
Optimal information rate of secret sharing

schemes on trees

László Csirmaz∗ Gábor Tardos†

Abstract

The information rate for an access structure is the reciprocal of the load of the optimal
secret sharing scheme for this structure. We determine this value for all trees: it is (2−1/c)−1,
where c is the size of the largest core of the tree. A subset of the vertices of a tree is a core if
it induces a connected subgraph and for each vertex in the subset one finds a neighbor outside
the subset. Our result follows from a lower and an upper bound on the information rate that
applies for any graph and happen to coincide for trees because of a correspondence between
the size of the largest core and a quantity related to a fractional cover of the tree with stars.

Keywords. Secret sharing scheme; information rate; graph; fractional packing and cover;
entropy method.
AMS classification numbers. 05B40, 05C85, 94A60, 94A62, 94A17

1 Introduction

Secret sharing schemes has been investigated in several papers, for an extended bibliography see
[14]. Such a scheme with n participants is a joint distribution of n+ 1 discreet random variables,
one called the secret, the rest being the shares of the participants. An access structure designates
certain subsets of the participants as qualified leaving the rest of the subsets unqualified. A secret
sharing scheme for an access access structure has to satisfy that one can recover the secret with
probability 1 from the shares of any qualified subset of the participants but the secret should be
statistically independent from the collection of shares belonging to an unqualified subset.

In this paper we deal with access structures based on graphs. The scheme is based on the
graph G if the participants are the vertices, and unqualified subsets are the independent sets. This
makes the endpoints of the edges the minimal qualified subsets. We simply call a secret sharing
scheme for the access structure based on a graph G a secret sharing scheme on G.

The load of a scheme is measured by the amount of information the most heavily loaded
participant must remember for each bit in the secret. Formally, this is maxi(H(Si))/H(ξ), where
Si is the share of participant i, ξ is the secret and H denotes entropy. We assume H(ξ) > 0. For a
graph G the information complexity of G, denoted as σ(G), is the infimum of the loads of all secret
sharing schemes on G. The information rate, usually denoted as ρ(G), is simply ρ(G) = 1/σ(G),
the inverse of this value. The notation σ(G) for the complexity of the scheme was introduced in
[10]. The information rate of graphs has been investigated in several papers, see [9] for the rate
of graphs with at most six vertices and also (among other works) [2, 3, 4, 5, 6, 7, 13].

In [13] Stinson describes a general secret sharing construction, which, when applied to graphs,
gives the upper bound (d + 1)/2 for the complexity of graphs with maximum degree d. Blundo
et al. in [2] constructed an infinite family of graphs for each d for which Stinson’s bound is tight.
The d = 2 case is fully settled in [3]: the information complexity of paths and cycles is 3/2 except

∗Central European University and University of Debrecen. Research was partially supported by grant NKTH
OM-00289/2008 and the “Lendület” project.
†School of Computing Science, Simon Fraser University, Burnaby, BC and Rényi Institute of Mathematics,

Budapest Research was partially supported by NSERC Discovery grant, the Hungarian OTKA grants T-046234,
AT-048826, NK-62321 and the “Lendület” project.

1

for P2, P3, C3 and C4, when it is 1. The information complexity of the d-regular d-dimensional
hypercube is exactly d/2, see [8]. Our paper is the first one which determines the information
complexity and information rate of graphs in a large and natural family, namely, for trees.

To state our result we need the notions of core and star cover rate of an arbitrary graph.

Definition 1.1 We call a subset X of the vertices of a graph G a core of G if it induces a connected
subgraph and one can find a neighbor x′ /∈ X of each x ∈ X such that x is the only neighbor of
x′ among the vertices in X and {x′ | x ∈ X} is an independent set.

A fractional star packing in a graph G is a collection of star subgraphs of G, each with an
associated positive weight. The weight of a vertex or an edge in a fractional star packing is the
total weights associated to stars containing that vertex or edge, respectively. The star cover rate
of G is the infimum (minimum) of the maximal vertex weights among all fractional star packings
with each edge having weight at least 1.

If the weights in a fractional star packing are integral we speak of star packing and we say a
vertex or edge is covered k times if its weight is k.

Notice that when G is a tree a subset X of its vertices is a core if it induces a connected subgraph
and each x ∈ X has a neighbor outside X.

Theorem 1.2 Let G be a graph, let c = c(G) be the maximum size of a core of G and let s = s(G)
be the star cover rate of G. For the information complexity σ(G) of G we have

2− 1/c ≤ σ(G) ≤ s.

Note that the second inequality of this theorem comes from Stinson [13]. We state it here for
completeness. Both the lower and the upper bounds are often useful, but they are not tight in
general. The graph ∆ depicted in Figure 1 has only one vertex cores, its information complexity
is 3/2 and its star cover rate is 5/3. Thus we have strict inequalities in

2− 1/c(∆) < σ(∆) < s(∆).

• • •

•

�
�
��

S
S
SS

Figure 1: A graph with different information complexity, maximum core size and star packing rate

For trees, however, our lower and upper bounds coincide and we can even compute this value
efficiently.

Theorem 1.3 Let G be a tree, let c = c(G) be the maximum size of a core of G and let s = s(G)
be the star cover rate of G. For the information complexity σ(G) of G we have

2− 1/c = σ(G) = s.

One can compute c and thus σ(G) and the information rate ρ(G) in linear time. Furthermore,
a linear secret sharing scheme exists on G that achieves optimal load 2− 1/c. In this scheme the
shares are vectors of length 2c − 1 over a finite field, the secret is a vector of length c and these
are computed applying linear maps to a uniform random vector of some fixed length less than nc,
where n is the number of vertices in G. The actual matrices providing the linear maps can be
found in time linear in the output size.

In Section 2 we prove the lower bound part of Theorem 1.2 using the entropy method, see
[7, 8]. Note that the upper bound comes from Stinson [13].

We prove the equalities of Theorem 1.3 in section 3 by proving that s(G) = 2− 1/c(G) if G is
a tree.

Finally in Section 4 we prove the algorithmic assertions of Theorem 1.3.

2

2 Information complexity of general graphs

In this section we show that the information complexity of an arbitrary graph is at least 2− 1/c
where c is the size of the largest core in G. This proves the 2− 1/c ≤ σ(G) part of Theorem 1.2.

The proof uses the entropy method, see, e.g. [7, 8]. For the sake of completeness we sketch how
this method works. Consider any secret sharing scheme for an arbitrary access structure. For any
subset A of the participants we define f(A) to be the normalized entropy of the shares belonging
to the participants in A, namely

f(A) =
H({Sv | v ∈ A})

H(ξ)
,

where Sv is the share of participant v and ξ is the secret. Note that our goal is to lower bound
the load of the scheme, which is maxv f({v}).

Using the standard (Shanon-type) information inequalities we have

(a) f(∅) = 0,

(b) f(A) ≥ f(B) when A ⊇ B (monotonicity) and

(c) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (submodularity).

Using the definition of the secret sharing schemes we further have

(d) f(A) ≥ f(B) + 1 when A ⊇ B, A is qualified while B is not (strict monotonicity) and

(e) f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) + 1 when A, B are qualified while A ∩B is not (strict
submodularity).

The entropy method involves proving a lower bound for maxv f({v}) for any f satisfying
inequalities (a)–(e). In our case we want to show that there is always a vertex v with f({v}) ≥
2− 1/c and this clearly follows from the following lemma.

Lemma 2.1 Let X be a core of the graph G, and let f be a real valued function defined on the
subsets of the vertices of G satisfying properties (a)–(e). Then∑

v∈X

f({v}) ≥ 2|X| − 1.

Proof First observe that the statement is trivial if |X| ≤ 1. We can therefore assume |X| ≥ 2.
We use the “independent sequence lemma” from [1, 8] that ensures

f(X) ≥ |X|+ 1.

Using this inequality it is enough to prove∑
v∈X

f({v}) ≥ f(X) + |X| − 2. (1)

We prove this latter inequality for all subsets X that induce a connected subgraph, not only
for cores. We use induction on the number of the vertices in X. The base case X = {v, w} of (1)
simplifies to

f({v}) + f({w}) ≥ f({v, w})

which is subadditivity and a consequence of properties (a) and (c).
Now suppose X induces a connected subgraph and it has at least three vertices. Let us pick a

vertex v ∈ X such that Y = X − {v} also induces a connected subgraph. Note that such a vertex
v always exists. Let w be a vertex in Y connected to v. Neither {v, w} nor Y is an independent

3

set (we use |X| ≥ 3 here), but their intersection {w} is independent, thus unqualified. Property
(e) gives

f({v, w}) + f(Y) ≥ f(X) + f({w}) + 1.

Also, f({v}) + f({w}) ≥ f({v, w}) by subadditivity, which yields

f({v}) + f(Y) ≥ f(X) + 1.

The induction hypothesis for Y finishes the proof of (1) and also the proof of the lemma. �

3 Information complexity of trees

In this section we show the equalities stated in Theorem 1.3. They follow from Theorem 1.2 and
the following lemma. To see this simply divide by c the weights of the star packing claimed by the
lemma: the resulting fractional star packing shows that star cover rate of G is at most 2− 1/c.

Lemma 3.1 Let G be a tree with at least 2 vertices, and suppose each core of G has size at most
c. Then there exists a star packing in G so that (i) all edges are covered exactly c times, and (ii)
all vertices are covered at most 2c− 1 times.

Proof We replace each undirected edge (u, v) of G by c directed edges between u and v; the
number of edges in each direction will be specified later.

To obtain the star packing we partition the (now directed) edges into stars in such a way that
all edges will be directed outward from the center of the star. Thus all outgoing edges from a
vertex v must be part of stars centered at v. Clearly, we can do this with as many stars centered
at v as the maximal number of outgoing edges from v to some neighboring vertex. Furthermore
v will be a non-center vertex of exactly as many stars as the total number of incoming directed
edges to v. The sum of these two numbers gives the total number of stars covering v. As there
are exactly c directed edges along each original edge, this cover number is c plus the total number
of incoming directed edges except the smallest number of incoming directed edges from a single
neighbor.

Thus it suffices to show that we can direct these multiple edges so that this latter sum is at
most c− 1.

We start with assigning positive integers – weights – to each vertex. The weight of a set of
vertices is the sum of the weights of the vertices in the set. Assigning weights is a technical step
to ensure each vertex is in a maximum weight core.

Let W be the set of all positive integer weight functions making the weight of every core at
most c. As each vertex is an element of some core, W has finitely many elements. Furthermore
W is not empty: if every vertex has weight 1, then by the definition of c, every core has weight
≤ c. We call a weight function w ∈ W maximal if increasing w by one at any one vertex yields a
function outside W. Clearly, a maximal weight function must exist in W.

From now on fix such a maximal weight function w ∈ W. The maximality of w implies that
for every vertex v there exists a core containing v whose weight is exactly c.

Now let (v1, v2) be an edge of G. If either v1 of v2 is a leaf, then direct all c edges between v1
and v2 toward the leaf. (If both v1 and v2 are leaves, then G is a single edge, and there is nothing
to prove.)

If neither v1 nor v2 is a leaf, then removing the edge (v1, v2) splits G into two disjoint subtrees,
G1 and G2 where Gi contains vi. Let Ci be a maximal weight (using the weight function w) core
in Gi such that Ci contains vi and let its weight be ci = w(Ci). As C1 ∪ C2 is a core of weight
c1 + c2 in G, and all cores in G has weight ≤ c, we have c1 + c2 ≤ c. Among the c directed edges
between v1 and v2 direct c1 from v1 towards v2, and c2 from v2 towards v1. If c1 + c2 < c then
direct the rest of these edges arbitrarily.

The tree depicted on figure 2 has maximal core size c = 7, and the numbers show a maximal
weight function. Each edge is replaced by seven directed edges, and the numbers the above
procedure gives are

4

•• • A B C D E F G

• • • •

• • • •

@
@@

@
@@
�
�
�
��

�
��
�
��

• • •

•

• •

7 7

7 7 7 7

7 7 7 7

7

1 1 1 1 2 1 1 1

1 1 1 1

1

Figure 2: A tree with weights and maximal core size c = 7.

A→ B B → C C → D D → E E → F F → G
3 6 ≥1 2 4 6

A← B B ← C C ← D D ← E E ← F F ← G
4 1 ≥2 5 3 1

For example, when the edge CD is deleted, the only core in the remaining graph containing D
is the singleton {D} with weight 2. This gives the value ≥ 2 to C ← D and similarly we have
≥ 1 for C → D. This leaves 4 more edges between C and D that we can direct arbitrarily. In all
other edges in the above example we have c1 + c2 = c, thus the direction of all other edges are
determined.

We claim that our construction satisfies the above requirement. Indeed, if v is a leaf, then it
has exactly c incoming edges and no outgoing edge. Otherwise let v be a non-leaf vertex, and C be
a core of maximal weight (according to w) containing v. By the maximality of w, C has weight c.
When deleting v from C each connected component of the remaining graph contains exactly one
neighbor of v in C. Let v1, v2, . . ., vs be these neighbors and let Ci be the connected component
of C − v containing vi. Then

c = w(C) = w(v) + w(C1) + · · ·+ w(Cs).

Both C and C −Ci are cores in G− vvi and they were considered when directing the edges along
vvi. Therefore we have at least w(Ci) edges directed from vi to v and at least w(C−Ci) = c−w(Ci)
edges going from v to vi. As this accounts for all c edges between v and vi these are the exact
number of edges going either way. Thus the total number of incoming edges to v from vertices in
C is

w(C1) + . . .+ w(Cs) = c− w(v) ≤ c− 1.

We have two cases: either v has a leaf neighbor, or it has none. In the first case all non-leaf
neighbors of v are in C, as C was chosen to be maximal. There are no incoming edges from leaves,
thus in this case we are done.

In the other case no neighbor of v is a leaf. Again by maximality all but one of the neighbors
of v must be in C. Let v∗ be the exceptional neighbor of v outside C. Now C −Ci is a core in the
graph G − vv∗ and it contains v, thus at least w(C − Ci) = c − w(Ci) edges are directed from v
toward v∗. It means that that the number of incoming edges from v∗ cannot be more than w(Ci),
which is the number of incoming edges from vi. It shows that the smallest number of incoming
edges come from v∗, and the total number of incoming edges from the other neighbors is at most
c− 1, which was to be shown. �

4 Algorithms

We turn to the algorithmic part of Theorem 1.3. Let G be a tree. The size c(G) of the maximal
core in G can be found by the following algorithm.

5

Pick an arbitrary root r in G. For each vertex v in G let us denote by Gv the subtree of G
“below” v, i.e., Gr = G and for v 6= r we obtain Gv by deleting the edge connecting v to its
“parent” (the neighbor closer to r) and taking the connected component of v.

First we order the the vertices in reverse breadth first search order (starting from the vertices
farthest from the root) and compute the value c(v) of the size of the largest core in Gv containing
v. We define c(v) = 0 for leaf vertices v. If v is not a leaf, then c(v) is one plus the sum of c(vi)
for all children vi of v with the smallest summand left out of the summation. This enables us to
compute c(v) in time O(dv) from the values computed earlier. Here dv stands for the degree of v.
This makes for a linear time algorithm for computing all the values c(v).

Having computed c(v) for each vertex, computing c(G) is simple. If the largest core contains
the root r, then its size is c(r). Otherwise if v 6= r is its vertex closest to the root its size is one
plus the sum of c(vi) for all the children vi of v (this time no summand is left out). Computing
these values and finding the maximum takes linear time again.

Finally in order to construct the optimal secret sharing scheme one has to find a maximal
weight function w ∈ W. Notice that for an arbitrary weight function w one can compute all the
values cw(v) in linear time the same way we computed c(v). Here cw(v) is the maximal w-weight
of a core in Gv containing v. Now increasing the weight of the root r by c− cw(r) we can ensure
that no core has weight over c but the root is contained in a core of weight c. Starting from the all
1 weight function and repeating this procedure for all vertices as roots we find a maximal weight
function. This takes quadratic time (still OK as the output is huge), but we remark that with a
more careful analysis (increasing the weight of vertices in a single breadth first search order after
computing first c(v) without weights) a maximal weight function can be also obtained in linear
time.

From a maximal weight function w one can orient cw(v) edges from v to its parent (v 6= r)
and c − cw(v) edges from the parent to v. This yields an optimal star packing. Now we apply
Stinson’s technique [13] to obtain the secret sharing scheme on G by combining linear schemes on
the individual stars. The parameters of this combined scheme are as stated in Theorem 1.3.

References

[1] C. Blundo, A. G. Gaggia, D. R. Stinson: On the Dealer’s Randomness Required in Secret
Sharing Schemes Des. Codes Cryptogr. Vol 11(3) (1997), pp.235–260

[2] C. Blundo, A. De Santis, R. De Simone, U. Vaccaro: Tight bounds on the information rate of
secret sharing schemes Des. Codes Cryptogr. Vol 11 (1997) pp.107–122

[3] C. Blundo, A. De Santis, L.Gargano, U. Vaccaro: On the information rate of secret sharing
schemes, Advances in Cryptology – CRYPTO’92, Lecture Notes in Comput. Sci. 740 (1993)
pp.148–167

[4] C. Blundo, A. De Santis, D. R. Stinson, U. Vaccaro: Graph decomposition and secret sharing
schemes, J. Cryptology Vol 8 (1995) pp.39–64

[5] E. F. Brickell, D. M. Davenport: On the classification of ideal secret sharing schemes, J.
Cryptology Vol 4 (1991) pp.123–134

[6] E. F. Brickell, D. R. Stinson: Some improved bounds on the information rate of perfect secret
sharing schemes, J. Cryptology Vol 5 (1992) pp.153–166

[7] R. M. Capocelli, A. De Santis, L. Gargano, U. Vaccaro: On the size of shares of secret sharing
schemes, Journal of Cryptology, vol 6(1993), pp. 157–168

[8] L. Csirmaz: Secret sharing schemes on graphs, Studia Mathematica, vol 44(3), pp 297–306,
2007

6

[9] M. van Dijk, T. Kevenaar, G. Schrijen, P. Tuyls: Improved constructions of secret sharing
schemes by applying (λ,ω)-decompositions, Inf. Process. Lett. vol 99(4), 2006, pp.154–157

[10] J. Mart́ı-Farré, C. Padró: On secret sharing schemes, matroids and polymatroids, Proceedings
of the 4th conference on Theory of Cryptography, Lecture Notes in Comput. Sci. 740 (2007)
pp.273–290

[11] S. A. Plotkin, D. B. Shmoys, Eva Tardos: Fast Approximation Algorithms for Fractional
Packing and Covering Problems Math. Oper. Res., Vol 20, pp 257–301, 1995

[12] Edward R. Scheinerman, Daniel H. Ullman: Fractional Graph Theory: A Rational Approach
to the Theory of Graphs Wiley-Interscience, (1997)

[13] D. R. Stinson: Decomposition constructions for secret sharing schemes, IEEE Trans. Inform.
Theory 40 (1994) pp 118–125.

[14] D. R. Stinson, R. Wei: Bibliography on Secret Sharing Schemes, available at http://www.
cacr.math.uwaterloo.ca/~dstinson/ssbib.html

7

