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ABSTRACT
We show that any set of n points in general position in the plane

determines n1−o(1) pairwise crossing segments. The best previously

known lower bound, Ω
(√
n
)
, was proved more than 25 years ago by

Aronov, Erdős, Goddard, Kleitman, Klugerman, Pach, and Schulman.

Our proof is fully constructive, and extends to dense geometric

graphs.
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tional geometry.
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1 INTRODUCTION
Let V be a set of n points in general position in the plane, that

is, assume that no 3 points of V are collinear. A geometric graph
is a graph G = (V ,E) whose vertex set is V and whose edges are

represented by possibly crossing straight-line segments connecting

certain pairs of points inV . If every pair of points inV is connected

by a segment, we have E =
(V
2

)
, andG is called a complete geometric

graph. Two edges pq,p′q′ ∈ E are said to cross if the corresponding
segments share an interior point. Topological graphs are defined
similarly, except that their edges can be represented by any Jordan

curves that have no interior points that belong to V .

Crossing patterns and intersection graphs. Finding maximum

cliques or independent sets in intersection graphs of segments,

rays, and other convex sets in the plane is a computationally hard
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problem and a classic topic in computational and combinatorial

geometry [4, 10, 21, 30–32]. There are many interesting Ramsey-

type problems and results about the existence of large cliques or
large independent sets in intersection graphs of segments [7, 11,

34, 35, 42] and, more generally, of Jordan curves (“strings”) [20,

22, 24]. Some of these questions are intimately related to counting

incidences between points and lines [41, 45, 46], and to bounding

the complexity of k-levels in arrangements of lines in R2 [16].

It appears to be a somewhat simpler task to understand the com-
binatorial structure of crossings between the edges of a geometric or

topological graph. Despite decades of steady progress, we have very

few asymptotically tight results in this direction. Perhaps the best

known and most applicable theorem of this kind is the so-called

Crossing Lemma of Ajtai, Chvátal, Newborn, Szemerédi [6] and

Leighton [36], which states that any topological graph G = (V ,E)
with |E | > 4|V | determines at least Ω

(
|E |3/|V |2

)
crossing pairs of

edges. Recently, a similar result has been established by the authors

for contact graphs of families of Jordan curves [40].

According to another asymptotically tight result, for t > 1, every

geometric graph G with |E | ≥ nt edges has two disjoint sets of

edges, E1,E2 ⊂ E, each of size Ω(t), such that every edge in E1
crosses all edges in E2; see, e.g., [20, Theorem 6]. A similar the-

orem holds for topological graphs, with the difference that then

|E1 |, |E2 | = Ω (t/log t) [22]. It is a major unsolved question to decide

whether under these circumstancesG must also contain a family of

pairwise crossing edges, whose size tends to infinity as t → ∞. It is

conjectured that one can always choose such a family consisting of

almost t edges. If this stronger conjecture is true for t1−ot (1) edges,
then for t ≈ n/2, it would imply that every complete geometric or

topological graph on n vertices has n1−o(1) pairwise crossing edges.
A topological graph is called t-quasi-planar if it contains no t

pairwise crossing edges. Let ft (n) (and f ′t (n)) denote the maximum

number of edges that a t-quasi-planar geometric (resp., topological)

graph of n vertices can have. Clearly, we have ft (n) ≤ f ′t (n), for
every t and n. For geometric graphs, Valtr [50] proved that ft (n) =
Ot (n logn), but in general the best known upper bound is only

f ′t (n) = Ot

(
n(logn)O (log t )

)
[20]. It is conjectured that ft (n) ≤

f ′t (n) ≤ t1+ot (1)n, which is known to be true only for t ≤ 4; see

[1–3].

Our results. The aim of the present paper is to find many pairwise

crossing edges in dense geometric graphs. For every n ≥ 2, letT (n)
denote the largest positive integer T with the property that any

complete geometric graph with n vertices has at least T pairwise

crossing edges. Equivalently, T (n) is the largest number such that

any set V of n points in general position in the plane determines at
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least T pairwise crossing segments. (A segment is determined by V
if both of its endpoints belong to V .)

It was proved by Aronov, Erdős, Goddard, Kleitman, Klugerman,

Pach, and Schulman [8] in 1991 that T (n) = Ω(
√
n), cf. [49]. Since

then no one has been able to improve this bound. The prevailing

conjecture is thatT (n) = Θ(n) [9]. A slightly sublinear lower bound

holds for “uniformly distributed” point sets, in which the ratio of

the largest distance and the smallest distance between two points

is O(
√
n) [48]. Note that the best known construction found by

a group of Austrian and Czech researchers gives T (n) ≤ ⌈n/5⌉;
see [5].

Our main theorem comes close to settling the above conjecture

in the affirmative, and applies in a more general setting.

Theorem 1.1. (i) Any set V of n points in general position in the

plane determines at least n/2O (
√
logn) pairwise crossing segments.

(ii) There exists an absolute constant c such that any geometric
graph with n vertices and at least n2−ε edges with ε > (logn)−2/3

has at least n1−c
√
ε pairwise crossing edges.

Ignoring the specific order of the error term part (i) of the theo-

rem implies the existence of n1−o(1) pairwise crossing edges in a

complete geometric graph with n vertices, while part (ii) implies

the same in all geometric graphs with n vertices and n2−o(1) edges.

Our proof of Theorem 1.1 is fully algorithmic. The crossing

segments can be found by an efficient algorithm whose running

time is near-quadratic in n for complete or dense geometric graphs.

Our construction heavily relies on the assumption that the segments

are straight, but otherwise it is fairly robust. Belowwe briefly sketch

the key underlying ideas of our proof of Theorem 1.1.

The main observation of Aronov et al. [8] was that any n-point
set V in general position in the plane contains a pair of subsets A
and B, each of cardinality Ω

(√
n
)
that can be separated by a line,

and so that all the points in B see the points in A in the same order,

and vice versa. Such a pair A,B ⊂ V is called avoiding, and its

properties are reviewed in Section 3. Connecting each point of A
to the “opposite” point of B, we obtain a family of Ω

(√
n
)
pairwise

crossing segments. Valtr [49] showed that, for certain instances of

V , one cannot find an avoiding pair with |A| = |B | greater than
some constant times

√
n.

To get around this barrier, we apply a divide-and-conquer ap-

proach. We first use a decomposition machinery from computa-

tional geometry [38] in order to obtain a pair of setsA and B whose

size is close to n, which satisfies the following property: The points

of A are separated from the points of B by a line, and all points of B
see the points in A in the same approximate order (and vice versa).

This order is described by a poset with o
(
|A|2

)
incomparable pairs.

As a result, we are able to subdivide most points in A (resp., B)

into smaller subfamilies {Ai }
k
i=1 (resp., {Bi }

k
i=1) so that any pair

of vertices of

⋃k
i=1Ai that are incomparable lie in the same set Ai ,

and a symmetric property holds for

⋃k
i=1 Bi . It is easy to check that

this decomposition is regular in the sense that for any four distinct

sets Aa ,Aa′ ,Bb and Bb′ , the property that the edge xy in the sub-

instance Aa × Bb crosses the edge zw ∈ Aa′ × Bb′ is invariant to
the choice of the representatives x ,y, z,w . Finally, we use the dual

of Dilworth’s Theorem [39] to obtain a large family of pairwise

crossing such “super-edges” Aa × Bb while also maintaining the

“almost avoiding” property of these pairs.

The rest of the paper is organized as follows. In Section 2, we

prove three preliminary lemmas that are important for our analysis.

The proof of Theorem 1.1 is given in Section 3. Section 4 contains the

concluding remarks alongwith a brief discussion of the constructive

aspects of Theorem 1.1. We also provide an analogue of Theorem

1.1 which yields many pairwise avoiding edges in dense geometric

graphs. Here two segments are said to be avoiding if (the closure of)
neither of them is intersected by the supporting line of the other

segment [8, 43, 50]. (In particular, the segments must be disjoint.

In much of the earlier literature, such pairs of segments are called

“parallel”.)

2 THREE PRELIMINARY LEMMAS
We use the term poset for finite partial ordered sets (P , <). If the
ordering is clear from the context, we write x | |y to indicate that the

elements x ,y ∈ P are incomparable. Let ι(P , <) denote the number

of incomparable pairs of elements in P . For subsets A and B of P
we write A < B if a < b for all a ∈ A and b ∈ B.

We start with the following lemma which is close to Theorem

4 (ii) in [47]. However, Tomon’s bound is not sufficient for our

purposes.

Lemma 2.1. Let n and k be positive integers, and (P , <) be a poset

with |P | > nk and ι(P , <) ≤ ( |P |−nk )2
16k .

Then one can choose suitable n-element subsets A1,A2, . . . ,Ak of
P with Ai < Aj for all i < j.

Proof. Let Ix = {y ∈ P | y | |x} be the set of elements incompa-

rable to x ∈ P . Let T = (|P | − nk)/(4k) and Q = {x ∈ P | |Ix | < T }.
Since

∑
x ∈P |Ix | = 2ι(P , <), we have

|P \Q | ≤
2ι(P , <)

T
≤

|P | − nk

2

.

Let x1,x2, . . . ,xm be a linear ordering of the elements ofQ com-

patible with the partial order <. That is,m = |Q |,Q = {x1, . . . ,xm },

and whenever xi < x j , we have i < j . If xi | |x j for some 1 ≤ i < j ≤
m, then each element xl with i ≤ l ≤ j must be incomparable to

either xi or x j . As both xi and x j are incomparable with less than

T elements, this implies j − i < 2T . Therefore j − i ≥ 2T implies

xi < x j .
We choose the setsAi to be intervals of the linear order onQ with

enough buffer between them to ensure the comparability. Namely,

we set Ai = {x j | (i − 1)(n + ⌊2T ⌋) < j ≤ (i − 1)(n + ⌊2T ⌋) + n} for
every 1 ≤ i ≤ k . We only need to check that Q is large enough for

all these intervals to fit. This holds, because

m = |Q | = |P | − |P \Q | ≥ |P | −
|P | − nk

2

≥ k(n + 2T ).

□

Let x and y be distinct points in the plane. Let us orient the line

xy from x toward y, and denote the open half-plane to the left of

this oriented line by ℓ(xy). Let B be a nonempty set in the plane.

For any pair of distinct points in the plane, x and y, write x <B y if

B is contained in ℓ(xy); see Figure 1 (top). The convex hull of a set
B is denoted by conv(B).
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Figure 1: Top: The partial order (A, <B ). We have x <B y if and
only if B lies in the half-plane ℓ(xy) to the left of the directed line
from x toy . (The points x ′ andy′ are incomparable, because the line
xy crosses the convex hull of B.) Bottom: Lemma 2.2 – proving that
the relation (A, <B ) is transitive.

Lemma 2.2. Let A and B be nonempty sets in the plane such that
their convex hulls are disjoint. Then <B defines a partial order on A,
in which two points x and y are incomparable if and only if the line
xy intersects conv(B). Further, if x <B y for x ,y ∈ A and z <A t for
z, t ∈ B, then the segments xz and yt cross.

Proof. To check transitivity, let us assume that x <B y and

y <B z for a triple of points x ,y, z ∈ A; see Figure 1 (bottom). This

means that both ℓ(xy) and ℓ(yz) contain B. We have

ℓ(xz) ⊇ (ℓ(xy) ∩ ℓ(yz)) \ conv(xyz),

and conv(xyz) is disjoint from B. Therefore, B ⊆ ℓ(xz) must hold,

which means that x <B z, as required.
The distinct points x and y are incomparable in <B if and only if

B is not contained in either of the open half planes bounded by the

line xy, which happens if and only if the line intersects the convex

hull of B.
Finally, for any x ,y ∈ A and z, t ∈ B that satisfy the inequalities

x <B y and z <A t , the quadrilateral xyzt must be strictly convex,

so the diagonals xz and yt must cross. □

Any finite family L of lines inR2 induces the arrangementA(L) –
the partition of R2 into 2-dimensional cells, or 2-faces. Each of these

cells is a maximal connected region of R2 \ (
⋃

L); it is a (possibly
unbounded) convex polygon whose boundary is composed of edges

– portions of the lines of L, which connect vertices – crossings

amongst the lines of L.

ℓ

Figure 2: An arrangement of 6 lines. The cells in the zone of a (sev-
enth) line ℓ are shaded.

The zone of a line ℓ within the arrangement A(L) is the union
of all the cells that ℓ intersects; see Figure 2. The following result

was implicitly established by Matoušek [38]; it comprises most of

the proof of the so called Test Set Lemma.

Lemma 2.3 (Matoušek, [38]). For any n-element point set V in
general position in the plane and for any ε > 0, we can find O(1/ε2)
lines such that the zone of any other line in their arrangement contains
at most εn points of V .

For his proof, Matoušek [38] used a result of Chazelle and Fried-

man [14], according to which any set of n lines admits an optimal
ε-cutting. In other words, one can partition the plane into O

(
ε−2

)
simply shaped cells (triangles or trapezoids, some of which are un-

bounded) with the property that every cell is crossed by at most εn
lines. He applied this result to the dual line setV ∗

ofV [37, Section

5], and argued that the duals of the vertices of this cutting (that

correspond to lines in the primal plane) satisfy the requirements of

Lemma 2.3. Before giving a formal proof of the lemma, we outline

a more explicit argument which yields the same result with the

slightly weaker boundO(log2(1/ε)/ε2). This bound also suffices for

our calculations.

We consider all angular sectors in R2; each of them can be ob-

tained as the intersection of two open half-planes. We construct a

set of points Q ⊂ V which pierces every angular sector that con-

tains at least εn/4 points ofV ; such a set is known as an (ε/4)-net. In
accordance with the standard theory of (strong) ε-nets [27], angular
sectors have a bounded VC-dimension (namely, 5), so we can find

such a net Q with |Q | = O (log(1/ε)/ε). Note that the family L of

all lines determined by the point set Q is of size O(log2(1/ε)/ε2).
To see that this family satisfies the requirements of the lemma, it

suffices to check that the zone of any line ℓ is contained in the union

of at most four angular sectors, each disjoint from Q . We show that

the part of the zone in a half-plane F bounded by ℓ can be covered

by two such angular sectors. For simplicity, we assume ℓ does not

pass through any point inQ and is not parallel to a line determined

by two points in Q . These restrictions are not essential but allow
us to avoid a case analysis. IfQ ∩ F is empty or consists of collinear

points, then the statement is trivial. Otherwise, let x be the closest

point to ℓ in Q ∩ F and let A be the smallest angular sector with

apex x , whose closure contains Q ∩ F ; see Figure 3. Notice that the
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two delimiting lines of A belong to the family L. It readily follows

that F \A is disjoint from Q , it is the union of two angular sectors,

and it contains the part of the zone of ℓ inside F .

F
A

x

ℓ

Figure 3: Proof of the relaxed variant of Lemma 2.3. The point x ∈

Q is the closest such point to ℓ in the half-plane F (above ℓ). A is
the smallest angular sector with apex x , and whose closure contains
Q ∩ F . The complement of the closure of A within F is covered by
two angular sectors which together cover the part of the zone of ℓ
within F .

Proof of Lemma 2.3. Let V ∗
denote the set of lines dual to the

points of V . Since the points of V are in a general position, an

analogous condition must hold for the dual set V ∗
: no three lines

in V ∗
can meet at the same point, and none of these lines can be

horizontal or vertical. We construct an optimal ε-cutting Ξ(V ∗) of

the dual plane with respect to V ∗
[14]. Namely, Ξ(V ∗) is a decom-

position of the dual plane into O
(
1/ε2

)
interior-disjoint triangles

with the property that each of these triangles is crossed by at most

⌊ε |V ∗ |⌋ = ⌊εn⌋ dual lines belonging to V ∗
.
1

Our set, which we denote by L, consists of the lines dual to the

vertices of Ξ(V ∗). To see that L satisfies the asserted property, let ℓ

be an arbitrary non-vertical line in the primary plane. Assume first

that the dual point ℓ∗ is contained in the relative interior of some

triangle ∆ ∈ Ξ(V ∗). Since the lines in V ∗
are in a general position,

the argument readily extends to the points that lie on boundaries of

the triangles of ∆ ∈ Ξ(V ∗). The crucial observation is that for any

point of V that lies in the zone of ℓ within the arrangement of L,

its dual line p∗ ∈ V ∗
must cross the boundary of the triangle ∆ (or,

else, p will be “separated” from ℓ by the lines dual to the vertices

of ∆); see [12] for the precise details. Hence, the number of such

points cannot exceed εn. □

3 PROOF OF THEOREM 1.1
We begin by introducing some terminology.

Definition 3.1. Two point sets A,B ⊂ R2 are called separated if
conv(A) ∩ conv(B) = ∅. Two separatedm-element sets, A and B, are
said to form an ε-avoiding pair for some ε ≥ 0 if

ι(A, <B ) + ι(B, <A) ≤ εm2.

For simplicity, a 0-avoiding pair is called avoiding. See Figure 4 (top).

The special case ε = 0was studied in [8], where it was shown that

any point set in general position in the plane contains an avoiding

pair of Ω(
√
n)-element subsets. Then it was shown that there is a

one-to-one correspondence between the elements of any pair of

avoiding sets of the same size such that any two segments formed

by the corresponding points cross each other (as depicted in Figure

1
Some of the vertices of these triangles may lie at infinity on one of the imaginary

lines x = ∞, x = −∞, y = ∞, y = −∞, which are incorporated in V ∗
.

4 (bottom) and hence every set of n points in general position in

the plane determines Ω(
√
n) pairwise crossing segments. Here the

second statement follows from Lemma 2.2. Indeed, if the t-element

point setsA and B form an avoiding pair, then <B linearly ordersA,
so A = {x1,x2, . . . ,xt } with x1 <B x2 <B · · · <B xt and similarly

B = {y1,y2, . . . ,yt } withy1 <A y2 <A · · · <A yt . So by Lemma 2.2

the segments xiyi are pairwise crossing for i = 1, . . . , t .
This approach cannot yield any better result, because Valtr [49]

showed that there are many n-element point sets with no avoiding

pair of size larger than constant times

√
n. One of the key ideas of

our proof is the relaxation of the notion of avoiding pairs, described

in Definition 3.1.

A
B

BA

Figure 4: Top: Two separated sets A and B form an ε -avoiding pair
if there exist at most εm2 incomparable pairs in

(A
2

)
∪

(B
2

)
, whose

connecting lines cross the convex hull of the opposite set. Bottom:
A 0-avoiding pair {A, B } with |A | = |B | = 6, and its induced family
of 6 pairwise crossing edges.

To be able to deal with geometric graphs that are not complete,

we introduce a further definition. Let G = (V ,E) be a geometric

graph. For any subsets A,B ⊆ V , let E(A,B) ⊆ E denote the set of

edges connecting a vertex in A with a vertex in B.

Definition 3.2. Given a geometric graph G = (V ,E) and a num-
ber δ ≥ 0, a pair {A,B} of disjointm-element subsets ofV is δ -dense
with respect to G if |E(A,B)| ≥ δm2.

If it is clear what the underlying geometric graph is, with no

danger of confusion we simply say that the pair is δ -dense. Our next
result states that in every sufficiently large and dense geometric

graph, one can find two separated m-element sets that form an

ε-avoiding, δ -dense pair.

Lemma 3.3. There exists an absolute constant c > 0 with the
following property. For any integer m > 0 and any reals ε,δ > 0,
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every geometric graph G = (V ,E) with |V | ≥ cm
ε4δ 5

and |E | ≥ δ |V |2

has two separatedm-element sets of vertices that form an ε-avoiding,
δ -dense pair with respect to G.

Proof. Let us set n = |V |. We use Lemma 2.3 to obtain an

arrangement A(L) of a set L of r = O
(
1/(εδ )2

)
lines such that the

zone of any line contains at most εδn/2 points of V . We assume

that r ≥ 3.

Using parallel segments or half-lines that do not pass through

any point ofV , split each cell ofA(L) into smaller cells such that all

but at most one of them contain preciselym elements of V , and if

there is an exceptional cell, it contains fewer thanm points. Denote

the resulting cell decomposition of R2 by Π. Obviously, every cell

in Π is convex. The set ofm points of V inside a non-exceptional

cell of Π is called a cluster; see Figure 5. Denoting the number of

clusters by D, we have D ≤ n/m.

y

A B
x

Figure 5: A pair of cells in the decomposition Π, which determine
clustersA and B. The edges of E(A, B) are depicted. If the pair x, y ∈

A is incomparable with respect to <B , then B must lie in the zone
of the line xy .

Let H denote the set of points in V that do not belong to any

cluster. Such a point must lie either in an exceptional cell of Π or on

a line of L. There are at most r2−1 exceptional cells, each containing
fewer thanm points in V , and Π has r lines, each passing through

at most 2 points in V . Thus, we have |H | ≤ (r2 − 1)m. Every edge

of G belongs to one of the following categories:

(i) it has a vertex belonging to H , or

(ii) it connects a pair of vertices in the same cluster, or

(iii) it connects a pair of vertices in distinct clusters that do not
form a δ -dense pair, or

(iv) it connects a pair of vertices in distinct clusters that form a

δ -dense pair.

The number of edges in category (i) is at most |H |n ≤ (r2 −1)mn.
The number of edges in category (ii) is at most D

(m
2

)
< mn. The

number of edges in category (iii) is less than

(D
2

)
δm2 < δn2/2. By

assumption,G has at least δn2 edges, so more than δn2/2−r2mn of

them must belong to category (iv). The number of edges between

any two distinct clusters is at mostm2
. Therefore, the number of

unordered δ -dense pairs of clusters is at least

δn2/2 − r2mn

m2
=

δn2

2m2
−
r2n

m
. (1)

Let

X =
∑
{A,B }

(ι(A, <B ) + ι(B, <A)),

where the sum is taken over all unordered pairs of distinct clusters

{A,B}.
We can estimate X according to the point pairs incomparable

with respect to a cluster. An unordered pair of distinct vertices

{x ,y} will contribute to the sum X only if x and y come from the

same cluster, and in this case its contribution will be the number of

other clusters whose convex hulls are crossed by the line xy. All of
these clusters belong to the zone of the line xy in the arrangement

A(L). By the choice of L, the zone of any line contains at most

εδn/2 vertices. Thus, the contribution of any pair of points is at

most εδn/(2m), so we have

X ≤ D

(
m

2

)
εδn

2m
< εδn2/4.

On the other hand, each pair of clusters which is not ε-avoiding
contributes more than εm2

to X , so we have fewer than X/(εm2)

such pairs. This implies that the number of not ε-avoiding pairs of

clusters is less than

εδn2/4

εm2
=

δn2

4m2
. (2)

Clearly, each cluster hasm elements and any two of them are

separated. We are done if we find an ε-avoiding δ -dense pair formed

by two clusters. For this, it is sufficient to show that there aremore δ -
dense pairs of clusters than pairs that are not ε-avoiding. Comparing

(1) and (2), this is true as long as

δn2

2m2
−
r2n

m
≥

δn2

4m2
,

that is, if n ≥ 4mr2/δ . This can be ensured by choosing the con-

stant c large enough as a function of the constant hidden in r =
O(1/(εδ )2), which comes from Lemma 2.3. □

The heart of the proof is the following partition result.

Lemma 3.4. Let k , m, and t ≥ 3 be positive integers, and set
δ = 1/t , ε = 1/(32t2k). Let A and B be two separated sets of vertices
in a geometric graph G with |A| = |B | = (t + 1)km. Suppose that
{A,B} is a 8δ -dense, εδ -avoiding pair.

Thenwe can find pairwise disjointm-element subsetsA1,A2, . . . ,Ak
⊂ A, B1,B2, . . . ,Bk ⊂ B such that for every 1 ≤ i ≤ k , {Ai ,Bi } is a
δ -dense, ε-avoiding pair and, for 1 ≤ i < j ≤ k , all edges in E(Ai ,Bi )
cross every edge in E(Aj ,Bj ).

Proof. It follows from the assumption that {A,B} is an εδ -
avoiding pair that the posets (A, <B ) and (B, <A) both satisfy the

conditions of Lemma 2.1 with n = m and with tk in place of k .
Indeed, by Definition 3.1, we obtain

ι(A, <B ) + ι(B, <A) ≤ εδ (t + 1)2k2m2 =
(1 + 1/t)2km2

32t
<

<
(|A| −mtk)2

16tk
.

Hence, we can apply Lemma 2.1 to find suitable subsets Ci ⊆ A
and Di ⊆ B for 1 ≤ i ≤ tk such that |Ci | = |Di | = m for all i , and
Ci <B Cj , Di <A D j for all i < j; see Figure 6 (top).
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Lemma 2.2 implies that all edges in E(Ci ,Di ) cross every edge

in E(Cj ,D j ) as long as i , j, which suggests to select the pairs

(Ai ,Bi ) from among the the pairs (Ci ,Di ). Unfortunately, many of

these pairs (Ci ,Di )might not be δ -dense or ε-avoiding. We must be

careful when we select a suitable pair for a set Ca . Any collection

of δ -dense, ε-avoiding pairs {(Ca ,Db )} will work here (still by

Lemma 2.2), as long as b = b(a) is a monotone increasing function

of a.

Cj

Dj ′

Di ′

Ci

A
B

x
z y

w

Db

Da

Ci

A

y x

z

w

B

Figure 6: Top: The subsets {Ci } and {Di }. We have Ci <B Cj and
Di′ <A D j′ whenever i < j and i′ < j′. Notice that in this case by
Lemma 2.2, for any choice of x ∈ Ci , z ∈ Cj , y ∈ Di′ , and w ∈ D j′ ,
the segments xy and zw cross. Bottom: Proof of Claim 3.5. If x andy
are incomparable with respect to both setsDa andDb , so that a < b ,
then y lies to the right of the line from z to w . This is contrary to
the assumption that Da <A Db .

Since {A,B} is an 8δ -dense pair and |A| = |B | = (t + 1)km, by

definition we have

|E(A,B)| ≥ 8δ ((t + 1)km)2.

Every edge in E(A,B)

(i) belongs to E(Ca ,Db ) for some δ -dense pair (Ca ,Db ), or

(ii) belongs to E(Ca ,Db ) for a pair (Ca ,Db ) that is not δ -dense, or

(iii) has at least one endpoint outside X =
⋃tk
a=1(Ca ∪ Da ).

Note that both A and B have exactly km elements outside X , so

the number of edges that belong to the last category is less than

2km |A| = 2(t+1)k2m2
. If (Ca ,Db ) is notδ -dense, then |E(Ca ,Db )| <

δm2
. Hence, the total number of edges of category (ii) is smaller

than (tk)2δm2
. Thus, the number of edges of category (i) is larger

than

|E(A,B)| − 2(t + 1)k2m2 − (tk)2δm2 > 4tk2m2.

Each δ -dense pair (Ca ,Db ) contributes |E(Ca ,Db )| ≤ m2
edges to

this category. Therefore, the number of δ -dense pairs (Ca ,Db ) is

larger than 4tk2.
Consider now a pair of points x ,y ∈ A. Clearly, if x <B y, then

x <Db y for all 1 ≤ b ≤ tk .

Claim 3.5. If x and y are incomparable in <B , they are still com-
parable with respect to all but at most one ordering <Db , 1 ≤ b ≤ tk .

Proof of Claim 3.5. To verify this claim, suppose that x and y
are incomparable in <B , so the line xy intersects conv(B). Assume

by symmetry that x is closer to this intersection than y is. Suppose

for a contradiction that x and y are incomparable in both <Da and

<Db for some 1 ≤ a < b ≤ tk ; see Figure 6 (bottom). As x <Da y
does not hold, there is a point z ∈ Da that does not belong to ℓ(xy).
Similarly, as y <Db x does not hold, there is another pointw ∈ Db
that does not belong to ℓ(yx). Thus, the segment zw must intersect

the line xy and, by our assumption, this intersection point is closer

to x than to y. This implies that y < ℓ(zw) and, hence, z <A w
does not hold. Therefore, the relation Da <A Db cannot hold either,

contradicting our assumption that a < b. This contradiction proves

the claim. □

It follows from Claim 3.5 that∑
1≤a,b≤tk

ι(Ca , <Db ) ≤ ι(A, <B ).

By symmetry, we also have∑
1≤a,b≤tk

ι(Db , <Ca ) ≤ ι(B, <A).

Thus, we obtain that∑
1≤a,b≤tk

(ι(Ca , <Db ) + ι(Db , <Ca )) ≤ ι(A, <B ) + ι(B, <A) ≤

≤ εδ ((t + 1)km)2,

where the last inequality follows from the assumption that {A,B}
is an εδ -avoiding pair. By definition, any pair (Ca ,Db ) that is not
ε-avoiding contributes more than εm2

to this sum, so the number

of such pairs is smaller than δ (t + 1)2k2 < 2tk2.
All pairs {Ca ,Db } are separated and consist ofm-element sets.

Call such a pair eligible if it is both δ -dense and ε-avoiding. As we
saw above, the number of δ -dense pairs (Ca ,Db ) is larger than 4tk2.
We have just seen that fewer than 2tk2 of them are not ε-avoiding.
Thus, the number of eligible pairs is larger than 2tk2.

Define a partial order on the set of eligible pairs, as follows.

Let {Ca ,Db } < {Ca′ ,Db′} if a < a′ and b < b ′. If there was

no monotone chain of length k with respect to this partial order,

then by the dual of Dilworth’s theorem [39] all eligible pairs could

be covered by fewer than k antichains (i.e., fewer than k sets of

pairwise incomparable eligible pairs). The value a −b is distinct for

each pair {Ca ,Db } in an antichain. Here we have −kt < a −b < kt ,
so antichains have fewer than 2kt eligible pairs. Hence, in this

case the total number of eligible pairs would be smaller than 2tk2,
contradicting our above estimate.

Thus, there exists a monotone chain of k eligible pairs, say

{A1,B1} < {A2,B2} < · · · < {Ak ,Bk }. These pairs obviously

satisfy the requirements of Lemma 3.4. □

1163



Planar Point Sets Determine Many Pairwise Crossing Segments STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

By repeated application of Lemma 3.4, we obtain the following

result.

Lemma 3.6. Let s andu be positive integers such thatu is a multiple
of 8s , and set δ = 8

s/u, ε = 1/(32us+2), and K = (512u)(
s
2
).

There exists a positive integerM = Ms (u) ≤ usK such that for any
twoM-element sets of vertices,A and B that form a δ -dense ε-avoiding
pair in a geometric graphG , the set of edges E(A,B) connecting them
contains K pairwise crossing elements.

Proof. We prove the lemma by induction on s . The statement

is trivial for s = 1, as in this case we have K = 1, so we can choose

M = 1 and select any one edge from E(A,B) (which is nonempty,

because δ > 0).

Let s > 1 and assume that the statement holds for s − 1 in place

of s . We apply Lemma 3.4 with t = u/8s−1, k = (512u)s−1, and
m = Ms−1(u). Setting M = Ms (u) = (t + 1)km, the lemma states

that given a δ -dense ε-avoiding pair {A,B} with |A| = |B | = M , we

can find pairwise disjointm-element subsets A1, . . . ,Ak ⊂ A and

B1, . . . ,Bk ⊂ B such that (Ai ,Bi ) is a 1/t-dense 1/(32t
2k)-avoiding

pair for every i , and every edge in E(Ai ,Bi ) crosses all edges in
E(Aj ,Bj ), provided that i , j. For each i , we use the inductive

hypothesis with the same u and with s − 1 in place of s to find a

family Zi of K0 = (512u)(
s−1
2
)
pairwise crossing edges in E(Ai ,Bi ).

Note that (Ai ,Bi ) is 1/(32t
2k)-avoiding. To apply the induction

hypothesis, we need that (Ai ,Bi ) is 1/(32u
s+1)-avoiding, but this

holds, as

1/(32t2k) = 1/(32 · 8s−1us+1) ≤ 1/(32us+1).

The union of the sets Zi contains kK0 = K edges of E(A,B), any
two of which cross. Sincem = Ms−1(u) ≤ us−1K0, we obtain that

M = Ms (u) = (t + 1)km ≤ ukus−1K0 = u
sK .

□

Part (ii) of Theorem 1.1 follows by combining Lemmas 3.3 and

3.6.

Proof of Theorem 1.1(ii). Let G have n vertices and at least

n2−x edges with x > (logn)−2/3. We set the value of s later and set

u = 8
s ⌈nx ⌉. Apply Lemma 3.3 with δ = 8

s/u, ε = 1/(32us+2) and
m = Ms (u) from Lemma 3.6. The density condition of Lemma 3.3

is satisfied, so if n is large enough, we obtain separated vertex

sets A and B of sizem forming a δ -dense, ε-avoiding pair. If this

happens, we apply Lemma 3.6 with the parameters s andu to obtain

K = (512u)(
s
2
)
pairwise crossing edges in E(A,B).

It remains to do the calculation to check what value we can

choose for s and howmany pairwise crossing edges we find this way.

We can apply Lemma 3.3 ifn ≥ cmδ−5ε−4 for the absolute constant c
in that lemma. Usingm = Ms (u) ≤ usK and the formulas defining δ
and ε , we see thatn ≥ 32

4cu5s+13K suffices. In casen = O(u5s+13K),

we have n/K = O(u5s+13). Here n ≥ K ≥ u(
s
2
) ≥ nx(

s
2
)
, so x

(s
2

)
≤ 1

and s = O(1/
√
x). We also have u = 2

O (s)nx = nx+O (s/logn) =

nO (x )
, since s/logn = O(x−1/2/logn) = O(x) by our lower bound

on x . We have n/K = uO (s) = nO (sx ) = nO (
√
x )

as claimed.

In the above line of reasoning we assumed that the size ofG is

just suitable, namely n ≥ 32
4cu5s+13K , but barely. In the general

case, we simply set the value of the parameter s to be the largest

possible value. That is, we still have n ≥ 32
4cu5s+13K , but the same

formula is violated if s is increased by one. Note that increasing

s to s∗ = s + 1 changes the values of u to u∗ = 8u and K to K∗ =

512
s · 8(

s+1
2
)usK . We have n < 32

4cu∗5s
∗+13K∗ = 2

O (s2)uO (s)K . We

still have n/K = 2
O (s2)uO (s) = nO (xs+s2/logn) = nO (

√
x )

as needed.

Finally, if even the choice of s = 1 is not feasible, then finding any

one edge of the graph suffices. □

Note that a complete graph on n vertices has n2−x edges for

x = Θ(1/logn). Thus part (i) of Theorem 1.1 would follow as a

special case of part (ii) if not for the ε > (logn)−2/3 requirement

there. Because of this, part (ii) directly implies the existence of only

n/2O ((logn)2/3)
pairwise crossing segments determined by n points

in the plane in general position. To obtain the slightly stronger

estimate claimed in part (i) of Theorem 1.1 we have to do the

calculations again for the special case of the complete geometric

graph. Here we do not have to worry about maintaining the density

condition. We can apply Lemmas 3.3 and 3.4 as stated but have to

prove an analogue of Lemma 3.6:

Lemma 3.7. Let s be a positive integer and set K = 8
(s
2
),M = 9

sK ,
ε = 2

−3s−11. Suppose the M-element point sets A and B form a ε-
avoiding pair and A ∪ B is in general position. Then we can find K
pairwise crossing segments, each connecting a point of A to a point of
B.

Proof. We prove the lemma by induction on s . For s = 1 we

have K = 1, so the statement is trivial.

If s > 1 we apply Lemma 3.4 with t = 8, k = 8
s−1

and m =
M/(9k) to the complete geometric graph onA∪B. AsA and B form

a

(
2
−14/k

)
-avoiding, 1-dense pair, the lemma finds us pairwise

disjointm-element subsetsAi ⊂ A and Bi ⊂ B such that {Ai ,Bi } is
2
−11/k-avoiding for all i and each edge in E(Ai ,Bi ) crosses all edges
in E(Aj ,Bj ) whenever i , j. We apply the inductive hypothesis for

s − 1 in place of s separately for each pair {Ai ,Bi }. This results in

a subset Zi of E(Ai ,Bi ) consisting of K∗ = 8
(s−1

2
)
pairwise crossing

edges. Their union,∪ki=1Zi is a subset of E(A,B) consisting ofkK
∗ =

K pairwise crossing edges as claimed. □

Proof of Theorem 1.1(i). We assume n ≥ 3. Let us choose s to
be the smallest positive integer such thatV does not determine K =

8
(s
2
)
pairwise crossing segments. Note that s > 1 asV determines at

least 8
(1
2
) = 1 pairwise crossing segments. By Lemma 3.7, we do not

have sizeM = 9
sK subsetsA and B ofV forming an ε-avoiding pair

with ε = 2
−3s−11

. The complete geometric graph on the vertex setV
has n vertices and δn2 edges with δ = (n − 1)/(2n) ≥ 1/3. Applying

Lemma 3.3 to this graph yields n = O(Mε−4δ−5) = 2
O (s)K .

By the choice of s , V determines at least K∗ = 8
(s−1

2
) = K/2O (s)

pairwise crossing segments. Therefore, n > K∗ = 2
(s−1

2
)
, so we must

have s = O(
√
logn). But we also have K∗ = K/2O (s) = n/2O (s) =

n/2O (
√
logn)

as claimed. □

4 DISCUSSION
• Theorem 1.1 represents a substantial step towards character-

izing the intersection structure of the edges in a geometric

graph. We hope that further progress in this direction would
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facilitate the solution several related decades-old unsolved

problems in combinatorial and computational geometry. The

two most notorious questions of this kind are the follow-

ing. Determine (1) the maximum number of halving lines

of a set of n points in R2, and (2) the maximum number of

incidences that can occur between n points andm pseudo-

algebraic
2
curves in R2. Note that the best known general

upper bounds for these problems [16, 41] are obtained by

applying the Crossing Lemma to the edges in a suitable

geometric or topological graph. Following the pioneering

work of Dvir [17], Guth and Katz [25, 26], several of these

questions have been revisited from an algebraic perspective

[18, 28, 44].

• A closely related line of work [29, 33, 43, 50] concerns pair-
wise avoiding edges in geometric graphs. We say that a pair

of segments in the plane are avoiding if (the closure of) nei-
ther of them is crossed by the supporting line of the other

segment. Note that the results of Aronov et al. [8] extended

to pairwise avoiding segments as well: they proved that any

n points in general position in the plane determine Ω
(√
n
)

pairwise avoiding segments. Our bounds in Theorem 1.1

similarly apply to families of pairwise avoiding edges.

Theorem 4.1. (i) Any set V of n points in general position in

the plane determines at least n/2O (
√
logn) pairwise avoiding

segments.
(ii) There exists an absolute constant c such that any geometric
graph with n vertices (in general position in the plane) and
at least n2−ε edges with ε > (logn)−2/3 has at least n1−c

√
ε

pairwise avoiding edges.

Part (i) of Theorem 7 easily follows from Theorem 1.1 via a

reduction in [8, Theorem 2], while both parts can be derived

by a slight modification of Lemma 3.4. To that end, it is

sufficient to establish the following analogue of Lemma 3.4:

For any separated 8δ -dense, εδ -avoiding pair (A,B) with
|A| = |B | = (t +1)km, as in Lemma 3.4, there existm-element

subsets A1, . . . ,Ak ⊂ A, B1, . . . ,Bk ⊂ B so that for every

1 ≤ i ≤ k , the pair {Ai ,Bi } is δ -dense and ε-avoiding, and,
for 1 ≤ i < j ≤ k , all edges in E(Ai ,Bi ) are parallel to

every edge in E(Aj ,Bj ). Our argument closely follows the

proof of Lemma 3.4. Specifically, we consider the partial

orders (A, <B ) and (B, <A) and use the following geometric

property: if x <A y for x ,y ∈ A and z <A w for z,w ∈

B then the segments xw and yz are avoiding.
3
Recall that

Lemma 3 yields m-size subsets C1 <B C2 <B . . . <B Ctk
and D1 <A D2 <A . . . <A Dtk of, respectively, A and B.
Note that whenever 1 ≤ i < j ≤ tk and 1 ≤ i ′ < j ′ ≤ tk , all
edges in E(Ci ,D j′) are avoiding with respect to every edge

in E(Cj ,Di′); see Figure 7. Thus, the dual of the Dilworth’s

Theorem must now be invoked with respect to the modified
partial order in which (Ca ,Db ) < (Ca′ ,Db′) whenever a <
a′ and b > b ′.

2
We say that a family of curves in R2 is pseudo-algebraic if any two of the curves

intersect at most a fixed number of times. In particular, this includes families of

bounded-degree algebraic curves.

3
Similar to Lemma 2.2, this follows because x, y, w, z are vertices of a convex

quadrilateral.

Cj

Dj ′

Di ′

Ci

A
B

Figure 7: Proof of Theorem 4.1. All edges in E(Ci , D j′ ) are avoiding
with respect to every edge in E(Cj , Di′ ) whenever Ci <B Cj and
Di′ <A D j′ .

• Our proof of Theorem 1.1, just like the arguments of Aronov

et al. [8], crucially relies on the assumption that the edges

of our graph are straight-line segments. In particular, the

decomposition provided by Lemma 2.3 is based on the ma-

chinery that was developed in computational geometry to

support efficient searching in arrangements of lines and hy-

perplanes. Extending Theorem 1.1 to more general families

of topological graphs (e.g., whose edges are contained in

fixed-degree algebraic curves, or any two of whose edges

cross a bounded number of times) would require new ideas.

Most of the previous lower bounds of this kind are based on

Ramsey-type results applied to the intersection graph of the

edge set [7, 19, 20, 22, 24]. Hence, it is likely that they can be

improved by a careful divide-and-conquer scheme applied

to the vertex set V , in the spirit of our proof of Theorem 1.1.

• Our proof of Theorem 1.1 is fully constructive. As the primary

focus of this study is on the combinatorial aspects of geo-

metric graphs, we did not seek to optimize the construction

cost of our family of pairwise crossing edges. Nevertheless,

our argument yields an algorithm whose running time is

O
(
n2+O (

√
x )
)
if the input graph (V ,E) has at leastn2−x edges

(for x ≥ (logn)−2/3).

Specifically, the O
(
1

ε2

)
-size line set L of Lemma 2.3 can

be computed in time O
(
1

ε2 +
n
ε

)
using the deterministic

algorithm of Chazelle [13] for finding an optimal cutting of

the dual plane. The ε-avoiding, δ -dense pair {A,B} (together
with the posets (A, <B ) and (B, <A)) in Lemma 3.3 can be

computed, using a naive implementation, in O
(
n2

ε4δ 4

)
time.

The initial decomposition {Ca } and {Db } of the sets A and

B in Lemma 3.4 can be obtained (as designated in Lemma

2.1) via a simple topological sorting of the posets (A, <B )
and (B, <A), and in time that is at most quadratic in |A| =
|B |. The induced incomparability graphs ι(Ca , <Db ) (and,

therefore, the eligible pairs (Ca ,Db )) can be determined in

timeO
(
(tk) · (εδ |A|2)

)
= O(|A|2). The desired longest chain

of eligible pairs can be obtained in O
(
t4k4

)
time (again, via

the standard topological sorting of their poset [15]).
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