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Abstract. Given a sequence of positive integers p = (p1, . . . , pn), let Sp

denote the family of all sequences of positive integers x = (x1, . . . , xn)
such that xi ≤ pi for all i. Two families of sequences (or vectors),
A, B ⊆ Sp, are said to be r-cross-intersecting if no matter how we se-
lect x ∈ A and y ∈ B, there are at least r distinct indices i such that
xi = yi. We determine the maximum value of |A| · |B| over all pairs of r-
cross-intersecting families and characterize the extremal pairs for r ≥ 1,
provided that min pi > r + 1. The case min pi ≤ r + 1 is quite different.
For this case, we have a conjecture, which we can verify under additional
assumptions. Our results generalize and strengthen several previous re-
sults by Berge, Borg, Frankl, Füredi, Livingston, Moon, and Tokushige,
and answers a question of Zhang.

1 Introduction

The Erdős-Ko-Rado theorem [7] states that for n ≥ 2k, every family of pairwise
intersecting k-element subsets of an n-element set consists of at most

(

n−1
k−1

)

subsets, as many as the star-like family of all subsets containing a fixed element
of the underlying set. This was the starting point of a whole new area within
combinatorics: extremal set theory; see [12], [3], [6], [8]. The Erdős-Ko-Rado
theorem has been extended and generalized to other structures: to multisets,
divisors of an integer, subspaces of a vector space, families of permutations, etc.
It was also generalized to “cross-intersecting” families, i.e., to families A and
B with the property that every element of A intersects all elements of B; see
Hilton [13], Moon [16], and Pyber [17].

For any positive integer k, we write [k] for the set {1, . . . , k}. Given a sequence
of positive integers p = (p1, . . . , pn), let

Sp = [p1] × · · · × [pn] = {(x1, . . . , xn) : xi ∈ [pi] for i ∈ [n]}.
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We will refer to the elements of Sp as vectors. The Hamming distance between
the vectors x, y ∈ Sp is |{i ∈ [n] : xi 6= yi}| and is denoted by d(x, y). Let
r ≥ 1 be an integer. Two vectors x, y ∈ Sp are said to be r-intersecting if
d(x, y) ≤ n − r. (This term originates in the observation that if we represent
a vector x = (x1, . . . , xn) ∈ Sp by the set {(i, xi) : i ∈ [n]}, then x and
y ∈ Sp are r-intersecting if and only if the sets representing them have at least
r common elements.) Two families A,B ⊆ Sp are r-cross-intersecting, if every
pair x ∈ A, y ∈ B is r-intersecting. If (A,A) is an r-cross-intersecting pair, we
say A is r-intersecting. We simply say intersecting or cross-intersecting to mean
1-intersecting or 1-cross-intersecting, respectively.

The investigation of the maximum value for |A| · |B| for cross-intersecting
pairs of families A,B ⊆ Sp was initiated by Moon [16]. She proved, using a
clever induction argument, that in the special case when p1 = p2 = · · · = pn = k
for some k ≥ 3, every cross-intersecting pair A,B ⊆ Sp satisfies

|A| · |B| ≤ k2n−2,

with equality if and only if A = B = {x ∈ Sp : xi = j}, for some i ∈ [n] and
j ∈ [k]. In the case A = B, Moon’s theorem had been discovered by Berge [2],
Livingston [15], and Borg [4]. See also Stanton [18]. In his report on Livingston’s
paper, published in the Mathematical Reviews, Kleitman gave an extremely short
proof for the case A = B, based on a shifting argument. Zhang [20] established
a somewhat weaker result, using a generalization of Katona’s circle method [14].
Note that for k = 2, we can take A = B to be any family of 2n−1 vectors without
containing a pair (x1, . . . , xn), (y1, . . . , yn) with xi + yi = 3 for every i. Then A
is an intersecting family with |A|2 = 22n−2, which is not of the type described
in Moon’s theorem.

Moon also considered r-cross-intersecting pairs in Sp with p1 = p2 = · · · =
pn = k for some k > r + 1, and characterized all pairs for which |A| · |B| attains
its maximum, that is, we have

|A| · |B| = k2(n−r).

The assumption k > r + 1 is necessary. See Tokushige [19], for a somewhat
weaker result, using algebraic techniques.

Zhang [20] suggested that Moon’s results may be extended to arbitrary se-
quences of positive integers p = (p1, . . . , pn). The aim of this note is twofold: (1)
to establish such an extension under the assumption mini pi > r + 1, and (2)
to formulate a conjecture that covers essentially all other interesting cases. We
verify this conjecture in several special cases.

We start with the special case r = 1, which has also been settled indepen-
dently by Borg [5], using different techniques.

Theorem 1. Let p = (p1, . . . , pn) be a sequence positive integers and let A,B ⊆
Sp form a pair of cross-intersecting families of vectors.

We have |A| · |B| ≤ |Sp|
2/k2, where k = mini pi. Equality holds for the case

A = B = {x ∈ Sp : xi = j}, whenever i ∈ [n] satisfies pi = k and j ∈ [k]. For

k 6= 2, there are no other extremal cross-intersecting families.



We say that a coordinate i ∈ [n] is irrelevant for a set A ⊆ Sp if, whenever
two elements of Sp differ only in coordinate i and A contains one of them, it also
contains the other. Otherwise, we say that i is relevant for A.

Note that no coordinate i with pi = 1 can be relevant for any family. Each
such coordinate forces an intersection between every pair of vectors. So, if we
delete it, every r-cross-intersecting pair becomes (r−1)-cross-intersecting. There-
fore, from now on we will always assume that we have pi ≥ 2 for every i.

We call a sequence of integers p = (p1, . . . , pn) a size vector if pi ≥ 2 for all
i. The length of p is n. We say that an r-cross-intersecting pair A,B ⊆ Sp is
maximal if it maximizes the value |A| · |B|.

Using this notation and terminology, Theorem 1 can be rephrased as follows.

Theorem 1’. Let p = (p1, . . . , pn) be a sequence of integers with k = mini pi > 2.
For any maximal pair of cross-intersecting families, A,B ⊆ Sp, we have

A = B, and there is a single coordinate which is relevant for A. The relevant

coordinate i must satisfy pi = k.

See Section 5 for a complete characterization of maximal cross-intersecting
pairs in the k = 2 case. Here we mention that only the coordinates with pi = 2
can be relevant for them, but for certain pairs, all such coordinates are relevant
simultaneously. For example, let n be odd, p = (2, . . . , 2), and let A = B consist
of all vectors in Sp which have at most ⌊n/2⌋ coordinates that are 1. This makes
(A,B) a maximal cross-intersecting pair.

Let T ⊆ [n] be a subset of the coordinates, let x0 ∈ Sp be an arbitrary vector,
and let k be an integer satisfying 0 ≤ k ≤ |T |. The Hamming ball of radius k
around x0 in the coordinates T is defined as the family

Bk = {x ∈ Sp : |{i ∈ T : xi 6= (x0)i}| ≤ k}.

Note that the pair (Bk, Bl) is (|T | − k − l)-cross-intersecting. We use the word
ball to refer to any Hamming ball without specifying its center, radius or its
set of coordinates. A Hamming ball of radius 0 in coordinates T is said to be
obtained by fixing the coordinates in T .

For the proof of Theorem 1, we need the following statement, which will be
established by induction on n, using the idea in [16].

Lemma 2. Let 1 ≤ r < n, let p = (p1, . . . , pn) be a size vector satisfying

3 ≤ p1 ≤ p2 ≤ · · · ≤ pn and let A,B ⊆ Sp form a pair of r-cross-intersecting

families. If

2

pr+1
+

r
∑

i=1

1

pi
≤ 1,

then |A| · |B| ≤
∏n

i=r+1 p2
i . In case of equality, we have A = B and this family

can be obtained by fixing r coordinates in Sp.

By fixing any r coordinates, we obtain a “trivial” r-intersecting family A =
B ⊆ Sp. As was observed by Frankl and Füredi [9], not all maximal size r-
intersecting families can be obtained in this way, for certain size vectors. They



considered size vectors p = (k, . . . , k) with n ≥ r + 2 coordinates, and noticed
that a Hamming ball of radius 1 in r +2 coordinates is r-intersecting. Moreover,
for k ≤ r, this family is strictly larger than the trivial r-intersecting family. See
also [1].

On the other hand, as was mentioned before, for k ≥ r+2, Moon [16] proved
that among all r-intersecting families, the trivial ones are maximal.

This leaves open only the case k = r + 1, where the trivial r-intersecting
families and the radius 1 balls in r + 2 coordinates have precisely the same
size. We believe that in this case there are no larger r-intersecting families. For
r = 1, it can be and has been easily verified (and follows, for example, from
our Theorem 1, which deals with the asymmetric case, when A and B do not
necessarily coincide). Our Theorem 7 settles the problem also for r > 3. The
intermediate cases r = 2 or 3 are still open, but they could possibly be handled
by computer search.

Therefore, to characterize maximal size r-intersecting families A or maximal
r-cross-intersecting pairs of families (A,B) for all size vectors, we cannot restrict
ourselves to fixing r coordinates. We make the following conjecture that can
roughly be considered as a generalization of the Frankl-Füredi conjecture [9]
that has been proved by Frankl and Tokushige [11]. The generalization is twofold:
we consider r-cross-intersecting pairs rather than r-intersecting families and we
allow arbitrary size vectors not just vectors with all-equal coordinates.

Conjecture 3. If 1 ≤ r ≤ n and p is a size vector of length n, then there

exists a maximal pair of r-cross-intersecting families A,B ⊆ Sp, where A and

B are balls. If we further have pi ≥ 3 for all i ∈ [n], then all maximal pairs of

r-cross-intersecting families consist of balls.

Note that the r = 1 special case of Conjecture 3 is established by Theorem 1.
Some further special cases of the conjecture are settled in Theorem 7.

It is not hard to narrow down the range of possibilities for maximal r-cross-
intersecting pairs that are formed by two balls, A and B. In fact, the following
theorem implies that all such pairs are determined up to isomorphism by the
number of relevant coordinates. Assuming that Conjecture 3 is true, finding
max |A| · |B| for r-cross-intersecting families A,B ⊆ Sp boils down to making
numeric comparisons for pairs of balls obtained by various radii. In case pi ≥ 3
for all i (and still assuming Conjecture 3), the same process also finds all maximal
r-cross-intersecting pairs.

Theorem 4. Let 1 ≤ r ≤ n and let p = (p1, . . . , pn) be a size vector. If A,B ⊆
Sp form a maximal pair of r-cross-intersecting families, then either of them

determines the other. In particular, A and B have the same set of relevant

coordinates. Moreover, if A is a ball of radius l around x0 ∈ Sp in a set of

coordinates T ⊆ [n], then |T | ≥ l + r, and B is a ball of radius |T |− l− r around

x0 in the same set of the coordinates. Furthermore, we have pi ≤ pj for every

i ∈ T and j ∈ [n] \ T , and the radii of the balls differ by at most 1, that is,
∣

∣|T | − 2l − r
∣

∣ ≤ 1.



Note that if A = B for a maximal pair (A,B) of r-cross-intersecting families,
then A is also a maximal size r-intersecting family. This is the case, in particular,
if A and B are balls of equal radii. However, for many size vectors, no maximal
r-cross-intersecting pair consists of r-intersecting families, as the maximal r-
cross-intersecting pairs are often formed by balls whose radii differ by one. For
example, for the size vector p = (3, 3, 3, 3, 3), the largest 4-intersecting family
C is obtained by fixing four coordinates, while the maximal 4-cross-intersecting
pair is formed by a singleton A = {x} and a ball B of radius 1 around x in all
coordinates. Here we have |A| · |B| = 11 > |C|2 = 9.

As we have indicated above, we have been unable to prove Conjecture 3 in its
full generality, but we were able to verify it in several interesting special cases.
We will proceed in two steps. First we argue, using entropies, that the number of
relevant coordinates in a maximal r-cross-intersecting family is bounded. Then
we apply combinatorial methods to prove the conjecture under the assumption
that the number of relevant coordinates is small.

In the case where there are many relevant coordinates for a pair of maximal
r-cross-intersecting families, we use entropies to bound the size of the families
and to prove

Theorem 5. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector, let A,B ⊆ Sp

form a maximal pair of r-cross-intersecting families, and let T be the set of

coordinates that are relevant for A or B. Then neither the size of A nor the size

of B can exceed
|Sp|

∏

i∈T (pi − 1)1−2/pi

.

We use this theorem to bound the number of relevant coordinates i with
pi > 2. The number of relevant coordinates i with pi = 2 can be unbounded; see
Section 5.

Theorem 6. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector, and let

A,B ⊆ Sp form a maximal pair of r-cross-intersecting families.

For the set of coordinates T relevant for A or B, we have

r
∏

i=1

pi ≥
∏

i∈T

(pi − 1)1−2/pi ,

which implies that |{i ∈ T : pi > 2}| < 5r.

We can characterize the maximal r-cross-intersecting pairs for all size vectors
p satisfying min pi > r + 1, and in many other cases.

Theorem 7. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector with p1 ≤ p2 ≤
· · · ≤ pn, and let A,B ⊆ Sp form a pair of r-cross-intersecting families.

1. If p1 > r+1, we have |A| · |B| ≤
∏n

i=r+1 p2
i . In case of equality, A = B holds

and this family can be obtained by fixing r coordinates in Sp.



2. If p1 = r + 1 > 4, we have |A| · |B| ≤
∏n

i=r+1 p2
i . In case of equality, A = B

holds and this family can be obtained either by fixing r coordinates in Sp or

by taking a Hamming ball of radius 1 in r + 2 coordinates i, all satisfying

pi = r + 1.
3. There is a function t(r) = r/2 + o(r) such that if p1 ≥ t(r) and (A,B) is a

maximal r-cross-intersecting pair, then the families A and B are balls in at

most r + 3 coordinates.

The proof of Theorem 7 relies on the following result.

Theorem 8. Let 1 ≤ r ≤ n and let p be a size vector of length n.

1. If there exists a maximal pair of r-cross-intersecting families in SP with at

most r + 2 relevant coordinates, then there exists such a pair consisting of

balls.

2. If pi > 2 for all i ∈ [n] and A,B ⊆ Sp form a maximal pair of r-cross-
intersecting families with at most r + 3 relevant coordinates, then A and B
are balls.

With an involved case analysis, it may be possible to extend Theorem 8 to
pairs with more relevant coordinates. Any such an improvement would carry
over to Theorem 7.

All of our results remain meaningful in the symmetric case where A = B.
For instance, in this case, Theorem 1 (also proved by Borg [5]) states that every
intersecting family A ⊆ Sp has at most |Sp|/k members, where k = mini pi.
In case k > 2, equality can be achieved only by fixing some coordinate i with
pi = k. Note that in the case A = B (i.e., r-intersecting families) the exact
maximum size is known for size vectors (q, . . . , q), [11].

2 Proofs of Theorems 4 and 1

First, we verify Theorem 4 and a technical lemma (see Lemma 9 below) which
generalizes the corresponding result in [16]. Our proof is slightly simpler. Lemma 9
will enable us to deduce Lemma 2, the main ingredient of the proof of Theorem 1,
presented at the end of the section.

Proof of Theorem 4. The first statement is self-evident: if A,B ⊆ Sp form a
maximal pair of r-cross-intersecting families, then

B = {x ∈ Sp : x r-intersects y for all y ∈ A}.

If a coordinate is irrelevant for A, then it is also irrelevant for B defined by
this formula. Therefore, by symmetry, A and B have the same set of relevant
coordinates.

If A is the Hamming ball around x0 of radius l in coordinates T , then we
have B = ∅ if |T | < l + r, which is not possible for a maximal cross-intersecting



family. If |T | ≥ l+r, we obtain the ball claimed in the theorem. For every i ∈ T ,
j ∈ [n] \ T , consider the set T ′ = (T \ {i}) ∪ {j} and the Hamming balls A′ and
B′ of radii l and |T |− l− r around x0 in the coordinates T ′. These balls form an
r-cross-intersecting pair and in case pi > pj , we have |A′| > |A| and |B′| > |B|,
contradicting the maximality of the pair (A,B).

Finally let Bl be a ball of radius l around some fixed vector x in a fixed set T
of coordinates. We claim that the size |Bl| of these balls is strictly log-concave,
that is, we have

|Bl|
2 > |Bl−1| · |Bl+1|

for 1 ≤ l < |T |. As balls around different centers have the same size, we can
represent the left-hand side as |Bl|

2 = |C|, where

C = {(y, z) | y, z ∈ Sp, d(x, y) ≤ l, d(y, z) ≤ l}.

Similarly, the right-hand side can be represented as |Bl−1| · |Bl+1| = |D| with

D = {(y, z) | y, z ∈ Sp, d(x, y) ≤ l − 1, d(y, z) ≤ l + 1}.

We say that two pairs (y, z) and (y′, z′) (all four terms from Sp) are equivalent

if z = z′ and for every i ∈ [n] we have either yi = y′
i or yi, y

′
i ∈ {xi, zi}. Let us fix

an equivalence class O. For all (y, z) ∈ O, the element z and some coordinates yi

of y are fixed. We call the remaining coordinates i open. For an open coordinate
i, the value of yi must be one of the non-equal values xi or zi. If m denotes
the number of open coordinates in O, we have |O| = 2m. For a pair (y, z) ∈ O,
the distance d(x, y) = d1 + d2(y), where d1 is the number of fixed coordinates
i with xi 6= yi, while d2(y) is the number of open coordinates i with xi 6= yi.
Note that d1 is constant for all elements of O, while d2(y) takes any value j for
(

m
j

)

members of O. Similarly, we can write d(y, z) = d1 +(m− d2(y)), as yi 6= zi

holds for the same fixed coordinates where xi 6= yi, and yi is equal to exactly
one of xi and zi for an open coordinate i. Summarizing, we have

C ∩ O = {(y, z) ∈ O | d1 + m − l ≤ d2(y) ≤ l − d1},

D ∩ O = {(y, z) ∈ O | d1 + m − l − 1 ≤ d2(y) ≤ l − d1 − 1}.

We claim that |C∩O| ≥ |D∩O|. Indeed, if l−d1 < m/2, then C∩O = D∩O = ∅.
Otherwise, we have |C ∩ O| − |D ∩ O| =

(

m
l−d1

)

−
(

m
l−d1+1

)

≥ 0. Note also that
equality holds only if l − d1 < m/2 or l − d1 > m, in which cases C and D are
disjoint from O or contain O, respectively.

As C contains at least as many pairs from every equivalence class as D does,
we have |C| ≥ |D|. Equality cannot hold for all equivalence classes, so we have
|C| > |D|, as claimed.

To finish the proof of the theorem, we need to verify that the pair (Bl1 , Bl2)
is not maximal r-cross-intersecting if r = |T | − l1 − l2 and |l1 − l2| ≥ 2. This
follows from the log-concavity, because in case l1 ≥ l2 +2 the pair (Bl1−1, Bl2+1)
is also r-cross-intersecting and |Bl1−1| · |Bl2+1| > |Bl1 | · |Bl2 |. ⊓⊔



The following lemma will also be used in the proof of Theorem 5, presented
in the next section.

Lemma 9. Let 1 ≤ r ≤ n, let p = (p1, . . . , pn) be a size vector, and let A,B ⊆ Sp

form a maximal pair of r-cross-intersecting families.

If i ∈ [n] is a relevant coordinate for A or B, then there exists a value l ∈ [pi]
such that

|{x ∈ A : xi 6= l}| ≤ |A|/pi,

|{y ∈ B : yi 6= l}| ≤ |B|/pi.

Proof. Let us fix r, n, p, i, A, and B as in the lemma. By Theorem 4, if a coordinate
is irrelevant for A, then it is also irrelevant for B and vice versa.

In the case n = r, we have A = B and this family must be a singleton, so
the lemma is trivially true. From now on, we assume that n > r and hence the
notion of r-cross-intersecting families is meaningful for n − 1 coordinates.

Let q = (p1, . . . , pi−1, pi+1, . . . , pn). For any l ∈ [pi], let

A′
l = {x ∈ A : xi = l},

B′
l = {y ∈ B : yi = l},

and let Al and Bl stand for the families obtained from A′
l and B′

l, respectively,
by dropping their ith coordinates. By definition, we have Al, Bl ⊆ Sq, and |A| =
∑

l |Al| and |B| =
∑

l |Bl|. Furthermore, for any two distinct elements l,m ∈ [pi],
the families Al and Bm are r-cross-intersecting, since the vectors in A′

l differ from
the vectors in B′

m in the ith coordinate, and therefore the r indices where they
agree must be elsewhere.

Let Z denote the maximum product |A∗| · |B∗| of an r-cross-intersecting pair
A∗, B∗ ⊆ Sq. We have |Al| · |Bm| ≤ Z for all l,m ∈ [pi] with l 6= m. Adding an
irrelevant ith coordinate to the maximal r-cross-intersecting pair A∗, B∗ ⊆ Sq,
we obtain a pair A∗′, B∗′ ⊆ Sp with |A∗′| · |B∗′| = p2

i Z. Using the maximality of
A and B, we have |A| · |B| ≥ p2

i Z. Let l0 be chosen so as to maximize |Al0 | · |Bl0 |,
and let c = |Al0 | · |Bl0 |/Z.

Assume first that c ≤ 1. Then we have

p2
i Z ≤ |A| · |B| =

∑

l,m∈[pi]

|Al| · |Bm| ≤
∑

l,m∈[pi]

Z = p2
i Z.

Hence, we must have equality everywhere. This yields that c = 1 and that Al

and Bm form a maximal r-cross-intersecting pair for all l,m ∈ [pi], l 6= m. This
also implies that |Al| = |Am| for l,m ∈ [pi], from where the statement of the
lemma follows, provided that pi = 2.

If pi ≥ 3, then all families Al must be equal to one another, since one member
in a maximal r-cross-intersecting family determines the other, by Theorem 4.
This contradicts our assumption that the ith coordinate was relevant for A.

Thus, we may assume that c > 1.



For m ∈ [pi], m 6= l0, we have |Al0 | · |Bm| ≤ Z = |Al0 | · |Bl0 |/c. Thus,

|Bm| ≤ |Bl0 |/c, (1)

which yields that |B| =
∑

m∈[pi]
|Bm| ≤ (1 + (pi − 1)/c)|Bl0 |. By symmetry, we

also have

|Am| ≤ |Al0 |/c (2)

for m 6= l0 and |A| ≤ (1 + (pi − 1)/c)|Al0 |. Combining these inequalities, we
obtain

p2
i Z ≤ |A| · |B| ≤ (1 + (pn − 1)/c)2|Al0 | · |Bl0 | = (1 + (pi − 1)/c)2cZ.

We solve the resulting inequality p2
i ≤ c(1 + (pi − 1)/c)2 for c > 1 and conclude

that c ≥ (pi−1)2. This inequality, together with Equations (1) and (2), completes
the proof of Lemma 9. ⊓⊔

Proof of Lemma 2. We proceed by induction on n.
Let A and B form a maximal r-cross-intersecting pair. It is sufficient to show

that they have only r relevant coordinates. Let us suppose that the set T of
their relevant coordinates satisfies |T | > r, and choose a subset T ′ ⊆ T with
|T ′| = r + 1. By Lemma 9, for every i ∈ T ′ there exists li ∈ [pi] such that the
family Xi = {x ∈ B : xi 6= li} has cardinality |Xi| ≤ |B|/pi.

If we assume that
2

pr+1
+

r
∑

i=1

1

pi
< 1

holds (with strict inequality), then this bound of |Xi| would suffice. In order to
also be able to deal with the case

2

pr+1
+

r
∑

i=1

1

pi
= 1,

we show that |Xi| = |B|/pi is not possible. Considering the proof of Lemma 9,
equality here would mean that the families Al and Bl (obtained by dropping the
ith coordinate from the vectors in the sets {x ∈ A : xi = l} and {y ∈ B : yi =
l}, respectively) satisfy the following condition: both (Ali , Bm) and (Am, Bli)
should be maximal r-cross-intersecting pairs for all m 6= li. By the induction
hypothesis, this would imply that Ali = Bm and Am = Bli , contradicting that
|Am| < |Ali | and |Bm| < |Bli | (see (1), in view of c > 1). Therefore, we have
|Xi| < |B|/pi.

Let C = {x ∈ Sp : xi = 1 for all i ∈ [r]} be the r-intersecting family
obtained by fixing r coordinates in Sp. In the family D = B \ (

⋃

i∈T ′ Xi), the
coordinates in T ′ are fixed. Thus, we have

|D| ≤
∏

i∈[n]\T ′

pi ≤
n
∏

i=r+2

pi = |C|/pr+1.



On the other hand, we have

|D| = |B| −
∑

i∈T ′

|Xi| > |B|(1 −
∑

i∈T ′

1/pi) ≥ |B|(1 −
r+1
∑

i=1

1/pi).

Comparing the last two inequalities, we obtain

|B| <
|C|

pr+1(1 −
∑r+1

i=1 1/pi)
.

By our assumption on p, the denominator is at least 1, so that we have |B| < |C|.
By symmetry, we also have |A| < |C|. Thus, |A| · |B| < |C|2 contradicting the
maximality of the pair (A,B). This completes the proof of Lemma 2. ⊓⊔

Now we can quickly finish the proof of Theorem 1.

Proof of Theorem 1. Notice that Lemma 2 implies Theorem 1, whenever k =
mini pi ≥ 3. It remains to verify the statement for k = 1 and k = 2. For k = 1,
it follows from the fact that all pairs of vectors in Sp are intersecting, thus the
only maximal cross-intersecting pair is A = B = Sp.

Suppose next that k = 2. For x ∈ Sp, let x′ ∈ Sp be defined by x′
i =

(xi + 1 mod pi) for i ∈ [n]. Note that x 7→ x′ is a permutation of Sp. Clearly, x
and x′ are not intersecting, so we either have x /∈ A or x′ /∈ B. As a consequence,
we obtain that |A| + |B| ≤ |Sp|, which, in turn, implies that |A| · |B| ≤ |Sp|

2/4,
as claimed. It also follows that all maximal pairs satisfy |A| = |B| = |Sp|/2. ⊓⊔

3 Using entropy: Proofs of Theorems 5 and 6

Proof of Theorem 5. Let r, n, p,A,B and T be as in the theorem. Let us write y
for a randomly and uniformly selected element of B. Lemma 9 implies that, for
each i ∈ T , there exists a value li ∈ [pi] such that

Pr[yi = li] ≥ 1 − 1/pi. (3)

We bound the entropy H(yi) of yi from above by the entropy of the indicator
variable of the event yi = li plus the contribution coming from the entropy of yi

assuming yi 6= li:

H(yi) ≤ h(1 − 1/pi) + (1/pi) log(pi − 1) = log pi − (1 − 2/pi) log(pi − 1),

where h(z) = −z log z − (1 − z) log(1 − z) is the entropy function, and we used
that 1 − 1/pi ≥ 1/2.

For any i ∈ [n] \ T , we use the trivial estimate H(yi) ≤ log pi. By the
subadditivity of the entropy, we obtain

log |B| = H(y) ≤
∑

i∈[n]

H(yi) ≤
∑

i∈T

(log pi − (1− 2/pi) log(pi − 1)) +
∑

i∈[n]\T

log pi,



or, equivalently,

|B| ≤
∏

i∈T

pi

(pi − 1)1−2/pi

∏

i∈[n]\T

pi =
|Sp|

∏

i∈T (pi − 1)1−2/pi

as required. The bound on |A| follows by symmetry and completes the proof of
the theorem. ⊓⊔

Theorem 6 is a simple corollary of Theorem 5.

Proof of Theorem 6. Fixing the first r coordinates, we obtain the family

C = {x ∈ Sp : xi = 1 for all i ∈ [r]}.

This family is r-intersecting. Thus, by the maximality of the pair (A,B), we
have

|A| · |B| ≥ |C|2 =

(

n
∏

i=r+1

pi

)2

. (4)

Comparing this with our upper bounds on |A| and |B|, we obtain the inequality
claimed in the theorem.

To prove the required bound on the number of relevant coordinates i with
pi 6= 2, we assume that the coordinates are ordered, that is, p1 ≤ p2 ≤ · · · ≤

pn. Applying the above estimate on
∏

i∈[r] pi and using (pi − 1)1−2/pi > p
1/5
i

whenever pi ≥ 3, the theorem follows. ⊓⊔

4 Monotone families: Proofs of Theorems 8 and 7

Given a vector x ∈ Sp, the set supp(x) = {i ∈ [n] : xi > 1} is called the support

of x. A family A ⊆ Sp is said to be monotone, if for any x ∈ A and y ∈ Sp

satisfying supp(y) ⊆ supp(x), we have y ∈ A.
For a family A ⊆ Sp, let us define its support as supp(A) = {supp(x) : x ∈

A}. For a monotone family A, its support is clearly subset-closed and it uniquely
determines A, as A = {x ∈ Sp : supp(x) ∈ supp(A)}.

The next result shows that if we want to prove Conjecture 3, it is sufficient
to prove it for monotone families. This will enable us to establish Theorems 8
and 7, that is, to verify the conjecture for maximal r-cross-intersecting pairs
with a limited number of relevant coordinates. Note that similar reduction to
monotone families appears also in [9].

Lemma 10. Let 1 ≤ r ≤ n and let p be a size vector of length n.

There exists a maximal pair of r-cross-intersecting families A,B ⊆ Sp such

that both A and B are monotone.

If pi ≥ 3 for all i ∈ [n], and A,B ⊆ Sp are maximal r-cross-intersecting

families that are not balls, then there exists a pair of maximal r-cross-intersecting

families that consists of monotone families that are not balls and have no more

relevant coordinates than A or B.



Proof. Consider the following shift operations. For any i ∈ [n] and j ∈ [pi] \ {1},
for any family A ⊆ Sp and any element x ∈ A, we define

φi(x) = (x1, . . . , xi−1, 1, xi+1, . . . , xn),

φi,j(x,A) =

{

φi(x) if xi = j and φi(x) /∈ A

x otherwise,

φi,j(A) = {φi,j(x,A) : x ∈ A}.

Clearly, we have |φi,j(A)| = |A| for any family A ⊆ Sp. We claim that for any pair
of r-cross-intersecting families A,B ⊆ Sp, the families φi,j(A) and φi,j(B) are
also r-cross-intersecting. Indeed, if x ∈ A and y ∈ B are r-intersecting vectors,
then φi,j(x,A) and φi,j(y,B) are also r-intersecting, unless x and y have exactly
r common coordinates, one of them is xi = yi = j, and this common coordinate
gets ruined as φi,j(x,A) = x and φi,j(y,B) = φi(y) (or vice versa). However,
this is impossible, because this would imply that the vector φi(x) belongs to A,
in spite of the fact that φi(x) and y ∈ B are not r-intersecting.

If (A,B) is a maximal r-cross-intersecting pair, then so is (φi,j(A), φi,j(B)).
When applying one of these shift operations changes either of the families A or
B, then the total sum of all coordinates of all elements decreases. Therefore, after
shifting a finite number of times we arrive at a maximal pair of r-intersecting
families that cannot be changed by further shifting. We claim that this pair
(A,B) is monotone. Let y ∈ B and y′ ∈ Sp \ B be arbitrary. We show that
B is monotone by showing that supp(y′) is not contained in supp(y). Indeed,
by the maximality of the pair (A,B) and using the fact that y′ /∈ B, there
must exist x′ ∈ A such that x′ and y′ are not r-cross-intersecting, and hence
|supp(x′)∪ supp(y′)| > n− r. Applying “projections” φi to x′ in the coordinates
i ∈ supp(x′) ∩ supp(y), we obtain x with supp(x) = supp(x′) \ supp(y). The
shift operations φi,j do not change the family A, thus A must be closed for the
projections φi and we have x ∈ A. The supports of x and y are disjoint. Thus,
their Hamming distance is |supp(x) ∪ supp(y)|, which is at most n − r, as they
are r-intersecting. Therefore, supp(x) ∪ supp(y) = supp(x′) ∪ supp(y) is smaller
than supp(x′) ∪ supp(y′), showing that supp(y′) 6⊆ supp(y). This proves that B
is monotone. By symmetry, A is also monotone, which proves the first claim of
the lemma.

To prove the second claim, assume that pi ≥ 3 for all i ∈ [n]. Note that
Theorem 1 establishes the lemma in the case r = 1, so from now on we can
assume without loss of generality that r ≥ 2. Let A,B ⊆ Sp form a maximal r-
cross-intersecting pair. By the previous paragraph, this pair can be transformed
into a monotone pair by repeated applications of the shift operations φi,j . Clearly,
these operations do not introduce new relevant coordinates. It remains to check
that the shifting operations do not produce balls from non-balls, that is, if A,B ⊆
Sp are maximal r-cross-intersecting families, and A′ = φi,j(A) and B′ = φi,j(B)
are balls, then so are A and B. In fact, by Theorem 4 it is sufficient to prove
that one of them is a ball.



We saw that A′ and B′ must also form a maximal r-cross-intersecting pair.
Thus, by Theorem 4, there is a set of coordinates T ⊆ [n], a vector x0 ∈ Sp, and
radii l and m satisfying |T | = r+l+m and that A′ and B′ are the Hamming balls
of radius l and m in coordinates T around the vector x0. We can assume that
i ∈ T , because otherwise A = A′ and we are done. We also have that (x0)i = 1,
as otherwise A′ = φi,j(A) is impossible. The vectors x ∈ Sp such that xi = j
and

|{k ∈ T : xk 6= (x0)k}| = l + 1

are called A-critical. Analogously, the vectors y ∈ Sp such that yi = j and

|{k ∈ T : yk 6= (x0)k}| = m + 1

are said to be B-critical. By the definition of φi,j , the family A differs from A′ by
including some A-critical vectors x and losing the corresponding vectors φi(x).
Symmetrically, B \ B′ consists of some B-critical vectors y and B′ \ B consists
of the corresponding vectors φi(y). Let us consider the bipartite graph G whose
vertices on one side are the A-critical vectors x, the vertices on the other side
are the B-critical vectors y (considered as disjoint families, even if l = m), and x
is adjacent to y if and only if |{k ∈ [n] : xk = yk}| = r. If x and y are adjacent,
then neither the pair (x, φi(y)), nor the pair (φi(x), y) is r-intersecting. As A
and B are r-cross-intersecting, for any pair of adjacent vertices x and y of G, we
have x ∈ A if and only if y ∈ B.

The crucial observation is that the graph G is connected. Note that this is
not the case if pk = 2 for some index k /∈ T , since all A-critical vectors x in a
connected component of G would have the same value xk. However, we assumed
that pk > 2 for l ∈ [n]. In this case, the A-critical vectors x and x′ have a
common B-critical neighbor (and, therefore, their distance in G is 2) if and only
if the symmetric difference of the l element sets {k ∈ T \ {i} : xk 6= (x0)k} and
{k ∈ T \{i} : x′

k 6= (x0)k} have at most 2r−2 elements. We assumed that r > 1,
so this means that all A-critical vectors are indeed in the same component of
the graph G. Therefore, either all A-critical vectors belong to A or none of them
does. In the latter case, we have A = A′. In the former case, A is the Hamming
ball of radius l in coordinates T around the vector x′

0, where x′
0 agrees with x0

in all coordinates but in (x′
0)i = j. In either case, A is a ball as required. ⊓⊔

Proof of Theorem 8. By Lemma 10, it is enough to restrict our attention to
monotone families A and B. We may also assume that all coordinates are relevant
(simply drop the irrelevant coordinates). Thus, we have n ≤ r + 3.

Denote by Ul the Hamming ball of radius l around the all-1 vector in the
entire set of coordinates [n]. Notice that the monotone families A and B are
r-cross-intersecting if and only if for a ∈ supp(A) and b ∈ supp(B) we have
|a ∪ b| ≤ n − r. We consider all possible values of n − r, separately.

If n = r, both families A and B must coincide with the singleton U0.

If n = r + 1, it is still true that either A or B is U0, and hence both families
are balls. Otherwise, both supp(A) and supp(B) have to contain at least one
non-empty set, but the union of these sets has size at most n−r = 1, so we have



supp(A) = supp(B) = {∅, {i}} for some i ∈ [n]. This contradicts our assumption
that the coordinate i is relevant for A.

If n = r+2, we are done if A = B = U1. Otherwise, we must have a 2-element
set either in supp(A) or in supp(B). Let us assume that a 2-element set {i, j}
belongs to supp(A). Then each set b ∈ supp(B) must satisfy b ⊆ {i, j}. This
leaves five possibilities for a non-empty monotone family B, as supp(B) must be
one of the following set systems:

1. {∅},
2. {∅, {i}},
3. {∅, {j}},
4. {∅, {i}, {j}}, and
5. {∅, {i}, {j}, {i, j}}.

Cases 2, 3, and 5 are not possible, because either i or j would not be relevant
for B.

In case 1, A and B are balls, as claimed. Nevertheless, this case is impossible
as the radii of A and B differ by 2, contradicting Theorem 4.

It remains to deal with case 4. Here supp(A) consists of the sets of size at
most 1 and the 2-element set {i, j}. Define

C = {x ∈ Sp : xk = 1 for all k ∈ [n] \ {i, j}}.

Note that |A| + |B| = |U1| + |C|, because each vector in Sp appears in the
same number of sets on both sides. Thus, we have either |A| + |B| ≤ 2|U1| or
|A| + |B| ≤ 2|C|. Since |A| > |B|, the above inequalities imply |A| · |B| < |U1|
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or |A| · |B| < |C|2. This contradicts the maximality of the pair (A,B), because
both U1 and C are r-intersecting. The contradiction completes the proof of the
case n − r = 2.

To complete the proof of Theorem 8, we need to deal with the case n−r = 3,
i.e., when there are r+3 relevant coordinates. Note that, as part 1 of Theorem 8
does not apply to this case, we have pi ≥ 3 for i ∈ [n]. This slightly simplifies
the following case analysis, where we consider all containment-maximal pairs
of families (supp(A), supp(B)) with the required condition on the size of the
pairwise unions.

Before considering the individual cases, we make a few simple observations.
First, we have

supp(A) = {T ⊆ [n] | ∀U ∈ supp(B) : |T ∪ U ≤ 3},

supp(B) = {U ⊆ [n] | ∀T ∈ supp(A) : |T ∪ U | ≤ 3.

These are non-empty sets and they determine the monotone sets A and B.
We say that i dominates j in a set system C, if whenever j ∈ T but i /∈ T

for a set T ∈ C, then we have (T \ {j})∪ {i} ∈ C. We say that i is equivalent to
j in C if i dominates j in C and j also dominates i. If i dominates j but j does
not dominate i, then we say that i strictly dominates j.



Note that if one of the statements “i dominates j,” “i is equivalent to j,”
or “i strictly dominates j” holds in either supp(A) or supp(B), then the same
statement holds in both families. If i strictly dominates j in supp(A), then we
have pi ≥ pj . Indeed, otherwise we would have |A′| > |A| and |B′| > |B| for
the monotone families A′ and B′ whose supports supp(A′), resp. supp(B′), are
obtained from supp(A), resp. supp(B), by switching the roles of i and j. Since
A′ and B′ are r-cross-intersecting, this contradicts the maximality of (A,B).

For equivalent coordinates i and j in supp(A), we may assume by symmetry
that pi ≥ pj .

Case 1. First assume that supp(A) contains a 3-element set {i, j, k}. Then all
sets in supp(B) are contained in {i, j, k}. Therefore, supp(B) must be one of the
following sets, up to a suitable permutation of the indices i, j, and k.

1. {∅},
2. {∅, {i}},
3. {∅, {i}, {j}},
4. {∅, {i}, {j}, {k}},
5. {∅, {i}, {j}, {i, j}},
6. {∅, {i}, {j}, {k}, {i, j}},
7. {∅, {i}, {j}, {k}, {i, j}, {i, k}},
8. {∅, {i}, {j}, {k}, {i, j}, {i, k}, {j, k}},
9. {∅, {i}, {j}, {k}, {i, j}, {i, k}, {j, k}, {i, j, k}}.

In all of these families, i dominates j and j dominates k. So we may assume
pi ≥ pj ≥ pk ≥ 3.

Subcases 2, 5, 7, and 9 are not possible, because i is not a relevant coordinate
for A in them.

In subcase 1, A and B are balls, but, as before, this case is still impossible,
because the radii of A and B differ by 3.

In subcase 3, we apply Lemma 9 to the set B and coordinate i to obtain
(pi − 1)2 ≤ pj , a contradiction.

In subcase 4, a similar application of Lemma 9 yields (pi − 1)2 ≤ pj + pk − 1
with the only solution pi = pj = pk = 3. We have supp(A) = supp(U2) ∪
{{i, j, k}} and thus |A| = |U2| + 8. We further have |B| = 7. We must have
n ≥ 4, so that |U1| ≥ 9 and |U2| ≥ 33. Using these estimates, we obtain |A|·|B| <
|U1| · |U2|, a contradiction.

In subcase 6, we again start with Lemma 9. It yields that (pi − 1)2pj ≤
pj + pk − 1, a contradiction.

Finally, in subcase 8, we have (pi − 1)2(pj + pk − 1) ≤ pjpk from Lemma 9,
a contradiction.

Case 2. Now we assume that supp(A) contains no 3-element sets, but it contains
two disjoint 2-element sets {i, j} and {k, l}. In this case, supp(B) contains the
empty set and all singletons plus one of the following families of 2-element sets,
up to a suitable symmetry on the indices i, j, k, and l:

1. ∅,



2. {{i, k}},
3. {{i, k}, {i, l}},
4. {{i, k}, {j, l}},
5. {{i, k}, {i, l}, {j, l}},
6. {{i, k}, {i, l}, {j, k}, {j, l}}.

Note that in subcase 1, A and B are balls, and subcase 6 is identical with
subcase 4 with the roles of A and B reversed. We use Lemma 9 and numeric
comparisons to rule out the remaining cases.

Consider the monotone ball C of radius 1 in the set of coordinates [n] \
{i}. This is an r-intersecting family. In subcases 2 and 3, i dominates all other
coordinates, so we may assume that pi is maximal among all the pm (m ∈ [n]). In
both subcases considered, we have 2|C| ≥ |A|+|B|. In subcase 2, this follows from
pi ≥ pk, while in subcase 3, we again need to apply the inequality in Lemma 9.
In both subcases, we have |A| > |B|. Thus, |A| · |B| < |C|2, contradicting the
maximality of the pair (A,B).

A similar argument works in subcases 4 and 5. Here i does not dominate l (nor
does it dominate j, in subcase 4), but it dominates all other indices, and we can
still assume by symmetry that pi is maximal. This implies that |A|+ |B| < 2|C|,
so that |A| · |B| < |C|2, a contradiction.

Case 3. Finally, assume that Cases 1 and 2 do not hold. In this case, for any
pair T,U ∈ supp(A), we have |T ∪ U | ≤ 3 and, hence, supp(B) ⊇ supp(A). We
can further assume by symmetry that supp(B) contains no 3-element set and no
pair of disjoint 2-element sets. This implies supp(A) = supp(B) so that A = B.
In this case, supp(A) contains the empty set, the singletons, and a containment-
maximal intersecting family of pairs. There are only two types of such families
to consider:

1. (star) supp(A) contains the empty set, all singletons, and all pairs containing
some fixed coordinate i ∈ [n].

2. (triangle) supp(A) contains the empty set, all singletons, and the pairs
formed by two of the three distinct coordinates i, j, k ∈ [n].

Here subcase 1 is not possible, as i is not a relevant coordinate for A. In subcase 2,
we may once again assume that pi is maximal. We use the same r-intersecting
family C as in Case 2. To see that |A| = |B| < |C| (a contradiction), we use
Lemma 9. ⊓⊔

To extend Theorem 8 to somewhat larger values of relevant coordinates (that
is, to verify Conjecture 3, for instance, for the case where there are r+4 relevant
coordinates), we would have to go through a similar case analysis as above.
We would have to consider much more cases that correspond to containment-
maximal pairs of set systems (U, V ) with |u ∪ v| bounded for u ∈ U and v ∈ V .
This seems to be doable, but the number of cases to consider grows fast.

Now we can prove our main theorem, verifying Conjecture 3 in several special
cases.



Proof of Theorem 7. The statement about the case p1 > r + 1 readily follows
from Lemma 2, as in this case the condition

2

pr+1
+

r
∑

i=1

1

pi
≤ 1

holds.
To prove the other two statements in the theorem, we assume that A and

B form a maximal r-cross-intersecting pair. We also assume without loss of
generality that all coordinates are relevant for both families (simply drop the
irrelevant coordinates).

By Theorem 6, we have
∏r

i=1 pi ≥
∏n

i=1(pi − 1)1−2/pi , and thus

r
∏

i=1

pi

(pi − 1)1−2/pi

≥
n
∏

i=r+1

(pi − 1)1−2/pi .

Here the function x/(x − 1)1−2/x is decreasing for x ≥ 3, while (x − 1)1−2/x is
increasing, and we have pi ≥ p1 ≥ 3. Therefore, we also have

r
∏

i=1

p1

(p1 − 1)1−2/p1

≥
n
∏

i=r+1

(p1 − 1)1−2/p1 ,

pr
1 ≥ (p1 − 1)n(1−2/p1),

n ≤
r log p1

(1 − 2/p1) log(p1 − 1)
.

Simple calculation shows that the right-hand side of the last inequality is strictly
smaller than r + 4 if p1 ≤ t(r) for some function t(r) = r/2 + o(r) and, in
particular, for p1 = r+1 ≥ 5. In this case, we have n ≤ r+3 relevant coordinates.
Thus, Theorem 8 applies, yielding that A and B are balls. This proves the last
statement of Theorem 7.

For the proof of the second statement, note that we have already established
that A and B are balls in up to r + 3 coordinates. Theorem 4 tells us that the
pair of radii must be (0, 0), (0, 1), (1, 1), or (1, 2). Simple calculation shows that
the first possibility (fixing the smallest r coordinates) is always optimal, and the
cases where the two radii are unequal never yield maximal r-cross-intersecting
pairs. Finally, the construction with a ball of radius 1 in r+2 coordinates matches
the family obtained by fixing the r smallest coordinates if and only if all relevant
coordinates satisfy pi = r + 1. This completes the proof of Theorem 7. ⊓⊔

5 Coordinates with pi = 2

In many of our results, we had to assume pi > 2 for all coordinates of the size
vector. Here we elaborate on why the coordinates pi = 2 behave differently.



For the simple characterization of the cases of equality in Theorem 1, the as-
sumption k 6= 2 is necessary. Here we characterize all maximal cross-intersecting
pairs in the case k = 2.

Let p = (p1, . . . , pn) be a size vector of positive integers with k = mini pi = 2
and let I = {i ∈ [n] : pi = 2}. For any set W of functions I → [2], define the
families

AW = {x ∈ Sp : ∃f ∈ W such that xi = f(i) for every i ∈ I},

BW = {y ∈ Sp : 6 ∃f ∈ W such that yi 6= f(i) for every i ∈ I}.

The families AW and BW are cross-intersecting for any W . Moreover, if |W | =
2|I|−1, we have |AW | · |BW | = |Sp|

2/4, so they form a maximal cross-intersecting
pair. Note that these include more examples than just the pairs of families de-
scribed in Theorem 1, provided that |I| > 1.

We claim that all maximal cross-intersecting pairs are of the form constructed
above. To see this, consider a maximal pair A,B ⊆ Sp. We know from the
proof of Theorem 1 that x ∈ A if and only if x′ /∈ B, where x′ is defined by
x′

i = (xi + 1 mod pi) for all i ∈ [n]. Let j ∈ [n] be a coordinate with pj > 2. By
the same argument, we also have that x ∈ A holds if and only if x′′ /∈ B, where
x′′

i = x′
i for i ∈ [n] \ {j} and x′′

j = (xj + 2 mod pj). Thus, both x′ and x′′ belong
to B or neither of them does. This holds for every vector x′, implying that j is
irrelevant for the family B and thus also for A.

As there are no relevant coordinates for A and B outside the set I of coor-
dinates with pi = 2, we can choose a set W of functions from I to [2] such that
A = AW . This makes

B = {y ∈ Sp : y intersects all x ∈ A} = BW .

We have |A| + |B| = |Sp| and |A| · |B| = |Sp|
2/4 if and only if |W | = 2|I|−1.

The size vector p = (2, . . . , 2) of length n is well studied. In this case, Sp is the
n-dimensional hypercube. If r > 1, then all maximal r-cross-intersecting pairs
have an unbounded number of relevant coordinates, as a function of n. Indeed,
the density |A| · |B|/|Sp|

2 is at most 1/4 for cross-intersecting pairs A,B ⊆ Sp,
and strictly less than 1/4 for r-cross-intersecting families if r > 1. Furthermore,
if the number of relevant coordinates is bounded, then this density is bounded
away from 1/4, while if A = B is the ball of radius (n−r)/2 in all the coordinates,
then the same density approaches 1/4.

One can also find many maximal 2-cross-intersecting pairs that are not balls.
For example, in the 3-dimensional hypercube the families A = {0, 0, 0), (0, 1, 1)}
and B = {(0, 0, 1), (0, 1, 0)} form a maximal 2-cross-intersecting pair.

Finally, we mention that there is a simple connection between the problem
discussed in this paper and a question related to communication complexity.
Consider the following two-person communication game: Alice and Bob each
receive a vector from Sp, and they have to decide whether the vectors are r-
intersecting. In the communication matrix of such a game, the rows are indexed
by the possible inputs of Alice, the columns by the possible inputs of Bob, and an



entry of the matrix is 1 or 0 corresponding to the “yes” or “no” output the players
have to compute for the corresponding inputs. In the study of communication
games, the submatrices of this matrix in which all entries are equal play a special
role. The largest area of an all-1 submatrix is the maximal value of |A| · |B| for
r-cross-intersecting families A,B ⊆ Sp.
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