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Abstra
t

Twenty years ago, Ajtai, Chv�atal, Newborn, Szemer�edi, and, independently, Leighton dis
overed that

the 
rossing number of any graph with v verti
es and e > 4v edges is at least 
e

3

=v

2

, where 
 > 0

is an absolute 
onstant. This result, known as the `Crossing Lemma,' has found many important

appli
ations in dis
rete and 
omputational geometry. It is tight up to a multipli
ative 
onstant.

Here we improve the best known value of the 
onstant by showing that the result holds with 
 >

1024=31827> 0:032. The proof has two new ingredients, interesting on their own right. We show that

(1) if a graph 
an be drawn in the plane so that every edge 
rosses at most 3 others, then its number

of edges 
annot ex
eed 5:5(v�2); and (2) the 
rossing number of any graph is at least

7

3

e�

25

3

(v�2).

Both bounds are tight up to an additive 
onstant (the latter one in the range 4v � e � 5v).

1 Introdu
tion

Unless stated otherwise, the graphs 
onsidered in this paper have no loops or parallel edges. The number

of verti
es and number of edges of a graphG are denoted by v(G) and e(G), respe
tively. We say that G is

drawn in the plane if its verti
es are represented by distin
t points and its edges by (possibly interse
ting)

Jordan ar
s 
onne
ting the 
orresponding point pairs. If it leads to no 
onfusion, in terminology and

notation we make no distin
tion between the verti
es of G and the 
orresponding points, or between

the edges and the 
orresponding Jordan ar
s. We always assume that in a drawing (a) no edge passes

through a vertex di�erent from its endpoints, (b) no three edges 
ross at the same point, (
) any two

edges have only a �nite number of interior points in 
ommon, and at these points they properly 
ross,

i.e., one of the edges passes from one side of the other edge to the other side (see [P99℄, [P04℄). The


rossing number of G, denoted by 
r(G), is the minimum number of edge 
rossings in a drawing of G

satisfying the above 
onditions.
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Ajtai, Chv�atal, Newborn, and Szemer�edi [AC82℄ and, independently, Leighton [L83℄ have proved the

following result, whi
h is usually referred to as the `Crossing Lemma.' The 
rossing number of any graph

with v verti
es and e > 4v edges satis�es


r(G) �

1

64

e

3

v

2

:

This result, whi
h is tight apart from the value of the 
onstant, has found many appli
ations in 
om-

binatorial geometry, 
onvexity, number theory, and VLSI design (see [L83℄, [Sz95℄, [PS98℄, [ENR00℄,

[STT02℄, [PTa02℄). In parti
ular, it has played a pivotal role in obtaining the best known upper bound

on the number of k-sets [D98℄ and lower bound on the number of distin
t distan
es determined by n

points in the plane [ST01℄, [KT04℄. A

ording to a 
onje
ture of Erd}os and Guy [ErG73℄, whi
h was

veri�ed in [PST00℄, as long as e=v !1 and e=v

2

! 0; the limit

lim

v!1

min

v(G) = v

e(G) = e


r(G)

e

3

=v

2

exists. The best known upper and lower bounds for this 
onstant (roughly 0:09 and 1=33:75 � 0:029,

resp.) were obtained in [PTo97℄.

All known proofs of the Crossing Lemma are based on the trivial inequality 
r(H) � e(H)�(3v(H)�

6), whi
h is an immediate 
orollary of Euler's Polyhedral Formula (v(H) > 2). Applying this statement

indu
tively to all small (and, mostly sparse) subgraphs H � G or to a randomly sele
ted one, the lemma

follows. The main idea in [PTo97℄ was to obtain stronger inequalities for the sparse subgraphs H, whi
h

have led to better lower bounds on the 
rossing numbers of all graphs G. In the present paper we follow

the same approa
h.

For k � 0, let e

k

(v) denote the maximum number of edges in a graph of v � 2 verti
es that 
an be

drawn in the plane so that every edge is involved in at most k 
rossings. By Euler's Formula, we have

e

0

(v) = 3(v � 2). Pa
h and T�oth [PTo97℄ proved that e

k

(v) � (k + 3)(v � 2), for 0 � k � 3. Moreover,

for 0 � k � 2, these bounds are tight for in�nitely many values of v. However, for k = 3, there was a

gap between the lower and upper estimates. Our �rst theorem, whose proof is presented in Se
tion 2,

�lls this gap.

Theorem 1. Let G be a graph on v � 3 verti
es that 
an be drawn in the plane so that ea
h of its edges


rosses at most three others. Then we have

e(G) � 5:5(v � 2):

Consequently, the maximum number of edges over all su
h graphs satis�es e

3

(v) � 5:5(v � 2); and this

bound is tight up to an additive 
onstant.

As we have pointed out before, the inequality e

0

(v) � 3(v�2) immediately implies that if a graph G

of v verti
es has more than 3(v�2) edges, then every edge beyond this threshold 
ontributes at least one
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to 
r(G). Similarly, it follows from inequality e

1

(v) � 4(v � 2) that, if e(G) � 4(v � 2), then every edge

beyond 4(v� 2) must 
ontribute an additional 
rossing to 
r(G) (i.e., altogether at least two 
rossings).

Summarizing, we obtain that


r(G) � (e(G)� 3 (v(G)� 2)) + (e(G)� 4 (v(G)� 2)) � 2e(G) � 7 (v(G)� 2)

holds for every graph G. Both 
omponents of this inequality are tight, so one might expe
t that their


ombination 
annot be improved either, at least in the range when e(G) is not mu
h larger that 4(v�2).

However, this is not the 
ase, as is shown by our next result, proved in Se
tion 3.

Theorem 2. The 
rossing number of any graph G with v(G) � 3 verti
es and e(G) edges satis�es


r(G) �

7

3

e(G)�

25

3

(v(G)� 2):

In the worst 
ase, this bound is tight up to an additive 
onstant whenever 4 (v(G)� 2) � e(G) �

5 (v(G)� 2).

As an appli
ation of the above two theorems, in Se
tion 4 we establish the following improved version

of the Crossing Lemma.

Theorem 3. The 
rossing number of any graph G satis�es


r(G) �

1

31:1

e

3

(G)

v

2

(G)

� 1:06v(G):

If e(G) �

103

6

v(G), we also have


r(G) �

1024

31827

e

3

(G)

v

2

(G)

:

Note for 
omparison that 1024=31827 � 1=31:08 � 0:032.

In the last se
tion, we adapt the ideas of Sz�ekely [Sz95℄ to dedu
e some 
onsequen
es of Theorem

3, in
luding an improved version of the Szemer�edi-Trotter theorem [SzT83℄ on the maximum number

of in
iden
es between n points and m lines. We also dis
uss some open problems and make a few


onje
tures and 
on
luding remarks.

All drawings 
onsidered in this paper satisfy the 
ondition that any pair of edges have at most one

point in 
ommon. This may be either an endpoint or a proper 
rossing. It is well known and easy to see

that every drawing of a graph G that minimizes the number of 
rossings meets this requirement. Thus,

in the proofs of Theorems 2 and 3, we 
an make this assumption without loss of generality. However,

it is not so obvious whether the same restri
tion 
an be justi�ed in the 
ase of Theorem 1. Indeed, in

[PTo97℄, the bound e(G) � (k + 3)(v(G) � 2) was proved only for graphs that 
an be drawn with at

most k � 4 
rossings per edge and whi
h satisfy this extra 
ondition. To prove Theorem 1 in its full

generality, we have to establish the following simple statement.
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Lemma 1.1. Let k � 3, and let G be a graph of v verti
es that 
an be drawn in the plane so that ea
h

of its edges parti
ipates in at most k 
rossings.

In any drawing with this property that minimizes the total number of 
rossings, every pair of edges

have at most one point in 
ommon.

Proof: Suppose for 
ontradi
tion that some pair of edges, e and f , have at least two points in 
ommon,

A and B. At least one of these points, say B, must be a proper 
rossing. First, try to swap the portions

of e and f between A and B, and modify the new drawing in small neighborhoods of A and B so as

to redu
e the number of 
rossings between the two edges. Clearly, during this pro
ess the number of


rossings along any other edge distin
t from e and f remains un
hanged. The only possible problem

that may arise is that after the operation either e or f (say e) will parti
ipate in more than k 
rossings.

In this 
ase, before the operation there were at least two more 
rossings inside the portion of f between

A and B, than inside the portion of e between A and B. Sin
e f parti
ipated in at most three 
rossings

(at most two, not 
ounting B), we 
on
lude that in the original drawing the portion of e between A and

B 
ontained no 
rossing. If this is the 
ase, instead of swapping the two portions, repla
e the portion

of f between A and B by an ar
 that runs very 
lose to the portion of e between A and B, without

interse
ting it. 2

It is interesting to note that the above argument fails for k � 4, as shown in Figure 1.

A B

e

f

Figure 1: Two adja
ent edges e and f 
ross, ea
h parti
ipating in exa
tly 4 
rossings.

2 Proof of Theorem 1

We use indu
tion on v. For v � 4, the statement is trivial. Let v � 4, and suppose that the theorem

has already been proved for graphs having fewer than v verti
es.

Let G denote the set of all triples (G;G

0

;D) where G is a graph of v verti
es, D is a drawing of G

in the plane su
h that every edge of G 
rosses at most three others, and G

0

is a planar subgraph of G

with V (G

0

) = V (G) that satis�es the 
ondition that no two ar
s in D representing edges of G

0


ross ea
h

other. Let G

0

� G 
onsist of all elements (G;G

0

;D) 2 G for whi
h the number of edges of G is maximum.
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Finally, let G

00

� G

0


onsist of all elements of G

0

for whi
h the number of edges of G

0

is maximum. Fix

a triple (G;G

0

;D) 2 G

00

su
h that the total number 
rossings in D along all edges of G

0

is as small as

possible. This triple remains �xed throughout the whole argument. The term fa
e, unless expli
itly

stated otherwise, refers to a fa
e of the planar drawing of G

0

indu
ed by D. For any fa
e � (of G

0

), let

j�j denote its number of sides, i.e., the number of edges of G

0

along the boundary of �, where every

edge whose both sides belong to the interior of � is 
ounted twi
e. Noti
e that j�j � 3 for every fa
e �,

unless G

0


onsists of a single edge, in whi
h 
ase v(G) � 4, a 
ontradi
tion.

It follows from the maximality of G

0

that every edge e of G that does not belong to G

0

(in short,

e 2 G�G

0

) 
rosses at least one edge of G

0

. The 
losed portion between an endpoint of e and the nearest


rossing of e with an edge of G

0

is 
alled a half-edge. We orient every half-edge from its endpoint whi
h

is a vertex of G (and G

0

) towards its other end sitting in the interior of an edge of G

0

. Clearly, every

edge e 2 G�G

0

has two oriented half-edges. Every half-edge lies in a fa
e � and 
ontains at most two


rossings with edges of G in its interior. The extension of a half-edge is the edge of G� G

0

it belongs

to. The set of half-edges belonging to a fa
e � is denoted by H(�).

Lemma 2.1. Let � be a fa
e of G

0

, and let g be one of its sides. Then H(�) 
annot 
ontain two

non-
rossing half-edges, both of whi
h end on g and 
ross two other edges of G (that are not ne
essarily

the same).

Proof: Let e

1

and e

2

denote the extensions of two non-
rossing half-edges in � that end on g. Both

half-edges 
ross two edges of G, so their extensions 
annot 
ross any other edge apart from g. Removing

g from G

0

and adding e

1

and e

2

, we would obtain a larger plane subgraph of G, 
ontradi
ting the

maximality of G

0

. 2

A fa
e � of G

0

is 
alled simple if its boundary is 
onne
ted and it does not 
ontain any isolated

vertex of G

0

in its interior.

Lemma 2.2. The number of half-edges in any simple fa
e � satis�es

jH(�)j � 3j�j � 6:

Proof: For an indu
tion argument to go through, it will be more 
onvenient to prove the lemma for

more general 
on�gurations. Slightly abusing the terminology and the notation, we prove the inequality

jH(�)j � 3j�j � 6, for any simple `fa
e' � with j�j � 3 (that may have nothing to do with G or G

0

) and

for any set of oriented `half-edges' H(�) 
ontained in � that satisfy the following 
onditions:

(i) Every half-edge in H(�) emanates from a vertex of � and ends at an edge of � not in
ident to

that vertex.

(ii) The number of half-edges ending at any edge of � is at most three.

(iii) Every half-edge belonging to H(�) 
rosses at most two others.
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(iv) If there are two non-
rossing half-edges in H(�), ea
h 
rossing two other elements of H(�), then

they 
annot end at the same edge of �.

By de�nition, 
onditions (i){(iii) are satis�ed for `real' fa
es and half-edges asso
iated with the triple

(G;G

0

;D), while (iv) follows from Lemma 2.1.

Assume without loss of generality that the boundary of � is a simple 
y
le. If this is not the 
ase,

repla
e ea
h vertex of � en
ountered more than on
e during a full 
ounter-
lo
kwise tour around the

boundary of � by as many 
opies as many times it is visited, and repla
e ea
h edge of � whose both

sides belong to � by two edges running very 
lose to it. Obviously, the length of the resulting `fa
e' will

be the same as that of the original.

We pro
eed by indu
tion on s = j�j. We start with the 
ase s = 3. Denote the verti
es of � by A, B,

and C. Let a, b, and 
 denote the number of half-edges in �, emanating from A, B, and C, respe
tively.

Without loss of generality, we 
an assume that a � b � 
. By (i), every half-edge must end in the interior

of the edge opposite to its starting point. Thus, by (ii), we have a � 3. Every half-edge emanating from

C must 
ross all half-edges emanating from A and B. Hen
e, by (iii), if a+ b > 2, we must have 
 = 0.

Similarly, if a = 3, then b = 0 must hold. The only set of values satisfying the above 
onstraints, for

whi
h we have a + b+ 
 > 3s� 6 = 3, is a = b = 2 and 
 = 0. In this 
ase, both half-edges emanating

from A end in the interior of the edge BC and both 
ross the two half-edges emanating from B, whi
h


ontradi
ts 
ondition (iv).

Now let s > 3, and suppose that the statement has already been proved for fa
es with fewer than s

sides.

Given a half-edge h 2 H(�), its endpoints divide the boundary of � into two pie
es. Consider all

of these pie
es over all elements of H(�), and let R be the set of those pie
es that have the smallest

number of verti
es in their interiors. Pi
k a minimal element of R 2 R by 
ontainment. R is de�ned by

a half-edge e = AE, where A is a vertex of � and E is an interior point of an edge g of � (see Figure 2).

Let P denote the set of all half-edges in � that start at A and end on g. Clearly, we have e 2 P and, by

(ii), 1 � jP j � 3. By the minimality of R, every element of P other than e ends outside R. Let Q denote

the set of half-edges in � that 
ross e. We 
laim that every element h 2 Q 
rosses all half-edges in P .

Indeed, otherwise h would start at an interior vertex of R and end at a point of g outside R. However,

in this 
ase the pie
e of the boundary of � de�ned by h, whi
h 
ontains E, would have fewer interior

verti
es than R, 
ontradi
ting the 
hoi
e of R.

Thus, if jP j = 3 then, by (iii), Q must be empty. If jP j = 2 then, by (iv), jQj � 1, and if jP j = 1

then, by (iii), jQj � 2. Therefore, we always have jP [Qj � 3.

Let � denote the `fa
e' obtained from � as follows. Repla
e the ar
 R by the half-edge e. Remove

all verti
es and edges in R, and regard the union of e and the part of g not belonging to R as a single

new edge (see Figure 2). By the 
hoi
e of R, the resulting fa
e has s

0

� 3 sides. By (i), we have s

0

< s.

Consider the set of half-edges H(�) = H(�) n (P [ Q). None of the elements of this set 
rosses e, so,

by the minimality of R, all of them lie in �. They meet the 
onditions (i){(iv), so one 
an apply the
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indu
tion hypothesis to 
on
lude that

jH(�)j � jH(�)j+ 3 � (3s

0

� 6) + 3 � 3s� 6;

as 
laimed. 2

A

e

A
ΦΦ

g
E

R

E

Figure 2: Indu
tion step in the proof of Lemma 2.2.

Return to the proof of Theorem 1. A fa
e � of G

0

is said to be triangular if j�j = 3, otherwise it is

a big fa
e.

By Lemma 2.2, we have jH(�)j � 3, for any triangular fa
e �. A triangular fa
e � is 
alled an

i-triangle if jH(�)j = i (0 � i � 3). A 3-triangle is a 3X-triangle if one half-edge emanates from ea
h of

its verti
es. Otherwise, it is a 3Y -triangle. Observe that if � is a 3X-triangle, then it has three mutually


rossing half-edges, so that their extensions do not have any additional 
rossing and they must end in a

fa
e adja
ent to �. Moreover, no other edges of G 
an enter a 3X-triangle.

If � is a 3Y -triangle, then at least two of its half-edges must end at the same side. The fa
e adja
ent

to � along this side is 
alled the neighbor of �.

An edge of G�G

0

is said to be perfe
t if it starts and ends in 3-triangles and all the fa
es it passes

through are triangular. The neighbor 	 of a 3Y -triangle � is 
alled a strong neighbor if either it is a

0-triangle or it is a 1-triangle and the extension of one of the half-edges in H(�) ends in 	.

Lemma 2.3. Let � be a 3-triangle. If the extensions of at least two half-edges in H(�) are perfe
t, then

� is a 3Y -triangle with a strong neighbor.

Proof: If � is a 3X-triangle, then the extension of none of its half-edges is perfe
t (see Figure 3a).

Therefore, � is a 3Y -triangle. It has a unique neighbor 	, whi
h, by the assumptions in the lemma,
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must be a triangle. We use a tedious 
ase analysis, illustrated by Figure 3, to prove that 	 is a strong

neighbor. We only sket
h the argument. The set of extensions of the half-edges in H(�) is denoted by

H.

Case 1. All half-edges of H(�) emanate from the same vertex.

Sub
ase 1.1. Some edge e 2 H ends in 	. Then 	 is not a 3-triangle, so e is not perfe
t. If the other

two edges are perfe
t, then 	 is a 1-triangle (see Figure 3b
).

Sub
ase 1.2. None of the edges in H end in 	. Suppose 	 is not a 0-triangle. Then some edge e 2 H

must leave 	 through a di�erent side than the other two edges f; g 2 H do (see Figure 3d). Then e


annot be perfe
t (see Figure 3e). We have to distinguish four 
ases, depending on whether f , g, or

neither of them end in the triangle next to 	. In ea
h of these 
ases, one 
an show that f and g 
annot

be perfe
t simultaneously (see Figure 3fgh).

Case 2. One half-edge f 2 H(�) emanates from a di�erent vertex than the other two. Then the

extension e 2 H of f is not perfe
t (see Figure 3i). We have to distinguish further 
ases, depending on

where the other two edges end, to 
on
lude that if both of them are perfe
t than 	 is a strong neighbor

of �, as required (see Figure 3jk). 2

a b c d

f g he

i j k

Figure 3: Proof of Lemma 2.3; triangles that are shaded are not 3-triangles.
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Suppose that 	 is a simple fa
e of G

0

with j	j = 4 and jH(	)j = 6. As shown on Figure 4, there are

seven 
ombinatorially di�erent possibilities for the arrangement of 	 and the half-edges (on the sphere).

Figure 4: Seven di�erent types of quadrilateral fa
es.

Lemma 2.4. Let 	 be a simple fa
e of G

0

with j	j = 4 and jH(	)j = 6; and suppose that the arrangement

of half-edges in 	 is not homeomorphi
 with the rightmost 
on�guration depi
ted in Figure 4. Then we

have

E(G) < 5:5 (v(G)� 2) :

Proof: Noti
e that one of the diagonals of 	, denoted by e = AB, 
an be added in the interior of �

without 
reating any 
rossing with the half-edges in 	 or with other potentially existing edges of G�G

0

that may enter �. (See Figure 5, for an illustration.) Thus, by the maximality of G (more pre
isely,

by the fa
t that (G;G

0

;D) 2 G

0

), we may assume that that A and B are 
onne
ted by an edge e

0

of G.

Obviously, e

0

must lie entirely outside of 	. We may also assume that e

0

2 G

0

and that it does not 
ross

any edge of G, otherwise repla
ing e

0

by e in G, we would obtain a 
ontradi
tion with the maximality of

G

0

(more pre
isely, with the fa
t that (G;G

0

;D) 2 G

00

and the total number of 
rossings along all edges

of G

0

is as small as possible).

Let G

1

(resp. G

2

) denote the subgraph of G indu
ed by A, B, and all verti
es in the interior (resp.

exterior) of the `lens' en
losed by e and e

0

(see Figure 5). Clearly, we have v(G) = v(G

1

) + v(G

2

) � 2

and e(G) = e(G

1

)+ e(G

2

)� 1. As e

0

and e run in the exterior and in the interior of 	, resp., both v(G

1

)

and v(G

2

) are stri
tly smaller than v(G). Therefore, we 
an apply the indu
tion hypothesis to G

1

and

G

2

to obtain that

e(G) = e(G

1

) + e(G

2

)� 1 � 5:5 (v(G

1

)� 2) + 5:5 (v(G

2

)� 2)� 1 < 5:5 (v(G)� 2) ;

as required. 2
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G
2

G1

A

B

A

B
e’ e’

e e

Figure 5: Proof of Lemma 2.4.

In view of the last lemma, from now on we may and will assume that in every simple quadrilateral

fa
e that 
ontains 6 half-edges, these half-edges form an arrangement homeomorphi
 to the right one

depi
ted in Figure 4.

We de�ne a bipartite multigraphM = (V

1

[V

2

; E) with vertex 
lasses V

1

and V

2

, where V

1

is the set

of 3-triangles and V

2

is the set of all other fa
es of G

0

. For ea
h vertex (3-triangle) � 2 V

1

, separately,

we add to the edge set E of M some edges in
ident to �, a

ording to the following rules.

� Rule 0: Conne
t � to an adja
ent triangular fa
e 	 by two parallel edges if 	 is a 0-triangle.

� Rule 1: Conne
t � to any 1-triangle 	 by two parallel edges if there is an edge of G � G

0

that

starts in � and ends in 	.

� Rule 2: Conne
t � to any 2-triangle 	 by a single edge if there is an edge of G�G

0

that starts in

� and ends in 	.

� Rule 3: If the extension e of a half-edge in H(�) passes through or ends in a big fa
e, we may


onne
t � by a single edge to the �rst su
h big fa
e along e. However, we use this last rule only

to bring the degree of � in M up to 2. In parti
ular, if we have applied Rules 0 or 1, for some �,

we do not apply Rule 3. Similarly, in no 
ase do we apply Rule 3 for all three half-edges in H(�).

Noti
e that, besides Rules 0 and 1, the appli
ation of Rule 3 
an also yield parallel edges if two

half-edges in H(�) rea
h the same big fa
e. However, we never 
reate three parallel edges in M .

Let d(�) denote the degree of vertex � in M .

Lemma 2.5. For any � 2 V

1

, we have d(�) � 2.

Proof: We 
an disregard the restri
tion on the use of Rule 3, sin
e it only applies if d(�) has already

rea
hed 2. If the extension e of a half-edge in H(�) is not perfe
t, then e yields a (possible) edge of M

in
ident to � a

ording to one of the Rules 1, 2, or 3. We get two edges this way, unless the extensions

of at least two of the half-edges in H(�) are perfe
t. In this latter 
ase, Lemma 2.3 applies and either

Rule 0 or Rule 1 provides two parallel edges of M 
onne
ting � to its strong neighbor. 2
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To 
omplete the proof of Theorem 1, we have to estimate from above the degrees of the verti
es

belonging to V

2

in M . If 	 2 V

2

is a 1-triangle or a 2-triangle, we have d(	) � 2. Every 0-triangle 	 is

adja
ent to at most three 3-triangles, so its degree satis�es d(	) � 6. The following lemma establishes

a bound for big fa
es.

Lemma 2.6. For any big fa
e 	 2 V

2

, we have d(	) � 2j	j. Moreover, if 	 is a simple quadrilateral

fa
e with six half-edges forming an arrangement homeomorphi
 to the rightmost arrangement depi
ted

in Figure 4, we have d(	) � 4.

Proof: Every edge of M in
ident to 	 
orresponds to an edge of G�G

0

that starts in some 3-triangle

and enters 	. Di�erent edges of M 
orrespond to di�erent edges of G�G

0

(or opposite orientations of

the same edge). Sin
e any side of 	 
rosses at most 3 edges of G � G

0

, we obtain the weaker bound

d(	) � 3j	j. If 	 is a simple quadrilateral fa
e satisfying the 
onditions in the se
ond part of the lemma,

then two of its sides do not 
ross any edge of G � G

0

, hen
e we have d(	) � 6. The stronger bounds

stated in the lemma immediately follow from the fa
t that, even if some side of a big fa
e 	 is 
rossed

by three edges of G�G

0

, they 
an 
ontribute only at most 2 to the degree of 	.

To verify this fa
t, 
onsider a �xed side g of 	, and suppose that it 
rosses three edges of G � G

0

.

These 
rossings do not 
ontribute to the degree of 	 if both sides of g belong to the interior of 	; so we

assume that this is not the 
ase. Every edge e that 
rosses g is divided by g into two pie
es. If the pie
e

in
ident to the exterior side of g passes through a big fa
e or does not end in a 3-triangle, then e does

not 
ontribute to d(	). Therefore, we may assume that all three su
h edge pie
es pass only through

triangular fa
es and end in a 3-triangle (hen
e, ex
luding all but the 
ases a, g, j and k in Figure 6). A


ase analysis shows that either at least one of these edge pie
es ends in a 3-triangle whi
h has a strong

neighbor (see Figure 6gjk), or all of them end in the same 3-triangle (see Figure 6a). In either 
ase, the


orresponding three edges 
ontribute at most two to the degree of 	.

The details of the 
ase analysis are omitted, but they 
an be re
onstru
ted from Figure 6, where the


ir
ular ar
, together with the horizontal segment, represents the boundary of 	. Dark-shaded triangles

are not 3-triangles, while light-shaded triangles are 3Y -triangles with a strong neighbor.2

For any fa
e �, let t(�) and t(�) denote the number of triangles and diagonals, resp., in a triangula-

tion of �. Thus, if the sum of the number of isolated verti
es of G

0

that lie in the interior of � and the

number of 
onne
ted 
omponents of the boundary of � is k, we have t = j�j+2k�4 and t = j�j+3k�6.

We introdu
e the notation d(�) := �d(�) for � 2 V

1

, and d(	) := d(	) for 	 2 V

2

. Let V := V

1

[V

2

denote the set of all fa
es of G

0

. Then the fa
t that the sum of degrees of the verti
es must be the same

on both sides of M , 
an be expressed by the equation

X

�2V

d(�) = 0:

11



a b c d

e f g h

i j k

Figure 6: Proof of Lemma 2.6; dark-shaded triangles (b
defhi) and light-shaded triangles (gjk).

Lemma 2.7. For every fa
e � 2 V , we have

jH(�)j+

1

4

d(�) �

5

2

t(�) + 2t(�):

Proof: The proof is by straightforward 
ase analysis, based on the previous lemmas.

If � is a triangle, we have t(�) = 0, t(�) = 1, so that

5

2

t(�) + 2t(�) =

5

2

. For a 3-triangle �, by

Lemma 2.5, we have jH(�)j +

1

4

d(�) � 3 +

1

4

(�2) =

5

2

. For a 2-triangle �, we have jH(�)j +

1

4

d(�) �

2 +

1

4

(2) =

5

2

. For a 1-triangle �, we have jH(�)j +

1

4

d(�) � 1 +

1

4

(2) =

3

2

, and for a 0-triangle �, we

have jH(�)j+

1

4

d(�) � 0 +

1

4

(6) =

3

2

.

If � is a simple fa
e with j�j � 5 sides, we have t(�) = j�j � 2 and t(�) = j�j � 3, so that

5

2

t(�) + 2t(�) =

9

2

j�j � 11. It follows from Lemmas 2.2 and 2.6 that jH(�)j � 3j�j � 6 and d(�) =

d(�) � 2j�j. Thus, we have

jH(�)j+

1

4

d(�) �

7

2

j�j � 6 �

9

2

j�j � 11:

If � is a simple fa
e with j�j = 4, we have t(�) = 2, t(�) = 1, so that

5

2

t(�) + 2t(�) = 7. By

Lemmas 2.2 and 2.6, we obtain jH(�)j � 6 and d(�) = d(�) � 8. If jH(�)j � 5, then jH(�)j+

1

4

d(�) �

5 +

1

4

(8) = 7. If jH(�)j = 6, then by Lemma 2.4 we may assume that � satis�es the 
onditions of the

se
ond part of Lemma 2.6. Therefore, we have d(�) = d(�) � 4 and jH(�)j+

1

4

d(�) � 6 +

1

4

(4) = 7.
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Finally, assume that � is not a simple fa
e, i.e., its boundary is not 
onne
ted or it 
ontains at

least one isolated vertex of G

0

in its interior. In this 
ase, we have t(�) � j�j, t(�) � j�j, so that

5

2

t(�) + 2t(�) �

9

2

j�j. By Lemma 2.6, we now obtain d(�) = d(�) � 2�. Lemma 2.2 does not apply

here, but we have jH(�)j � 3j�j, be
ause every half-edge in H(�) ends at an edge of �. Hen
e, we have

jH(�)j+

1

4

d(�) � 3j�j+

1

4

(2j�j) =

7

2

j�j. 2

Now we 
an easily 
omplete the proof of Theorem 1. Sin
e every edge of G � G

0

gives rise to two

half-edges, we have

e(G)� e(G

0

) =

1

2

X

�2V

jH(�)j =

1

2

X

�2V

�

jH(�)j+

1

4

d(�)

�

�

5

4

X

�2V

t(�) +

X

�2V

t(�);

where the inequality holds by Lemma 2.7. We obviously have that

P

�2V

t(�) = 2 (v(G)� 2), whi
h is

equal to the total number of fa
es in any triangulation of G

0

. In order to obtain su
h a triangulation

from G

0

, one needs to add

P

�2V

t(�) edges. Hen
e, we have

P

�2V

t(�) = 3(v(G)� 2)� e(G

0

). Noti
e

that triangulating ea
h fa
e separately may 
reate a triangulation of the plane 
ontaining some parallel

edges, but this has no e�e
t on the number of triangles or the number of edges. Now the theorem follows

by simple 
al
ulation:

e(G) = e(G

0

) +

�

e(G)� e(G

0

)

�

� e(G

0

) +

5

4

� 2 (v(G)� 2) +

�

3 (v(G)� 2)� e(G

0

)

�

= 5:5 (v(G)� 2) :

This 
ompletes the proof of the inequality in Theorem 1.

We 
lose this se
tion by presenting a 
onstru
tion whi
h shows that the result is not far from being

tight.

Proposition 2.8. For every v � 0 (mod 6), v � 12, there exists a graph G with v verti
es and

5:5(v� 2)� 4 edges that 
an be drawn in the plane so that ea
h of its edges 
rosses at most three others.

That is, for these values we have e

3

(v) � 5:5v � 15.

Proof: Let T

q

denote a hexagonal tiling of a verti
al 
ylindri
al surfa
e with q � 1 horizontal layers,

ea
h 
onsisting of 3 hexagonal fa
es wrapped around the 
ylinder (see Figure 7). Noti
e that the top

and the bottom fa
e of the 
ylinder are also hexagonal. Let V

q

be the set of all the verti
es of the tiles.

To ea
h fa
e ex
ept the top and the bottom one, add 8 diagonals (all but one main diagonal). Finally,

add all diagonals to the top and the bottom fa
e that do not yield parallel edges. This means adding 6

edges on both the top and the bottom fa
e, as depi
ted in Figure 7. The resulting graph G

q

is drawn

on the surfa
e of the 
ylinder with ea
h edge 
rossing at most 3 other edges. We have v(G

q

) = 6q + 6

and e(G

q

) = 33q + 18 = 5:5v(G

q

)� 15. 2
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Figure 7: The verti
al 
ylindri
al surfa
e, its layer, side-fa
e and top/bottom fa
e.

3 Proof of Theorem 2

For any graph G drawn in the plane, let G

free

denote the subgraph of G on the same vertex set, 
onsisting

of all 
rossing-free edges. Let4(G

free

) denote the number of triangular fa
es ofG

free

, 
ontaining no vertex

of G in their interiors.

Lemma 3.1. Let G be a graph on v(G) � 3 verti
es, whi
h is drawn in the plane so that none of its

edges 
rosses two others. Then the number of edges of G satis�es

e(G) � 4(v(G) � 2)�

1

2

4(G

free

):

Proof: We 
an assume without loss of generality that G

free

is maximal in the following sense: if two

verti
es, u and v, 
an be 
onne
ted by a Jordan ar
 that does not 
ross any edge of G, then G

free


ontains an edge uv between these verti
es. We 
an also assume that G is 3-
onne
ted. Otherwise,

we 
an 
on
lude by indu
tion on v(G), as follows. Let G = G

1

[ G

2

be a de
omposition of G into

subgraphs on fewer than v(G) verti
es, where G

1

and G

2

share at most 2 verti
es. Clearly, we have

(v(G

1

) � 2) + (v(G

2

) � 2) � v(G) � 2; e(G

1

) + e(G

2

) � e(G), and 4(G

free

1

) + 4(G

free

2

) � 4(G

free

).

Therefore, applying the indu
tion hypothesis to G

1

and G

2

separately, we obtain that the statement of

the lemma holds for G.

Observe that if two edges uv and zw 
ross ea
h other, then u and z, say, 
an be 
onne
ted by a

Jordan ar
 running very 
lose to the union of the edges uv and zv, without 
rossing any edge of G.

Thus, it follows from the maximality of G

free

that uz, and similarly zv, vw, and wu, are edges of G

free

.

Moreover, the quadrilateral uzvw 
ontaining the 
rossing pair of edges uv, zw must be a fa
e of G

free

.

To see this, it is enough to observe that the 3-
onne
tivity of G implies that this quadrilateral 
annot


ontain any vertex of G in its interior. Thus, all edges in G�G

free

are diagonals of quadrilateral fa
es

14



of G

free

. Letting q(G

free

) denote the number of quadrilateral fa
es of G

free

, we obtain

e(G

free

) + 2q(G

free

)� e(G) � 0:

Let f(G

free

) denote the total number of fa
es of G

free

. Then we have

f(G

free

)� q(G

free

)�4(G

free

) � 0

and, by Euler's Formula,

v(G) + f(G

free

)� e(G

free

)� 2 � 0:

Double 
ounting the pairs (�; a), where � is a fa
e of G

free

and a is an edge of �, we obtain

2e(G

free

)� 4f(G

free

) +4(G

free

) � 0:

Multiplying the above four inequalities by the 
oeÆ
ients 1, 4, 2 and 3=2, respe
tively, and adding them

up, the lemma follows. 2

Instead of Theorem 2, we establish a slightly stronger 
laim.

Lemma 3.2. Let G be a graph on v(G) � 3 verti
es, whi
h is drawn in the plane with x(G) 
rossings.

Then we have

x(G) �

7

3

e(G)�

25

3

(v(G)� 2) +

2

3

4(G

free

):

Proof: We use indu
tion on x(G) + v(G). As in the proof of Lemma 3.1, we 
an assume that G is

3-
onne
ted and that G

free

is maximal in the sense that whenever the points u and v 
an be 
onne
ted

by a Jordan ar
 without 
rossing any edge of G, the edge uv belongs to G

free

. We distinguish four 
ases.

Case 1. G 
ontains an edge that 
rosses at least 3 other edges.

Let a be su
h an edge, and let G

0

be the subgraph of G obtained by removing a. Now we have,

e(G

0

) = e(G) � 1, x(G

0

) � x(G) � 3, and 4(G

free

0

) � 4(G

free

). Applying the indu
tion hypothesis to

G

0

, we get

x(G)� 3 �

7

3

(e(G)� 1)�

25

3

(v(G)� 2) +

2

3

4(G

free

);

whi
h implies the statement of the lemma.

Case 2. Every edge in G 
rosses at most one other edge.

Lemma 3.1 yields

e(G) � 4 (v(G)� 2)�

1

2

4(G

free

):

The statement immediately follows from this inequality, 
ombined with the easy observation (mentioned

in the Introdu
tion) that x(G) � e(G)� 3 (v(G)� 2).

Case 3. There exists an edge e of G that 
rosses two other edges, one of whi
h does not 
ross any

other edge of G.
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Let zw be an edge 
rossing e at point x, whi
h does not parti
ipate in any other 
rossing. Let u

denote the endpoint of e for whi
h the pie
e of e between x and u is 
rossing-free. Noti
e that u 
an

be 
onne
ted in G by 
rossing-free Jordan ar
s to both z and w. Therefore, by the maximality of G

free

,

the edges uz and uw must belong to G

free

. Let G

0

be the subgraph of G obtained by removing the

edge e. We have e(G

0

) = e(G) � 1 and x(G

0

) = x(G) � 2. Clearly, G

free

0


ontains zw and all edges in

G

free

. By the 3-
onne
tivity of G, the triangle uzw must be a triangular fa
e of G

free

0

, so that we have

4(G

free

0

) � 4(G

free

) + 1. Applying the indu
tion hypothesis to G

0

, we obtain

x(G) �

7

3

e(G)�

25

3

(v(G)� 2) +

2

3

4(G

free

) +

1

3

;

whi
h is better than what we need.

Case 4. There exists an edge a of G that 
rosses pre
isely two other edges, b and 
, and ea
h of these

edges also parti
ipates in pre
isely two 
rossings.

Sub
ase 4.1. b and 
 do not 
ross ea
h other.

Let G

0

be the subgraph of G obtained by removing b. Clearly, we have e(G

0

) = e(G) � 1, x(G

0

) =

x(G)� 2, and 4(G

free

0

) � 4(G

free

). Noti
e that 
 is an edge of G

0

that 
rosses two other edges; one of

them is a, whi
h is 
rossed by no other edge of G

0

. Thus, we 
an apply to G

0

the last inequality in the

analysis of Case 3 to 
on
lude that

x(G)� 2 �

7

3

(e(G)� 1)�

25

3

(v(G)� 2) +

2

3

4(G

free

) +

1

3

;

whi
h is pre
isely what we need.

Sub
ase 4.2. b and 
 
ross ea
h other.

The three 
rossing edges, a, b, and 
 
an be drawn on the sphere in two topologi
ally di�erent ways

(see Figure 8). One of these possibilities is ruled out by the assumption that G is 3-
onne
ted, so

the only possible 
on�guration is the rightmost one in Figure 8. By the maximality 
ondition, G

free

must 
ontain the six dashed edges in the �gure. Using again the assumption that G is 3-
onne
ted, it

follows that these six edges form a hexagonal fa
e � in G

free

, and the only edges of G inside this fa
e

are a, b, and 
. Let G

0

be the graph obtained from G by removing the edges a, b, 
, and inserting

a new vertex in the interior of �, whi
h is 
onne
ted to every vertex of � by 
rossing-free edges. We

have v(G

0

) = v(G) + 1 and x(G

0

) = x(G) � 3, so that we 
an apply the indu
tion hypothesis to G

0

.

Obviously, we have e(G

0

) = e(G) + 3 and 4(G

free

0

) = 4(G

free

) + 6. Thus, we obtain

x(G)� 3 �

7

3

(e(G) + 3)�

25

3

(v(G)� 1) +

2

3

�

4(G

free

) + 6

�

;

whi
h is mu
h stronger than the inequality in the lemma. 2

The tightness of Theorem 2 is dis
ussed at the end of the last se
tion.
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ba
a

c

b

Figure 8: Proof of Lemma 3.2: Sub
ase 4.2.

4 Proof of Theorem 3

Our proof is based on the following 
onsequen
e of Theorems 1 and 2.

Corollary 4.1. The 
rossing number of any graph G of at least 3 verti
es satis�es


r(G) � 4e(G)�

103

6

(v(G)� 2) :

Proof: If G has at most 5 (v(G)� 2) edges, then the statement dire
tly follows from Theorem 2. If G

has more than 5 (v(G)� 2) edges, �x one of its drawings in whi
h the number of 
rossings is minimum.

Delete the edges of G one by one until we obtain a graph G

0

with 5 (v(G)� 2) edges. At ea
h stage,

delete one of the edges that parti
ipates in the largest number of 
rossings in the 
urrent drawing. Using

the inequality e

2

(v) � 5(v � 2) proved in [PTo97℄ and quoted in Se
tion 1, at the time of its removal

every edge has at least three 
rossings. Moreover, by Theorem 1, with the possible ex
eption of the at

most

1

2

(v(G)� 2) edges deleted last, every edge has at least four 
rossings. Thus, the total number of

deleted 
rossings is at least

4 (e(G)� 5 (v(G)� 2))�

1

2

(v(G)� 2) = 4e(G)�

41

2

(v(G)� 2) :

On the other hand, applying Theorem 2 to G

0

, we obtain that the number of 
rossings not removed

during the algorithm is at least


r(G

0

) �

10

3

(v(G)� 2) :

Summing up these two estimates, the result follows. 2

Now we 
an easily 
omplete the proof of Theorem 3. Let G be a graph drawn in the plane with


r(G) 
rossings, and suppose that e(G) �

103

6

v(G).

17



Constru
t a random subgraph G

0

� G by sele
ting ea
h vertex of G independently with probability

p =

103

6

v(G)

e(G)

� 1;

and letting G

0

be the subgraph of G indu
ed by the sele
ted verti
es. The expe
ted number of verti
es of

G

0

is E[v(G

0

)℄ = pv(G). Similarly, E[e(G

0

)℄ = p

2

e(G). The expe
ted number of 
rossings in the drawing

of G

0

inherited from G is p

4


r(G), and the expe
ted value of the 
rossing number of G

0

is even smaller.

By Corollary 4.1, 
r(G

0

) � 5e(G

0

) �

103

6

v(G

0

) holds for every G

0

. (Note that after getting rid of the


onstant term in Corollary 4.1, we do not have to assume any more that v(G

0

) � 3; the above inequality

is true for every G

0

.) Taking expe
tations, we obtain

p

4


r(G) � E[
r(G

0

)℄ � 4E[e(G

0

)℄�

103

6

E[v(G

0

)℄ = 4p

2

e(G)�

103

6

pv(G):

This implies that


r(G) �

1024

31827

e

3

(G)

v

2

(G)

�

1

31:1

e

3

(G)

v

2

(G)

;

provided that e(G) �

103

6

v(G).

To obtain an un
onditional lower bound on the 
rossing number of any graph G, we need di�erent

estimates when e(G) <

103

6

v(G). Comparing the bounds in Theorem 2 and in Corollary 4.1 with the

trivial estimates 
r(G) � 0 and 
r(G) � e� 3(v(G) � 2), a 
ase analysis shows that

1024

31827

e

3

(G)

v

2

(G)

� 
r(G) � 1:06v(G):

The maximum is attained for a graph G with e(G) = 4(v(G)� 2) and 
r(G) = v(G)� 2. In 
on
lusion,


r(G) �

1024

31827

e

3

(G)

v

2

(G)

� 1:06v(G) �

1

31:1

e

3

(G)v

2

(G)� 1:06v(G)

holds for every graph G. This 
ompletes the proof of Theorem 3.

Remark 4.2. Pa
h and T�oth [PTo00℄ introdu
ed two variants of the 
rossing number. The pairwise


rossing number (resp. the odd 
rossing number) of G is de�ned as the minimum number of pairs of non-

adja
ent edges that 
ross (resp. 
ross an odd number of times) over all drawings of G. These parameters

are at most as large as 
r(G), but one 
annot rule out the possibility that they are always equal to


r(G). The original proofs of the Crossing Lemma readily generalize to the new 
rossing numbers, and

it follows that both of them are at least

1

64

e

3

(G)

v

2

(G)

; provided that e(G) � 4v(G). We have been unable to

extend our proof of Theorem 3 to these parameters.
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5 Appli
ations, problems, remarks

Every improvement of the Crossing Lemma automati
ally leads to improved bounds in all of its appli
a-

tions. For 
ompleteness and future referen
e, we in
lude some immediate 
orollaries of Theorem 3 with

a sket
h of 
omputations.

First, we plug Theorem 3 into Sz�ekely's method [Sz95℄ to improve the 
oeÆ
ient of the main term

in the Szemer�edi-Trotter theorem [SzT83℄, [CE90℄, [PTo97℄.

Corollary 5.1. Given m points and n lines in the Eu
lidean plane, the number of in
iden
es between

them is at most 2:5m

2=3

n

2=3

+m+ n.

Proof: We 
an assume that every line and every point is involved in at least one in
iden
e, and that

n � m, by duality. Sin
e the statement is true for m = 1, we have to 
he
k it only for m � 2.

De�ne a graph G drawn in the plane su
h that the vertex set of G is the given set of m points, and

join two points with an edge drawn as a straight-line segment if the two points are 
onse
utive along

one of the lines. Let I denote the total number of in
iden
es between the given m points and n lines.

Then v(G) = m and e(G) = I�n. Sin
e every edge belongs to one of the n lines, 
r(G) �

�

n

2

�

. Applying

Theorem 2 to G, we obtain that

1

31:1

(I�n)

3

m

2

�1:06m� 
r(G)�

�

n

2

�

: Using that n � m � 2, easy 
al
ulation

shows that

I � n �

3

p

15:55m

2

n

2

+ 33m

3

�

3

p

15:55n

2=3

m

2=3

+m;

whi
h implies the statement. 2

It was shown in [PTo97℄ that Corollary 5.1 does not remain true if we repla
e the 
onstant 2:5 by

0:42 .

Theorem 3 readily generalizes to multigraphs with bounded edge multipli
ity, improving the 
onstant

in Sz�ekely's result [Sz95℄.

Corollary 5.2. Let G be a multigraph with maximum edge multipli
ity m. Then


r(G) �

1

31:1

e

3

(G)

mv

2

(G)

� 1:06m

2

v(G):

Proof: De�ne a random simple subgraph G

0

of G as follows. For ea
h pair of verti
es v

1

, v

2

of G,

let e

1

; e

2

; : : : e

k

be the edges 
onne
ting them. With probability 1 � k=m, G

0

will not 
ontain any edge

between v

1

and v

2

. With probability k=m, G

0


ontains pre
isely one su
h edge, and the probability that

this edge is e

i

is 1=m (1 � i � k). Applying Theorem 3 to G

0

and taking expe
tations, the result follows.

2

Next, we state here the improvement of another result in [PTo97℄.

Corollary 5.3. Let G be a graph drawn in the plane so that every edge is 
rossed by at most k others,

for some k � 1, and every pair of edges have at most one point in 
ommon. Then

e(G) � 3:95

p

kv(G):
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Proof: For k � 2, the result is weaker than the bounds given in [PTo97℄. Assume that k � 3, and


onsider a drawing of G su
h that every edge 
rosses at most k others. Let x denote the number of


rossings in this drawing. If e(G) <

103

6

v(G), then there is nothing to prove. If e(G) �

103

6

v(G), then

using Theorem 3, we obtain

1024

31827

e

3

(G)

v

2

(G)

� 
r(G) � x �

e(G)k

2

;

and the result follows. 2

Re
all that e

k

(v) was de�ned as the maximum number of edges that a graph of v verti
es 
an have

if it 
an be drawn in the plane with at most k 
rossings per edge. We de�ne some other 
losely related

fun
tions. Let e

�

k

(v) denote the maximum number of edges of a graph of v verti
es whi
h has a drawing

that satis�es the above requirement and, in addition, every pair of its edges meet at most on
e (either

at an endpoint or at a proper 
rossing). We de�ne e

k

(v) and e

�

k

(v) analogously, with the only di�eren
e

that now the maximums are taken over all triangle-free graphs with v verti
es.

It was mentioned in the Introdu
tion (see Lemma 1.1) that e

k

(v) = e

�

k

(v) for 0 � k � 3, and that

e

�

k

(v) � (k + 3)(v � 2) for 0 � k � 4 [PTo97℄. For 0 � k � 2; the last inequality is tight for in�nitely

many values of v. Our Theorem 1 shows that this is not the 
ase for k = 3.

Conje
ture 5.4. We have e

k

(v) = e

�

k

(v) for every k and v.

Using the proof te
hnique of Theorem 1, it is not hard to improve the bound e

�

4

(v) � 7(v � 2). In

parti
ular, in this 
ase Lemma 2.2 holds with 3(j�j � 2) repla
ed by 4(j�j � 2). Moreover, an easy 
ase

analysis shows that every triangular fa
e � with four half-edges satis�es at least one of the following two


onditions:

1. The extension of at least one of the half-edges in � either ends in a triangular fa
e with fewer than

four half-edges, or enters a big fa
e.

2. � is adja
ent to an empty triangle.

Based on this observation, one 
an modify the arguments in Se
tion 2 to obtain the upper bound

e

�

4

(v) � (7�

1

9

)v �O(1).

Conje
ture 5.5. e

�

4

(v) � 6v �O(1).

As for the other two fun
tions, we have e

k

(v) = e

�

k

(v) for 0 � k � 3, and e

�

k

(v) � (k + 2)(v � 2) for

0 � k � 2. If 0 � k � 1, these bounds are attained for in�nitely many values of v. These estimates

were applied by Czabarka et al. [CS03℄ to obtain some lower bounds on the so-
alled biplanar 
rossing

number of 
omplete graphs.

Given a triangle-free graph drawn in the plane so that every edge 
rosses at most 2 others, an easy


ase analysis shows that ea
h quadrilateral fa
e that 
ontains four half-edges is adja
ent to a fa
e whi
h
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is either non-quadrilateral or does not have four half-edges

1

. As in the proof of Theorem 1 (before

Lemma 2.5), we 
an use a properly de�ned bipartite multigraph M to establish the bound

e

2

(v) �

�

4�

1

10

�

v �O(1):

Conje
ture 5.6. e

2

(v) � 3:5v �O(1).

The 
oeÆ
ient 3:5 in the above 
onje
ture 
annot be improved as shown by the triangle-free (a
tually

bipartite!) graph in Figure 9, whose vertex set is the set of verti
es of a 4� v=4 grid.

Figure 9: e

2

(v) � 3:5v � 16.

Let 
r(v; e) denote the minimal 
rossing number of a graph with v � 3 verti
es and e edges. Clearly,

we have 
r(v; e) = 0, whenever e � 3(v � 2), and 
r(v; e) = e � 3(v � 2) for 3(v � 2) � e � 4(v � 2).

To see that these values are indeed attained by the fun
tion, 
onsider the graph 
onstru
ted in [PTo97℄,

whi
h (if v is a multiple of 4) 
an be obtained from a planar graph with v verti
es, 2(v � 2) edges, and

v � 2 quadrilateral fa
es, by adding the diagonals of the fa
es. If e < 4(v � 2), delete as many edges

parti
ipating in a 
rossing, as ne
essary.

In the next interval, i.e., when 4(v � 2) � e � 5(v � 2), Theorem 2 gives tight bound on 
r(v; e) up

to an additive 
onstant. To see this, 
onsider a planar graph with only pentagonal and quadrilateral

fa
es and add all diagonals in every fa
e. If no two fa
es of the original planar graph shared more than

a vertex or an edge, for the resulting graph the inequality of Theorem 2 holds with equality. For 
ertain

values of v and e, no su
h 
onstru
tion exists, but we only lose a 
onstant.

If 5(v�2) � e � 5:5(v�2), the best known bound, 
r(v; e) � 3e�

35

3

(v�2), follows from Theorem 2,

while for e � 5:5(v � 2) the best known bound is either the one in Corollary 4.1 or the one in Theorem

3. We do not believe that any of these bounds are optimal.

1

This statement a
tually holds under the assumption that G and G

0

are maximal, in the sense des
ribed at the beginning

of Se
tion 2.
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Conje
ture 5.7 
r(v; e) �

25

6

e�

35

2

(v � 2):

Note that, if true, this bound is tight up to an additive 
onstant for 5(v � 2) � e � 6(v � 2). To

see this, 
onsider a planar graph with only pentagonal and hexagonal fa
es and add all diagonals of all

fa
es. If no two fa
es of the planar graph shared more than a vertex or an edge, the resulting graph

shows that Conje
ture 5.7 
annot be improved. As a �rst step toward settling this 
onje
ture, we 
an

show the following statement, similar to Lemma 3.1.

Lemma 5.8 Let G be a graph on v(G) � 3 verti
es drawn in the plane so that every edge is involved in

at most two 
rossings. Then

e(G) � 5(v(G) � 2)�4(G

free

):
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