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Abstrat

Twenty years ago, Ajtai, Chv�atal, Newborn, Szemer�edi, and, independently, Leighton disovered that

the rossing number of any graph with v verties and e > 4v edges is at least e

3

=v

2

, where  > 0

is an absolute onstant. This result, known as the `Crossing Lemma,' has found many important

appliations in disrete and omputational geometry. It is tight up to a multipliative onstant.

Here we improve the best known value of the onstant by showing that the result holds with  >

1024=31827> 0:032. The proof has two new ingredients, interesting on their own right. We show that

(1) if a graph an be drawn in the plane so that every edge rosses at most 3 others, then its number

of edges annot exeed 5:5(v�2); and (2) the rossing number of any graph is at least

7

3

e�

25

3

(v�2).

Both bounds are tight up to an additive onstant (the latter one in the range 4v � e � 5v).

1 Introdution

Unless stated otherwise, the graphs onsidered in this paper have no loops or parallel edges. The number

of verties and number of edges of a graphG are denoted by v(G) and e(G), respetively. We say that G is

drawn in the plane if its verties are represented by distint points and its edges by (possibly interseting)

Jordan ars onneting the orresponding point pairs. If it leads to no onfusion, in terminology and

notation we make no distintion between the verties of G and the orresponding points, or between

the edges and the orresponding Jordan ars. We always assume that in a drawing (a) no edge passes

through a vertex di�erent from its endpoints, (b) no three edges ross at the same point, () any two

edges have only a �nite number of interior points in ommon, and at these points they properly ross,

i.e., one of the edges passes from one side of the other edge to the other side (see [P99℄, [P04℄). The

rossing number of G, denoted by r(G), is the minimum number of edge rossings in a drawing of G

satisfying the above onditions.
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Ajtai, Chv�atal, Newborn, and Szemer�edi [AC82℄ and, independently, Leighton [L83℄ have proved the

following result, whih is usually referred to as the `Crossing Lemma.' The rossing number of any graph

with v verties and e > 4v edges satis�es

r(G) �

1

64

e

3

v

2

:

This result, whih is tight apart from the value of the onstant, has found many appliations in om-

binatorial geometry, onvexity, number theory, and VLSI design (see [L83℄, [Sz95℄, [PS98℄, [ENR00℄,

[STT02℄, [PTa02℄). In partiular, it has played a pivotal role in obtaining the best known upper bound

on the number of k-sets [D98℄ and lower bound on the number of distint distanes determined by n

points in the plane [ST01℄, [KT04℄. Aording to a onjeture of Erd}os and Guy [ErG73℄, whih was

veri�ed in [PST00℄, as long as e=v !1 and e=v

2

! 0; the limit

lim

v!1

min

v(G) = v

e(G) = e

r(G)

e

3

=v

2

exists. The best known upper and lower bounds for this onstant (roughly 0:09 and 1=33:75 � 0:029,

resp.) were obtained in [PTo97℄.

All known proofs of the Crossing Lemma are based on the trivial inequality r(H) � e(H)�(3v(H)�

6), whih is an immediate orollary of Euler's Polyhedral Formula (v(H) > 2). Applying this statement

indutively to all small (and, mostly sparse) subgraphs H � G or to a randomly seleted one, the lemma

follows. The main idea in [PTo97℄ was to obtain stronger inequalities for the sparse subgraphs H, whih

have led to better lower bounds on the rossing numbers of all graphs G. In the present paper we follow

the same approah.

For k � 0, let e

k

(v) denote the maximum number of edges in a graph of v � 2 verties that an be

drawn in the plane so that every edge is involved in at most k rossings. By Euler's Formula, we have

e

0

(v) = 3(v � 2). Pah and T�oth [PTo97℄ proved that e

k

(v) � (k + 3)(v � 2), for 0 � k � 3. Moreover,

for 0 � k � 2, these bounds are tight for in�nitely many values of v. However, for k = 3, there was a

gap between the lower and upper estimates. Our �rst theorem, whose proof is presented in Setion 2,

�lls this gap.

Theorem 1. Let G be a graph on v � 3 verties that an be drawn in the plane so that eah of its edges

rosses at most three others. Then we have

e(G) � 5:5(v � 2):

Consequently, the maximum number of edges over all suh graphs satis�es e

3

(v) � 5:5(v � 2); and this

bound is tight up to an additive onstant.

As we have pointed out before, the inequality e

0

(v) � 3(v�2) immediately implies that if a graph G

of v verties has more than 3(v�2) edges, then every edge beyond this threshold ontributes at least one
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to r(G). Similarly, it follows from inequality e

1

(v) � 4(v � 2) that, if e(G) � 4(v � 2), then every edge

beyond 4(v� 2) must ontribute an additional rossing to r(G) (i.e., altogether at least two rossings).

Summarizing, we obtain that

r(G) � (e(G)� 3 (v(G)� 2)) + (e(G)� 4 (v(G)� 2)) � 2e(G) � 7 (v(G)� 2)

holds for every graph G. Both omponents of this inequality are tight, so one might expet that their

ombination annot be improved either, at least in the range when e(G) is not muh larger that 4(v�2).

However, this is not the ase, as is shown by our next result, proved in Setion 3.

Theorem 2. The rossing number of any graph G with v(G) � 3 verties and e(G) edges satis�es

r(G) �

7

3

e(G)�

25

3

(v(G)� 2):

In the worst ase, this bound is tight up to an additive onstant whenever 4 (v(G)� 2) � e(G) �

5 (v(G)� 2).

As an appliation of the above two theorems, in Setion 4 we establish the following improved version

of the Crossing Lemma.

Theorem 3. The rossing number of any graph G satis�es

r(G) �

1

31:1

e

3

(G)

v

2

(G)

� 1:06v(G):

If e(G) �

103

6

v(G), we also have

r(G) �

1024

31827

e

3

(G)

v

2

(G)

:

Note for omparison that 1024=31827 � 1=31:08 � 0:032.

In the last setion, we adapt the ideas of Sz�ekely [Sz95℄ to dedue some onsequenes of Theorem

3, inluding an improved version of the Szemer�edi-Trotter theorem [SzT83℄ on the maximum number

of inidenes between n points and m lines. We also disuss some open problems and make a few

onjetures and onluding remarks.

All drawings onsidered in this paper satisfy the ondition that any pair of edges have at most one

point in ommon. This may be either an endpoint or a proper rossing. It is well known and easy to see

that every drawing of a graph G that minimizes the number of rossings meets this requirement. Thus,

in the proofs of Theorems 2 and 3, we an make this assumption without loss of generality. However,

it is not so obvious whether the same restrition an be justi�ed in the ase of Theorem 1. Indeed, in

[PTo97℄, the bound e(G) � (k + 3)(v(G) � 2) was proved only for graphs that an be drawn with at

most k � 4 rossings per edge and whih satisfy this extra ondition. To prove Theorem 1 in its full

generality, we have to establish the following simple statement.
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Lemma 1.1. Let k � 3, and let G be a graph of v verties that an be drawn in the plane so that eah

of its edges partiipates in at most k rossings.

In any drawing with this property that minimizes the total number of rossings, every pair of edges

have at most one point in ommon.

Proof: Suppose for ontradition that some pair of edges, e and f , have at least two points in ommon,

A and B. At least one of these points, say B, must be a proper rossing. First, try to swap the portions

of e and f between A and B, and modify the new drawing in small neighborhoods of A and B so as

to redue the number of rossings between the two edges. Clearly, during this proess the number of

rossings along any other edge distint from e and f remains unhanged. The only possible problem

that may arise is that after the operation either e or f (say e) will partiipate in more than k rossings.

In this ase, before the operation there were at least two more rossings inside the portion of f between

A and B, than inside the portion of e between A and B. Sine f partiipated in at most three rossings

(at most two, not ounting B), we onlude that in the original drawing the portion of e between A and

B ontained no rossing. If this is the ase, instead of swapping the two portions, replae the portion

of f between A and B by an ar that runs very lose to the portion of e between A and B, without

interseting it. 2

It is interesting to note that the above argument fails for k � 4, as shown in Figure 1.

A B

e

f

Figure 1: Two adjaent edges e and f ross, eah partiipating in exatly 4 rossings.

2 Proof of Theorem 1

We use indution on v. For v � 4, the statement is trivial. Let v � 4, and suppose that the theorem

has already been proved for graphs having fewer than v verties.

Let G denote the set of all triples (G;G

0

;D) where G is a graph of v verties, D is a drawing of G

in the plane suh that every edge of G rosses at most three others, and G

0

is a planar subgraph of G

with V (G

0

) = V (G) that satis�es the ondition that no two ars in D representing edges of G

0

ross eah

other. Let G

0

� G onsist of all elements (G;G

0

;D) 2 G for whih the number of edges of G is maximum.
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Finally, let G

00

� G

0

onsist of all elements of G

0

for whih the number of edges of G

0

is maximum. Fix

a triple (G;G

0

;D) 2 G

00

suh that the total number rossings in D along all edges of G

0

is as small as

possible. This triple remains �xed throughout the whole argument. The term fae, unless expliitly

stated otherwise, refers to a fae of the planar drawing of G

0

indued by D. For any fae � (of G

0

), let

j�j denote its number of sides, i.e., the number of edges of G

0

along the boundary of �, where every

edge whose both sides belong to the interior of � is ounted twie. Notie that j�j � 3 for every fae �,

unless G

0

onsists of a single edge, in whih ase v(G) � 4, a ontradition.

It follows from the maximality of G

0

that every edge e of G that does not belong to G

0

(in short,

e 2 G�G

0

) rosses at least one edge of G

0

. The losed portion between an endpoint of e and the nearest

rossing of e with an edge of G

0

is alled a half-edge. We orient every half-edge from its endpoint whih

is a vertex of G (and G

0

) towards its other end sitting in the interior of an edge of G

0

. Clearly, every

edge e 2 G�G

0

has two oriented half-edges. Every half-edge lies in a fae � and ontains at most two

rossings with edges of G in its interior. The extension of a half-edge is the edge of G� G

0

it belongs

to. The set of half-edges belonging to a fae � is denoted by H(�).

Lemma 2.1. Let � be a fae of G

0

, and let g be one of its sides. Then H(�) annot ontain two

non-rossing half-edges, both of whih end on g and ross two other edges of G (that are not neessarily

the same).

Proof: Let e

1

and e

2

denote the extensions of two non-rossing half-edges in � that end on g. Both

half-edges ross two edges of G, so their extensions annot ross any other edge apart from g. Removing

g from G

0

and adding e

1

and e

2

, we would obtain a larger plane subgraph of G, ontraditing the

maximality of G

0

. 2

A fae � of G

0

is alled simple if its boundary is onneted and it does not ontain any isolated

vertex of G

0

in its interior.

Lemma 2.2. The number of half-edges in any simple fae � satis�es

jH(�)j � 3j�j � 6:

Proof: For an indution argument to go through, it will be more onvenient to prove the lemma for

more general on�gurations. Slightly abusing the terminology and the notation, we prove the inequality

jH(�)j � 3j�j � 6, for any simple `fae' � with j�j � 3 (that may have nothing to do with G or G

0

) and

for any set of oriented `half-edges' H(�) ontained in � that satisfy the following onditions:

(i) Every half-edge in H(�) emanates from a vertex of � and ends at an edge of � not inident to

that vertex.

(ii) The number of half-edges ending at any edge of � is at most three.

(iii) Every half-edge belonging to H(�) rosses at most two others.

5



(iv) If there are two non-rossing half-edges in H(�), eah rossing two other elements of H(�), then

they annot end at the same edge of �.

By de�nition, onditions (i){(iii) are satis�ed for `real' faes and half-edges assoiated with the triple

(G;G

0

;D), while (iv) follows from Lemma 2.1.

Assume without loss of generality that the boundary of � is a simple yle. If this is not the ase,

replae eah vertex of � enountered more than one during a full ounter-lokwise tour around the

boundary of � by as many opies as many times it is visited, and replae eah edge of � whose both

sides belong to � by two edges running very lose to it. Obviously, the length of the resulting `fae' will

be the same as that of the original.

We proeed by indution on s = j�j. We start with the ase s = 3. Denote the verties of � by A, B,

and C. Let a, b, and  denote the number of half-edges in �, emanating from A, B, and C, respetively.

Without loss of generality, we an assume that a � b � . By (i), every half-edge must end in the interior

of the edge opposite to its starting point. Thus, by (ii), we have a � 3. Every half-edge emanating from

C must ross all half-edges emanating from A and B. Hene, by (iii), if a+ b > 2, we must have  = 0.

Similarly, if a = 3, then b = 0 must hold. The only set of values satisfying the above onstraints, for

whih we have a + b+  > 3s� 6 = 3, is a = b = 2 and  = 0. In this ase, both half-edges emanating

from A end in the interior of the edge BC and both ross the two half-edges emanating from B, whih

ontradits ondition (iv).

Now let s > 3, and suppose that the statement has already been proved for faes with fewer than s

sides.

Given a half-edge h 2 H(�), its endpoints divide the boundary of � into two piees. Consider all

of these piees over all elements of H(�), and let R be the set of those piees that have the smallest

number of verties in their interiors. Pik a minimal element of R 2 R by ontainment. R is de�ned by

a half-edge e = AE, where A is a vertex of � and E is an interior point of an edge g of � (see Figure 2).

Let P denote the set of all half-edges in � that start at A and end on g. Clearly, we have e 2 P and, by

(ii), 1 � jP j � 3. By the minimality of R, every element of P other than e ends outside R. Let Q denote

the set of half-edges in � that ross e. We laim that every element h 2 Q rosses all half-edges in P .

Indeed, otherwise h would start at an interior vertex of R and end at a point of g outside R. However,

in this ase the piee of the boundary of � de�ned by h, whih ontains E, would have fewer interior

verties than R, ontraditing the hoie of R.

Thus, if jP j = 3 then, by (iii), Q must be empty. If jP j = 2 then, by (iv), jQj � 1, and if jP j = 1

then, by (iii), jQj � 2. Therefore, we always have jP [Qj � 3.

Let � denote the `fae' obtained from � as follows. Replae the ar R by the half-edge e. Remove

all verties and edges in R, and regard the union of e and the part of g not belonging to R as a single

new edge (see Figure 2). By the hoie of R, the resulting fae has s

0

� 3 sides. By (i), we have s

0

< s.

Consider the set of half-edges H(�) = H(�) n (P [ Q). None of the elements of this set rosses e, so,

by the minimality of R, all of them lie in �. They meet the onditions (i){(iv), so one an apply the
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indution hypothesis to onlude that

jH(�)j � jH(�)j+ 3 � (3s

0

� 6) + 3 � 3s� 6;

as laimed. 2

A

e

A
ΦΦ

g
E

R

E

Figure 2: Indution step in the proof of Lemma 2.2.

Return to the proof of Theorem 1. A fae � of G

0

is said to be triangular if j�j = 3, otherwise it is

a big fae.

By Lemma 2.2, we have jH(�)j � 3, for any triangular fae �. A triangular fae � is alled an

i-triangle if jH(�)j = i (0 � i � 3). A 3-triangle is a 3X-triangle if one half-edge emanates from eah of

its verties. Otherwise, it is a 3Y -triangle. Observe that if � is a 3X-triangle, then it has three mutually

rossing half-edges, so that their extensions do not have any additional rossing and they must end in a

fae adjaent to �. Moreover, no other edges of G an enter a 3X-triangle.

If � is a 3Y -triangle, then at least two of its half-edges must end at the same side. The fae adjaent

to � along this side is alled the neighbor of �.

An edge of G�G

0

is said to be perfet if it starts and ends in 3-triangles and all the faes it passes

through are triangular. The neighbor 	 of a 3Y -triangle � is alled a strong neighbor if either it is a

0-triangle or it is a 1-triangle and the extension of one of the half-edges in H(�) ends in 	.

Lemma 2.3. Let � be a 3-triangle. If the extensions of at least two half-edges in H(�) are perfet, then

� is a 3Y -triangle with a strong neighbor.

Proof: If � is a 3X-triangle, then the extension of none of its half-edges is perfet (see Figure 3a).

Therefore, � is a 3Y -triangle. It has a unique neighbor 	, whih, by the assumptions in the lemma,
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must be a triangle. We use a tedious ase analysis, illustrated by Figure 3, to prove that 	 is a strong

neighbor. We only sketh the argument. The set of extensions of the half-edges in H(�) is denoted by

H.

Case 1. All half-edges of H(�) emanate from the same vertex.

Subase 1.1. Some edge e 2 H ends in 	. Then 	 is not a 3-triangle, so e is not perfet. If the other

two edges are perfet, then 	 is a 1-triangle (see Figure 3b).

Subase 1.2. None of the edges in H end in 	. Suppose 	 is not a 0-triangle. Then some edge e 2 H

must leave 	 through a di�erent side than the other two edges f; g 2 H do (see Figure 3d). Then e

annot be perfet (see Figure 3e). We have to distinguish four ases, depending on whether f , g, or

neither of them end in the triangle next to 	. In eah of these ases, one an show that f and g annot

be perfet simultaneously (see Figure 3fgh).

Case 2. One half-edge f 2 H(�) emanates from a di�erent vertex than the other two. Then the

extension e 2 H of f is not perfet (see Figure 3i). We have to distinguish further ases, depending on

where the other two edges end, to onlude that if both of them are perfet than 	 is a strong neighbor

of �, as required (see Figure 3jk). 2

a b c d

f g he

i j k

Figure 3: Proof of Lemma 2.3; triangles that are shaded are not 3-triangles.
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Suppose that 	 is a simple fae of G

0

with j	j = 4 and jH(	)j = 6. As shown on Figure 4, there are

seven ombinatorially di�erent possibilities for the arrangement of 	 and the half-edges (on the sphere).

Figure 4: Seven di�erent types of quadrilateral faes.

Lemma 2.4. Let 	 be a simple fae of G

0

with j	j = 4 and jH(	)j = 6; and suppose that the arrangement

of half-edges in 	 is not homeomorphi with the rightmost on�guration depited in Figure 4. Then we

have

E(G) < 5:5 (v(G)� 2) :

Proof: Notie that one of the diagonals of 	, denoted by e = AB, an be added in the interior of �

without reating any rossing with the half-edges in 	 or with other potentially existing edges of G�G

0

that may enter �. (See Figure 5, for an illustration.) Thus, by the maximality of G (more preisely,

by the fat that (G;G

0

;D) 2 G

0

), we may assume that that A and B are onneted by an edge e

0

of G.

Obviously, e

0

must lie entirely outside of 	. We may also assume that e

0

2 G

0

and that it does not ross

any edge of G, otherwise replaing e

0

by e in G, we would obtain a ontradition with the maximality of

G

0

(more preisely, with the fat that (G;G

0

;D) 2 G

00

and the total number of rossings along all edges

of G

0

is as small as possible).

Let G

1

(resp. G

2

) denote the subgraph of G indued by A, B, and all verties in the interior (resp.

exterior) of the `lens' enlosed by e and e

0

(see Figure 5). Clearly, we have v(G) = v(G

1

) + v(G

2

) � 2

and e(G) = e(G

1

)+ e(G

2

)� 1. As e

0

and e run in the exterior and in the interior of 	, resp., both v(G

1

)

and v(G

2

) are stritly smaller than v(G). Therefore, we an apply the indution hypothesis to G

1

and

G

2

to obtain that

e(G) = e(G

1

) + e(G

2

)� 1 � 5:5 (v(G

1

)� 2) + 5:5 (v(G

2

)� 2)� 1 < 5:5 (v(G)� 2) ;

as required. 2
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G
2

G1

A

B

A

B
e’ e’

e e

Figure 5: Proof of Lemma 2.4.

In view of the last lemma, from now on we may and will assume that in every simple quadrilateral

fae that ontains 6 half-edges, these half-edges form an arrangement homeomorphi to the right one

depited in Figure 4.

We de�ne a bipartite multigraphM = (V

1

[V

2

; E) with vertex lasses V

1

and V

2

, where V

1

is the set

of 3-triangles and V

2

is the set of all other faes of G

0

. For eah vertex (3-triangle) � 2 V

1

, separately,

we add to the edge set E of M some edges inident to �, aording to the following rules.

� Rule 0: Connet � to an adjaent triangular fae 	 by two parallel edges if 	 is a 0-triangle.

� Rule 1: Connet � to any 1-triangle 	 by two parallel edges if there is an edge of G � G

0

that

starts in � and ends in 	.

� Rule 2: Connet � to any 2-triangle 	 by a single edge if there is an edge of G�G

0

that starts in

� and ends in 	.

� Rule 3: If the extension e of a half-edge in H(�) passes through or ends in a big fae, we may

onnet � by a single edge to the �rst suh big fae along e. However, we use this last rule only

to bring the degree of � in M up to 2. In partiular, if we have applied Rules 0 or 1, for some �,

we do not apply Rule 3. Similarly, in no ase do we apply Rule 3 for all three half-edges in H(�).

Notie that, besides Rules 0 and 1, the appliation of Rule 3 an also yield parallel edges if two

half-edges in H(�) reah the same big fae. However, we never reate three parallel edges in M .

Let d(�) denote the degree of vertex � in M .

Lemma 2.5. For any � 2 V

1

, we have d(�) � 2.

Proof: We an disregard the restrition on the use of Rule 3, sine it only applies if d(�) has already

reahed 2. If the extension e of a half-edge in H(�) is not perfet, then e yields a (possible) edge of M

inident to � aording to one of the Rules 1, 2, or 3. We get two edges this way, unless the extensions

of at least two of the half-edges in H(�) are perfet. In this latter ase, Lemma 2.3 applies and either

Rule 0 or Rule 1 provides two parallel edges of M onneting � to its strong neighbor. 2
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To omplete the proof of Theorem 1, we have to estimate from above the degrees of the verties

belonging to V

2

in M . If 	 2 V

2

is a 1-triangle or a 2-triangle, we have d(	) � 2. Every 0-triangle 	 is

adjaent to at most three 3-triangles, so its degree satis�es d(	) � 6. The following lemma establishes

a bound for big faes.

Lemma 2.6. For any big fae 	 2 V

2

, we have d(	) � 2j	j. Moreover, if 	 is a simple quadrilateral

fae with six half-edges forming an arrangement homeomorphi to the rightmost arrangement depited

in Figure 4, we have d(	) � 4.

Proof: Every edge of M inident to 	 orresponds to an edge of G�G

0

that starts in some 3-triangle

and enters 	. Di�erent edges of M orrespond to di�erent edges of G�G

0

(or opposite orientations of

the same edge). Sine any side of 	 rosses at most 3 edges of G � G

0

, we obtain the weaker bound

d(	) � 3j	j. If 	 is a simple quadrilateral fae satisfying the onditions in the seond part of the lemma,

then two of its sides do not ross any edge of G � G

0

, hene we have d(	) � 6. The stronger bounds

stated in the lemma immediately follow from the fat that, even if some side of a big fae 	 is rossed

by three edges of G�G

0

, they an ontribute only at most 2 to the degree of 	.

To verify this fat, onsider a �xed side g of 	, and suppose that it rosses three edges of G � G

0

.

These rossings do not ontribute to the degree of 	 if both sides of g belong to the interior of 	; so we

assume that this is not the ase. Every edge e that rosses g is divided by g into two piees. If the piee

inident to the exterior side of g passes through a big fae or does not end in a 3-triangle, then e does

not ontribute to d(	). Therefore, we may assume that all three suh edge piees pass only through

triangular faes and end in a 3-triangle (hene, exluding all but the ases a, g, j and k in Figure 6). A

ase analysis shows that either at least one of these edge piees ends in a 3-triangle whih has a strong

neighbor (see Figure 6gjk), or all of them end in the same 3-triangle (see Figure 6a). In either ase, the

orresponding three edges ontribute at most two to the degree of 	.

The details of the ase analysis are omitted, but they an be reonstruted from Figure 6, where the

irular ar, together with the horizontal segment, represents the boundary of 	. Dark-shaded triangles

are not 3-triangles, while light-shaded triangles are 3Y -triangles with a strong neighbor.2

For any fae �, let t(�) and t(�) denote the number of triangles and diagonals, resp., in a triangula-

tion of �. Thus, if the sum of the number of isolated verties of G

0

that lie in the interior of � and the

number of onneted omponents of the boundary of � is k, we have t = j�j+2k�4 and t = j�j+3k�6.

We introdue the notation d(�) := �d(�) for � 2 V

1

, and d(	) := d(	) for 	 2 V

2

. Let V := V

1

[V

2

denote the set of all faes of G

0

. Then the fat that the sum of degrees of the verties must be the same

on both sides of M , an be expressed by the equation

X

�2V

d(�) = 0:

11



a b c d

e f g h

i j k

Figure 6: Proof of Lemma 2.6; dark-shaded triangles (bdefhi) and light-shaded triangles (gjk).

Lemma 2.7. For every fae � 2 V , we have

jH(�)j+

1

4

d(�) �

5

2

t(�) + 2t(�):

Proof: The proof is by straightforward ase analysis, based on the previous lemmas.

If � is a triangle, we have t(�) = 0, t(�) = 1, so that

5

2

t(�) + 2t(�) =

5

2

. For a 3-triangle �, by

Lemma 2.5, we have jH(�)j +

1

4

d(�) � 3 +

1

4

(�2) =

5

2

. For a 2-triangle �, we have jH(�)j +

1

4

d(�) �

2 +

1

4

(2) =

5

2

. For a 1-triangle �, we have jH(�)j +

1

4

d(�) � 1 +

1

4

(2) =

3

2

, and for a 0-triangle �, we

have jH(�)j+

1

4

d(�) � 0 +

1

4

(6) =

3

2

.

If � is a simple fae with j�j � 5 sides, we have t(�) = j�j � 2 and t(�) = j�j � 3, so that

5

2

t(�) + 2t(�) =

9

2

j�j � 11. It follows from Lemmas 2.2 and 2.6 that jH(�)j � 3j�j � 6 and d(�) =

d(�) � 2j�j. Thus, we have

jH(�)j+

1

4

d(�) �

7

2

j�j � 6 �

9

2

j�j � 11:

If � is a simple fae with j�j = 4, we have t(�) = 2, t(�) = 1, so that

5

2

t(�) + 2t(�) = 7. By

Lemmas 2.2 and 2.6, we obtain jH(�)j � 6 and d(�) = d(�) � 8. If jH(�)j � 5, then jH(�)j+

1

4

d(�) �

5 +

1

4

(8) = 7. If jH(�)j = 6, then by Lemma 2.4 we may assume that � satis�es the onditions of the

seond part of Lemma 2.6. Therefore, we have d(�) = d(�) � 4 and jH(�)j+

1

4

d(�) � 6 +

1

4

(4) = 7.

12



Finally, assume that � is not a simple fae, i.e., its boundary is not onneted or it ontains at

least one isolated vertex of G

0

in its interior. In this ase, we have t(�) � j�j, t(�) � j�j, so that

5

2

t(�) + 2t(�) �

9

2

j�j. By Lemma 2.6, we now obtain d(�) = d(�) � 2�. Lemma 2.2 does not apply

here, but we have jH(�)j � 3j�j, beause every half-edge in H(�) ends at an edge of �. Hene, we have

jH(�)j+

1

4

d(�) � 3j�j+

1

4

(2j�j) =

7

2

j�j. 2

Now we an easily omplete the proof of Theorem 1. Sine every edge of G � G

0

gives rise to two

half-edges, we have

e(G)� e(G

0

) =

1

2

X

�2V

jH(�)j =

1

2

X

�2V

�

jH(�)j+

1

4

d(�)

�

�

5

4

X

�2V

t(�) +

X

�2V

t(�);

where the inequality holds by Lemma 2.7. We obviously have that

P

�2V

t(�) = 2 (v(G)� 2), whih is

equal to the total number of faes in any triangulation of G

0

. In order to obtain suh a triangulation

from G

0

, one needs to add

P

�2V

t(�) edges. Hene, we have

P

�2V

t(�) = 3(v(G)� 2)� e(G

0

). Notie

that triangulating eah fae separately may reate a triangulation of the plane ontaining some parallel

edges, but this has no e�et on the number of triangles or the number of edges. Now the theorem follows

by simple alulation:

e(G) = e(G

0

) +

�

e(G)� e(G

0

)

�

� e(G

0

) +

5

4

� 2 (v(G)� 2) +

�

3 (v(G)� 2)� e(G

0

)

�

= 5:5 (v(G)� 2) :

This ompletes the proof of the inequality in Theorem 1.

We lose this setion by presenting a onstrution whih shows that the result is not far from being

tight.

Proposition 2.8. For every v � 0 (mod 6), v � 12, there exists a graph G with v verties and

5:5(v� 2)� 4 edges that an be drawn in the plane so that eah of its edges rosses at most three others.

That is, for these values we have e

3

(v) � 5:5v � 15.

Proof: Let T

q

denote a hexagonal tiling of a vertial ylindrial surfae with q � 1 horizontal layers,

eah onsisting of 3 hexagonal faes wrapped around the ylinder (see Figure 7). Notie that the top

and the bottom fae of the ylinder are also hexagonal. Let V

q

be the set of all the verties of the tiles.

To eah fae exept the top and the bottom one, add 8 diagonals (all but one main diagonal). Finally,

add all diagonals to the top and the bottom fae that do not yield parallel edges. This means adding 6

edges on both the top and the bottom fae, as depited in Figure 7. The resulting graph G

q

is drawn

on the surfae of the ylinder with eah edge rossing at most 3 other edges. We have v(G

q

) = 6q + 6

and e(G

q

) = 33q + 18 = 5:5v(G

q

)� 15. 2

13



Figure 7: The vertial ylindrial surfae, its layer, side-fae and top/bottom fae.

3 Proof of Theorem 2

For any graph G drawn in the plane, let G

free

denote the subgraph of G on the same vertex set, onsisting

of all rossing-free edges. Let4(G

free

) denote the number of triangular faes ofG

free

, ontaining no vertex

of G in their interiors.

Lemma 3.1. Let G be a graph on v(G) � 3 verties, whih is drawn in the plane so that none of its

edges rosses two others. Then the number of edges of G satis�es

e(G) � 4(v(G) � 2)�

1

2

4(G

free

):

Proof: We an assume without loss of generality that G

free

is maximal in the following sense: if two

verties, u and v, an be onneted by a Jordan ar that does not ross any edge of G, then G

free

ontains an edge uv between these verties. We an also assume that G is 3-onneted. Otherwise,

we an onlude by indution on v(G), as follows. Let G = G

1

[ G

2

be a deomposition of G into

subgraphs on fewer than v(G) verties, where G

1

and G

2

share at most 2 verties. Clearly, we have

(v(G

1

) � 2) + (v(G

2

) � 2) � v(G) � 2; e(G

1

) + e(G

2

) � e(G), and 4(G

free

1

) + 4(G

free

2

) � 4(G

free

).

Therefore, applying the indution hypothesis to G

1

and G

2

separately, we obtain that the statement of

the lemma holds for G.

Observe that if two edges uv and zw ross eah other, then u and z, say, an be onneted by a

Jordan ar running very lose to the union of the edges uv and zv, without rossing any edge of G.

Thus, it follows from the maximality of G

free

that uz, and similarly zv, vw, and wu, are edges of G

free

.

Moreover, the quadrilateral uzvw ontaining the rossing pair of edges uv, zw must be a fae of G

free

.

To see this, it is enough to observe that the 3-onnetivity of G implies that this quadrilateral annot

ontain any vertex of G in its interior. Thus, all edges in G�G

free

are diagonals of quadrilateral faes

14



of G

free

. Letting q(G

free

) denote the number of quadrilateral faes of G

free

, we obtain

e(G

free

) + 2q(G

free

)� e(G) � 0:

Let f(G

free

) denote the total number of faes of G

free

. Then we have

f(G

free

)� q(G

free

)�4(G

free

) � 0

and, by Euler's Formula,

v(G) + f(G

free

)� e(G

free

)� 2 � 0:

Double ounting the pairs (�; a), where � is a fae of G

free

and a is an edge of �, we obtain

2e(G

free

)� 4f(G

free

) +4(G

free

) � 0:

Multiplying the above four inequalities by the oeÆients 1, 4, 2 and 3=2, respetively, and adding them

up, the lemma follows. 2

Instead of Theorem 2, we establish a slightly stronger laim.

Lemma 3.2. Let G be a graph on v(G) � 3 verties, whih is drawn in the plane with x(G) rossings.

Then we have

x(G) �

7

3

e(G)�

25

3

(v(G)� 2) +

2

3

4(G

free

):

Proof: We use indution on x(G) + v(G). As in the proof of Lemma 3.1, we an assume that G is

3-onneted and that G

free

is maximal in the sense that whenever the points u and v an be onneted

by a Jordan ar without rossing any edge of G, the edge uv belongs to G

free

. We distinguish four ases.

Case 1. G ontains an edge that rosses at least 3 other edges.

Let a be suh an edge, and let G

0

be the subgraph of G obtained by removing a. Now we have,

e(G

0

) = e(G) � 1, x(G

0

) � x(G) � 3, and 4(G

free

0

) � 4(G

free

). Applying the indution hypothesis to

G

0

, we get

x(G)� 3 �

7

3

(e(G)� 1)�

25

3

(v(G)� 2) +

2

3

4(G

free

);

whih implies the statement of the lemma.

Case 2. Every edge in G rosses at most one other edge.

Lemma 3.1 yields

e(G) � 4 (v(G)� 2)�

1

2

4(G

free

):

The statement immediately follows from this inequality, ombined with the easy observation (mentioned

in the Introdution) that x(G) � e(G)� 3 (v(G)� 2).

Case 3. There exists an edge e of G that rosses two other edges, one of whih does not ross any

other edge of G.
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Let zw be an edge rossing e at point x, whih does not partiipate in any other rossing. Let u

denote the endpoint of e for whih the piee of e between x and u is rossing-free. Notie that u an

be onneted in G by rossing-free Jordan ars to both z and w. Therefore, by the maximality of G

free

,

the edges uz and uw must belong to G

free

. Let G

0

be the subgraph of G obtained by removing the

edge e. We have e(G

0

) = e(G) � 1 and x(G

0

) = x(G) � 2. Clearly, G

free

0

ontains zw and all edges in

G

free

. By the 3-onnetivity of G, the triangle uzw must be a triangular fae of G

free

0

, so that we have

4(G

free

0

) � 4(G

free

) + 1. Applying the indution hypothesis to G

0

, we obtain

x(G) �

7

3

e(G)�

25

3

(v(G)� 2) +

2

3

4(G

free

) +

1

3

;

whih is better than what we need.

Case 4. There exists an edge a of G that rosses preisely two other edges, b and , and eah of these

edges also partiipates in preisely two rossings.

Subase 4.1. b and  do not ross eah other.

Let G

0

be the subgraph of G obtained by removing b. Clearly, we have e(G

0

) = e(G) � 1, x(G

0

) =

x(G)� 2, and 4(G

free

0

) � 4(G

free

). Notie that  is an edge of G

0

that rosses two other edges; one of

them is a, whih is rossed by no other edge of G

0

. Thus, we an apply to G

0

the last inequality in the

analysis of Case 3 to onlude that

x(G)� 2 �

7

3

(e(G)� 1)�

25

3

(v(G)� 2) +

2

3

4(G

free

) +

1

3

;

whih is preisely what we need.

Subase 4.2. b and  ross eah other.

The three rossing edges, a, b, and  an be drawn on the sphere in two topologially di�erent ways

(see Figure 8). One of these possibilities is ruled out by the assumption that G is 3-onneted, so

the only possible on�guration is the rightmost one in Figure 8. By the maximality ondition, G

free

must ontain the six dashed edges in the �gure. Using again the assumption that G is 3-onneted, it

follows that these six edges form a hexagonal fae � in G

free

, and the only edges of G inside this fae

are a, b, and . Let G

0

be the graph obtained from G by removing the edges a, b, , and inserting

a new vertex in the interior of �, whih is onneted to every vertex of � by rossing-free edges. We

have v(G

0

) = v(G) + 1 and x(G

0

) = x(G) � 3, so that we an apply the indution hypothesis to G

0

.

Obviously, we have e(G

0

) = e(G) + 3 and 4(G

free

0

) = 4(G

free

) + 6. Thus, we obtain

x(G)� 3 �

7

3

(e(G) + 3)�

25

3

(v(G)� 1) +

2

3

�

4(G

free

) + 6

�

;

whih is muh stronger than the inequality in the lemma. 2

The tightness of Theorem 2 is disussed at the end of the last setion.
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Figure 8: Proof of Lemma 3.2: Subase 4.2.

4 Proof of Theorem 3

Our proof is based on the following onsequene of Theorems 1 and 2.

Corollary 4.1. The rossing number of any graph G of at least 3 verties satis�es

r(G) � 4e(G)�

103

6

(v(G)� 2) :

Proof: If G has at most 5 (v(G)� 2) edges, then the statement diretly follows from Theorem 2. If G

has more than 5 (v(G)� 2) edges, �x one of its drawings in whih the number of rossings is minimum.

Delete the edges of G one by one until we obtain a graph G

0

with 5 (v(G)� 2) edges. At eah stage,

delete one of the edges that partiipates in the largest number of rossings in the urrent drawing. Using

the inequality e

2

(v) � 5(v � 2) proved in [PTo97℄ and quoted in Setion 1, at the time of its removal

every edge has at least three rossings. Moreover, by Theorem 1, with the possible exeption of the at

most

1

2

(v(G)� 2) edges deleted last, every edge has at least four rossings. Thus, the total number of

deleted rossings is at least

4 (e(G)� 5 (v(G)� 2))�

1

2

(v(G)� 2) = 4e(G)�

41

2

(v(G)� 2) :

On the other hand, applying Theorem 2 to G

0

, we obtain that the number of rossings not removed

during the algorithm is at least

r(G

0

) �

10

3

(v(G)� 2) :

Summing up these two estimates, the result follows. 2

Now we an easily omplete the proof of Theorem 3. Let G be a graph drawn in the plane with

r(G) rossings, and suppose that e(G) �

103

6

v(G).
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Construt a random subgraph G

0

� G by seleting eah vertex of G independently with probability

p =

103

6

v(G)

e(G)

� 1;

and letting G

0

be the subgraph of G indued by the seleted verties. The expeted number of verties of

G

0

is E[v(G

0

)℄ = pv(G). Similarly, E[e(G

0

)℄ = p

2

e(G). The expeted number of rossings in the drawing

of G

0

inherited from G is p

4

r(G), and the expeted value of the rossing number of G

0

is even smaller.

By Corollary 4.1, r(G

0

) � 5e(G

0

) �

103

6

v(G

0

) holds for every G

0

. (Note that after getting rid of the

onstant term in Corollary 4.1, we do not have to assume any more that v(G

0

) � 3; the above inequality

is true for every G

0

.) Taking expetations, we obtain

p

4

r(G) � E[r(G

0

)℄ � 4E[e(G

0

)℄�

103

6

E[v(G

0

)℄ = 4p

2

e(G)�

103

6

pv(G):

This implies that

r(G) �

1024

31827

e

3

(G)

v

2

(G)

�

1

31:1

e

3

(G)

v

2

(G)

;

provided that e(G) �

103

6

v(G).

To obtain an unonditional lower bound on the rossing number of any graph G, we need di�erent

estimates when e(G) <

103

6

v(G). Comparing the bounds in Theorem 2 and in Corollary 4.1 with the

trivial estimates r(G) � 0 and r(G) � e� 3(v(G) � 2), a ase analysis shows that

1024

31827

e

3

(G)

v

2

(G)

� r(G) � 1:06v(G):

The maximum is attained for a graph G with e(G) = 4(v(G)� 2) and r(G) = v(G)� 2. In onlusion,

r(G) �

1024

31827

e

3

(G)

v

2

(G)

� 1:06v(G) �

1

31:1

e

3

(G)v

2

(G)� 1:06v(G)

holds for every graph G. This ompletes the proof of Theorem 3.

Remark 4.2. Pah and T�oth [PTo00℄ introdued two variants of the rossing number. The pairwise

rossing number (resp. the odd rossing number) of G is de�ned as the minimum number of pairs of non-

adjaent edges that ross (resp. ross an odd number of times) over all drawings of G. These parameters

are at most as large as r(G), but one annot rule out the possibility that they are always equal to

r(G). The original proofs of the Crossing Lemma readily generalize to the new rossing numbers, and

it follows that both of them are at least

1

64

e

3

(G)

v

2

(G)

; provided that e(G) � 4v(G). We have been unable to

extend our proof of Theorem 3 to these parameters.
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5 Appliations, problems, remarks

Every improvement of the Crossing Lemma automatially leads to improved bounds in all of its applia-

tions. For ompleteness and future referene, we inlude some immediate orollaries of Theorem 3 with

a sketh of omputations.

First, we plug Theorem 3 into Sz�ekely's method [Sz95℄ to improve the oeÆient of the main term

in the Szemer�edi-Trotter theorem [SzT83℄, [CE90℄, [PTo97℄.

Corollary 5.1. Given m points and n lines in the Eulidean plane, the number of inidenes between

them is at most 2:5m

2=3

n

2=3

+m+ n.

Proof: We an assume that every line and every point is involved in at least one inidene, and that

n � m, by duality. Sine the statement is true for m = 1, we have to hek it only for m � 2.

De�ne a graph G drawn in the plane suh that the vertex set of G is the given set of m points, and

join two points with an edge drawn as a straight-line segment if the two points are onseutive along

one of the lines. Let I denote the total number of inidenes between the given m points and n lines.

Then v(G) = m and e(G) = I�n. Sine every edge belongs to one of the n lines, r(G) �

�

n

2

�

. Applying

Theorem 2 to G, we obtain that

1

31:1

(I�n)

3

m

2

�1:06m� r(G)�

�

n

2

�

: Using that n � m � 2, easy alulation

shows that

I � n �

3

p

15:55m

2

n

2

+ 33m

3

�

3

p

15:55n

2=3

m

2=3

+m;

whih implies the statement. 2

It was shown in [PTo97℄ that Corollary 5.1 does not remain true if we replae the onstant 2:5 by

0:42 .

Theorem 3 readily generalizes to multigraphs with bounded edge multipliity, improving the onstant

in Sz�ekely's result [Sz95℄.

Corollary 5.2. Let G be a multigraph with maximum edge multipliity m. Then

r(G) �

1

31:1

e

3

(G)

mv

2

(G)

� 1:06m

2

v(G):

Proof: De�ne a random simple subgraph G

0

of G as follows. For eah pair of verties v

1

, v

2

of G,

let e

1

; e

2

; : : : e

k

be the edges onneting them. With probability 1 � k=m, G

0

will not ontain any edge

between v

1

and v

2

. With probability k=m, G

0

ontains preisely one suh edge, and the probability that

this edge is e

i

is 1=m (1 � i � k). Applying Theorem 3 to G

0

and taking expetations, the result follows.

2

Next, we state here the improvement of another result in [PTo97℄.

Corollary 5.3. Let G be a graph drawn in the plane so that every edge is rossed by at most k others,

for some k � 1, and every pair of edges have at most one point in ommon. Then

e(G) � 3:95

p

kv(G):
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Proof: For k � 2, the result is weaker than the bounds given in [PTo97℄. Assume that k � 3, and

onsider a drawing of G suh that every edge rosses at most k others. Let x denote the number of

rossings in this drawing. If e(G) <

103

6

v(G), then there is nothing to prove. If e(G) �

103

6

v(G), then

using Theorem 3, we obtain

1024

31827

e

3

(G)

v

2

(G)

� r(G) � x �

e(G)k

2

;

and the result follows. 2

Reall that e

k

(v) was de�ned as the maximum number of edges that a graph of v verties an have

if it an be drawn in the plane with at most k rossings per edge. We de�ne some other losely related

funtions. Let e

�

k

(v) denote the maximum number of edges of a graph of v verties whih has a drawing

that satis�es the above requirement and, in addition, every pair of its edges meet at most one (either

at an endpoint or at a proper rossing). We de�ne e

k

(v) and e

�

k

(v) analogously, with the only di�erene

that now the maximums are taken over all triangle-free graphs with v verties.

It was mentioned in the Introdution (see Lemma 1.1) that e

k

(v) = e

�

k

(v) for 0 � k � 3, and that

e

�

k

(v) � (k + 3)(v � 2) for 0 � k � 4 [PTo97℄. For 0 � k � 2; the last inequality is tight for in�nitely

many values of v. Our Theorem 1 shows that this is not the ase for k = 3.

Conjeture 5.4. We have e

k

(v) = e

�

k

(v) for every k and v.

Using the proof tehnique of Theorem 1, it is not hard to improve the bound e

�

4

(v) � 7(v � 2). In

partiular, in this ase Lemma 2.2 holds with 3(j�j � 2) replaed by 4(j�j � 2). Moreover, an easy ase

analysis shows that every triangular fae � with four half-edges satis�es at least one of the following two

onditions:

1. The extension of at least one of the half-edges in � either ends in a triangular fae with fewer than

four half-edges, or enters a big fae.

2. � is adjaent to an empty triangle.

Based on this observation, one an modify the arguments in Setion 2 to obtain the upper bound

e

�

4

(v) � (7�

1

9

)v �O(1).

Conjeture 5.5. e

�

4

(v) � 6v �O(1).

As for the other two funtions, we have e

k

(v) = e

�

k

(v) for 0 � k � 3, and e

�

k

(v) � (k + 2)(v � 2) for

0 � k � 2. If 0 � k � 1, these bounds are attained for in�nitely many values of v. These estimates

were applied by Czabarka et al. [CS03℄ to obtain some lower bounds on the so-alled biplanar rossing

number of omplete graphs.

Given a triangle-free graph drawn in the plane so that every edge rosses at most 2 others, an easy

ase analysis shows that eah quadrilateral fae that ontains four half-edges is adjaent to a fae whih
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is either non-quadrilateral or does not have four half-edges

1

. As in the proof of Theorem 1 (before

Lemma 2.5), we an use a properly de�ned bipartite multigraph M to establish the bound

e

2

(v) �

�

4�

1

10

�

v �O(1):

Conjeture 5.6. e

2

(v) � 3:5v �O(1).

The oeÆient 3:5 in the above onjeture annot be improved as shown by the triangle-free (atually

bipartite!) graph in Figure 9, whose vertex set is the set of verties of a 4� v=4 grid.

Figure 9: e

2

(v) � 3:5v � 16.

Let r(v; e) denote the minimal rossing number of a graph with v � 3 verties and e edges. Clearly,

we have r(v; e) = 0, whenever e � 3(v � 2), and r(v; e) = e � 3(v � 2) for 3(v � 2) � e � 4(v � 2).

To see that these values are indeed attained by the funtion, onsider the graph onstruted in [PTo97℄,

whih (if v is a multiple of 4) an be obtained from a planar graph with v verties, 2(v � 2) edges, and

v � 2 quadrilateral faes, by adding the diagonals of the faes. If e < 4(v � 2), delete as many edges

partiipating in a rossing, as neessary.

In the next interval, i.e., when 4(v � 2) � e � 5(v � 2), Theorem 2 gives tight bound on r(v; e) up

to an additive onstant. To see this, onsider a planar graph with only pentagonal and quadrilateral

faes and add all diagonals in every fae. If no two faes of the original planar graph shared more than

a vertex or an edge, for the resulting graph the inequality of Theorem 2 holds with equality. For ertain

values of v and e, no suh onstrution exists, but we only lose a onstant.

If 5(v�2) � e � 5:5(v�2), the best known bound, r(v; e) � 3e�

35

3

(v�2), follows from Theorem 2,

while for e � 5:5(v � 2) the best known bound is either the one in Corollary 4.1 or the one in Theorem

3. We do not believe that any of these bounds are optimal.

1

This statement atually holds under the assumption that G and G

0

are maximal, in the sense desribed at the beginning

of Setion 2.
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Conjeture 5.7 r(v; e) �

25

6

e�

35

2

(v � 2):

Note that, if true, this bound is tight up to an additive onstant for 5(v � 2) � e � 6(v � 2). To

see this, onsider a planar graph with only pentagonal and hexagonal faes and add all diagonals of all

faes. If no two faes of the planar graph shared more than a vertex or an edge, the resulting graph

shows that Conjeture 5.7 annot be improved. As a �rst step toward settling this onjeture, we an

show the following statement, similar to Lemma 3.1.

Lemma 5.8 Let G be a graph on v(G) � 3 verties drawn in the plane so that every edge is involved in

at most two rossings. Then

e(G) � 5(v(G) � 2)�4(G

free

):
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