertex f and

2. either χ(f) ∈ S(g) or χ(g) ∈ S(f) holds for every edge {f, g} of W (s, t).

We obtain the orientation Ŵ by orienting an edge from f to g only if χ(g) ∈ S(f).
Property 2 ensures that all edges of W (s, t) can be oriented this way. Property 1 makes
sure that the natural coloring χ establishes ψd(Ĝ) ≤ τ + 1. So finding the sets S(f) with
these properties completes the proof of the theorem.
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Let us fix a vertex f of W (s, t). Let c = χ(f), E = {1 ≤ i ≤ t : f(i) is even}
and O = {1 ≤ i ≤ t : f(i) is odd}. For 1 ≤ i ≤ t let pi =

∑
j∈E,j≤i(s − f(j)) and

qi =
∑

j∈O,j≤i(s − f(j)). Note that f(c) = 0, so pt ≥ s and as there is an index i with
f(i) = 1 we have qt ≥ s− 1.

The idea is to represent the colors in E and in O as points of the real interval [0, 1] and
orient the edges from f towards those other vertices whose color in the natural coloring
(that is those colors that we will put into S(f) to get the said orientation) is represented
by a point which is circularly (that is, when identifying 1 with 0) “somewhat to the right”
from the point representing the color of f . To make this orientation consistent for the
different vertices of W (s, t) we apply appropriate weightings to determine the distances
between the points representing different colors. These weights will depend on the actual
values f(i) for each color i that measure the length of the shortest walk in W (s, t) from
f to a vertex of color i in the natural coloring.

If f(1) is even, we set Pi = (pi− (s− f(1))/2)/pt and Qi = qi/qt for 1 ≤ i ≤ t. If f(1)
is odd we set Pi = pi/pt and Qi = (qi − (s− f(1))/2)/qt. We have 0 ≤ Pi, Qi ≤ 1.

Note that s − f(1) is a summand in one of pi and qi and the correction term of
subtracting half of this summand is a technicality that we will need to be able to prove
the theorem also in the case when t is divisible by 4.

Let ε = t/(s− 1). Note that ε > 0 can be made arbitrarily close to zero by choosing
s large enough for a fixed t. We express this relationship simply by saying ε is close to
zero and will use this term in similar meaning later in this proof.

In case there are at most τ indices i with f(i) = 1 we define S(f) to be the set of these
indices. Otherwise we compute Di = Qi − Pc + 2ε for all indices i with f(i) = 1 and let
S(f) be formed by the τ indices that have the smallest fractional parts Xi = Di − bDic.

Property 1 is clear from the definition. In the rest of this proof we establish property
2 if s is large enough.

Assume for a contradiction that the vertices f and f ′ are connected in W (s, t) but
property 2 fails for this edge. Let c, pi, qi, Pi, Qi, Di and Xi be the above defined values
for the vertex f and let c′, p′i, q

′
i, P

′
i , Q

′
i, D

′
i and X ′i be the corresponding values for f ′.

First observe that as f and f ′ are connected |f(i)− f ′(i)| ≤ 1 for all i while f(i) and
f ′(i) are of different parity unless f(i) = f ′(i) = s. This shows that |pi − q′i| ≤ t and
|qi − p′i| ≤ t for all i. Easy calculation shows that with our lower bound on pt and qt this
implies |Pi −Q′i| ≤ 2ε and similarly |Qi − P ′i | ≤ 2ε.

We have f(c) = 0, f ′(c) = 1, f ′(c′) = 0 and f(c′) = 1. By the formula defining Di

we have 0 ≤ Dc′ + D′c ≤ 8ε. For the fractional parts this means Xc′ + X ′c ≤ 1 + 8ε. We
assumed that property 2 is violated, so there are τ indices i with f(i) = 1 and Xi < Xc′

and similarly, for τ indices j we have f ′(j) = 1 and X ′j < X ′c.
It is easy to see that the values Xi for indices satisfying f(i) = 1 are separated

from each other by at least (s − 1)/qt, so we have Xc′ ≥ τ(s − 1)/qt and therefore
qt ≥ τ(s− 1)/Xc′ . Similarly we have q′t ≥ τ(s− 1)/X ′c. Using also the bound on Xc′ +X ′c
we obtain qt + q′t ≥ 4τ(s− 1)/(1 + 8ε).
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Notice that no index i can contribute to both qt and q′t. This is because either one of
f(i) or f ′(i) is even and thus does not contribute or if f(i) = f ′(i) = s is odd, then both
contributions are zero. Those indices that do contribute to either qt or q′t contribute at
most s− 1, so we have qt + q′t ≤ t(s− 1). If t < 4τ and ε is small enough this contradicts
our lower bound on qt + q′t and thus completes the proof of property 2 in the t < 4τ case.

In the tight t = 4τ case we have to work more for the contradiction. We still have
t(s − 1) ≥ qt + q′t ≥ 4τ(s − 1)/(1 + 8ε), but this inequality does not lead directly to a
contradiction. Let α > 0. If ε is small enough (the threshold depends on t and α), then
it yields that qt + q′t ≥ (t − α)(s − 1) and therefore, since any index can contribute at
most (s − 1) to one of qt and q′t, each index i must contribute at least (1 − α)(s − 1) to
qt or q′t (in other words f(i) must be small relative to s). Also, from t(s− 1) ≥ qt + q′t ≥
τ(s− 1)/Xc′ + τ(s− 1)/X ′c one obtains 1/Xc′ + 1/X ′c ≤ 4, thus Xc′ must be close to 1/2.
(Recall that this means that fixing t and choosing s large enough |Xc′−1/2| can be made
arbitrarily small.) Now from qt ≥ τ(s − 1)/Xc′ (and s large enough) it follows that at
least 2τ indices contribute to qt and similarly, at least 2τ indices contribute to q′t, so by
4τ = t, exactly 2τ indices contribute to each. Thus exactly 2τ indices contribute to pt, as
well.

We can assume by symmetry that f(1) is odd: otherwise switch the roles of f and f ′.
Now we can estimate Pc and Qc′ . We have Pc = pc/pt and, by the above, this is close to
2k/t, where k = |{1 ≤ i ≤ c : f(i) is even}|. We have Qc′ = (qc′ − (s− f(1))/2)/qt, and,
similarly, this is close to (2` − 1)/t, where ` = |{1 ≤ i ≤ c′ : f(i) is odd}|. This makes
Dc′ = Qc′ −Pc + 2ε close to (2`− 2k− 1)/t. Here the numerator is odd, the denominator
is the fixed value t divisible by 4, so the fractional part Xc′ of this number cannot be close
to 1/2. This provides the contradiction proving property 2 and completing the proof of
the theorem. �

In the following corollaries s = st always refers to the st of Theorem 27.

Corollary 28 If G is a topologically t-chromatic graph that has an s-wide t-coloring for
the value s = st, then ψd,min(G) = dt/4e+ 1.

Proof. Follows from Theorems 20 and 27. �

Finally, we specify two interesting special cases of Corollary 28. They rely on the
topological and wide colorability properties of the relevant graphs established in [23].

Corollary 29 If t = n− 2k + 2 is fixed and n ≥ (2s− 2)t2 − (4s− 5)t for s = st, then

ψd,min(SG(n, k)) =

⌈
t

4

⌉
+ 1.

Proof. It is shown in Lemma 5.1 of [23] that if the conditions in the statement are
satisfied, then SG(n, k) admits an s-wide t-coloring. Thus the statement is implied by
Corollary 28 and the fact that SG(n, k) is topologically t-chromatic (cf. [18, 22] or Propo-
sition 8 in [23]). �
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Corollary 30 If G is a topologically t-chromatic graph admitting an s-wide t-coloring for
s = st and r ≥ 3s− 2, then

ψd,min(Mr(G)) =

⌈
t+ 1

4

⌉
+ 1.

Proof. By a straightforward generalization of Lemma 4.3 in [23], which itself is a straight-
forward extension of (a special case of) Lemma 4.1 from [11], one can prove that if G has
an s-wide t-coloring and r ≥ 3s− 2, then Mr(G) has an s-wide (t+ 1)-coloring. Thus the
statement follows by Corollary 28 combined with the result of Stiebitz [25] stating that
topological t-chromaticity of G implies topological (t+ 1)-chromaticity of Mr(G), cf. also
Csorba [5]. �
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[7] P. Erdős, A. Hajnal, Some remarks on set theory. IX. Combinatorial problems in
measure theory and set theory. Michigan Math. J., 11 (1964), 107–127.
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