
Unlabeled Compression Schemes Exceeding the VC-dimension

Dömötör Pálvölgyi∗ and Gábor Tardos†

August 31, 2019

Abstract

In this note we disprove a conjecture of Kuzmin and Warmuth claiming that every family
whose VC-dimension is at most d admits an unlabeled compression scheme to a sample of size
at most d. We also study the unlabeled compression schemes of the joins of some families and
conjecture that these give a larger gap between the VC-dimension and the size of the smallest
unlabeled compression scheme for them.

1 Introduction

In statistical learning, it is important to derive information from a large sample space and store
only the essential part of it. The goal of this paper is to study a model of this learning process, and
show that certain samples cannot be compressed optimally.

Terminology: if S is a subset of the domain of a function f , then we call the restriction g = f |S
the trace of f on S and we also call f an extension of g.

Consider a finite set B, and fix a family F of functions B → {0, 1}. For f ∈ F and S ⊆ B
we call the trace f |S a partial function of the family F . These are studied extensively in learning
theory, where our goal is to reconstruct f |S from some part of it.

Definition 1 (Littlestone and Warmuth [4]). A (labeled) compression scheme for a family F of
binary functions with domain B is a pair of operations (α, β) such that

• α takes a partial function g of F as an input (called a labeled sample) and returns a trace of
g,

• β takes the output of α as input and returns an arbitrary function f : B → {0, 1},

• β(α(g)) is an extension of g for any partial function g of F .

That is, instead of f |S , it is enough to store α(f |S) so that we can fully recover the value of f
over S. The size of the compression scheme (α, β) is the maximum size of the domain of α(g). We
denote by LCS(F) the minimum size of a compression scheme for F .

∗MTA-ELTE Lendület Combinatorial Geometry Research Group, Institute of Mathematics, Eötvös Loránd Uni-
versity (ELTE), Budapest, Hungary. Research supported by the Lendület program of the Hungarian Academy of
Sciences (MTA), under grant number LP2017-19/2017.
†Supported by the Cryptography “Lendület” project of the Hungarian Academy of Sciences and by the National

Research, Development and Innovation Office, NKFIH projects K-116769 and SNN-117879.

1

Remark 2. Note that the domain S of the partial function g is not required to be determined by
the sample α(g), and S is not given the reconstruction process β when producing β(α(g)).

Remark 3. β(α(f |S)) is not required to be from F .

Definition 4 (Vapnik-Chervonenkis [6]). Let F be a family of functions B → {0, 1}. We say that
F shatters X ⊆ B if every function g : X → {0, 1} has an extension in F . The VC-dimension of
F , VC(F), is defined as the size of the largest X that is shattered by F .

Littlestone and Warmuth [4] observed that LCS(F) ≥ VC(F)/5 always holds but could not
give any compression scheme for general families whose size depended only on VC(F). Floyd and
Warmuth [2] conjectured that LCS(F) ≤ VC(F) always holds. (There are simple examples that
show that this would be sharp.) Warmuth [7] even offered $600 reward for a proof that a compression
scheme of size O(d) always exists, but this has been proved only in special cases. Most notably, Floyd
and Warmuth [2] claimed to have proved it for families of VC-dimension d whose size is

∑d
i=0

(
n
i

)
,

i.e., the maximum size allowed by the Sauer-Shelah lemma; an error in the original argument was
recently fixed in [1].

In 2015, Moran and Yehudayoff [5] have managed to prove that a compression scheme exists
whose size depends only on VC(F), but their bound is exponential in VC(F).

Definition 5 (Kuzmin and Warmuth [3]). An unlabeled compression scheme for a family F of
binary functions with domain B is a pair of operations (α, β) such that

• α takes a partial function g of F with domain S (called a labeled sample) and returns a α(g)
(called the compressed sample), which is a subset of S,

• β takes the output of α as input and returns an arbitrary function f : B → {0, 1},

• β(α(g)) is an extension of g for any partial function g of F .

That is, unlike in the case of labeled compression schemes, we do not store the value of f on the
compressed sample, but only some selected sample points. The size of the unlabeled compression
scheme (α, β) is the maximum size of α(g) for any partial function g. We denote by UCS(F) the
minimum size of an unlabeled compression scheme for F . Note that UCS(F) ≥ LCS(F) trivially
holds.

Kuzmin and Warmuth [3] have proved that UCS(F) ≥ VC(F) and conjectured that equality
might hold for every family (a strengthening of the earlier conjecture of Floyd and Warmuth).
Similarly to the labeled case, they also claimed a proof for maximum size families; this seems to
have contained a similar error, and was also fixed in [1].

We disprove this last conjecture in a very weak sense; we exhibit a small family C5 for which
VC(C5) = 2 but UCS(C5) = 3. We also discuss possible ways to amplify this gap, but at the
moment we do not know any family F with UCS(F) > VC(F) for which UCS(F) ≥ 4, although
we exhibit some likely candidates.

2 Lower bound for C5

Here we define the family C5 for which UCS(C5) = 3 > VC(C5) = 2, and prove these equalities.
The domain of C5 is five elements and |C5| = 10; see Figure 1. We think of the domain B of C5

2

1

1 1

00

0

1 1

00

Figure 1: C5 consists of the 5 rotations of the above sets.

as the vertices of a regular pentagon. A 0-1 function on this domain belongs to C5 if and only if it
takes the values 1-0-0-1 on some four consecutive vertices.

As we have later found out, this is known in the learning theory literature as ‘Warmuth’s
example.’ He constructed it as a simple example of a containment maximal family with VC(C5) = 2
that does not reach the maximal size of such a family given by the Sauer-Shelah lemma, which in
this case would be

∑2
i=0

(
5
i

)
= 16.

We will use the property that for any subset S ⊂ B of size 3 there are 7 possibilities for the trace
f |S for f ∈ C5. If S consists of three consecutive vertices, then f |S cannot be constant 0, while if S
consists of three non-consecutive vertices the constant 1 trace is not possible. Note that this implies
that C5 shatters no three element set but it shatters all two element sets, so its VC-dimension is 2.

We identify the domain B of C5 with the residue classes modulo 5, with the neighbors of the
vertex i ∈ B being i+ 1 and i− 1.

Theorem 6. UCS(C5) = 3.

Proof. It is easy to construct an unlabeled compression scheme of size 3: α can keep the sample
points where the value of the function is 1, and the reconstruction function β returns 1 at every
place contained in the compressed sample, and 0 everywhere else. Thus, we only need to prove that
UCS(C5) ≥ 3.

Suppose by contradiction that there is an unlabeled compression scheme (α, β) of size two.
Let X be a size 3 subset of the domain. As we noted above, there are exactly 7 partial functions
g : X → {0, 1} of C5. Clearly, α(g) must be a distinct proper subset of X for each. As there are
7 such subsets, we must have a 1-1 correspondence here. In particular, for all Y (X, the β(Y)|X
must be distinct partial functions of C5.

Let J be the set of three consecutive positions in the domain and i ∈ J . Let g be the constant 0
partial function defined on J \ {i} and Y = α(g). Here β(Y)|J is a partial function of C5 extending
g, so it must be 0 on J \ {i} and 1 on i. Now β({i})|J must be another partial function of C5,
therefore β({i})|(J\{i}) cannot be constant 0. A symmetric argument shows that if K is the set of
three non-consecutive positions and i ∈ K, then β({i})|(K\{i}) is not constant 1.

The observations above imply that β({i})(i−1) = 1. Indeed, if β({i})(i−1) = 0, then applying
the observation in the previous paragraph for J = {i− 2, i− 1, i} we obtain β({i})(i− 2) = 1 and
considering J = {i − 1, i, i + 1} we obtain β({i})(i + 1) = 1, but this contradicts our observation
about K = {i− 2, i, i+ 1}. A similar argument shows β({i})(i+ 1) = 1 as well as β({i})(i− 2) =

3

β({i})(i + 2) = 0. The only remaining value, namely β({i})(i) therefore completely determines
β({i}).

Suppose β({i})(i) = 1 holds for at least three different values of i; then it must hold for two
consecutive values, say i and i + 1. This completely determines β({i}) and β({i + 1}) and these
functions coincide on X = {i − 2, i, i + 1} contradicting our observation that for distinct proper
subsets Y of X, the β(Y)|X must also be distinct.

Alternatively we must have β({i})(i) = 0 for at least three different values of i. Then it also
holds for two non-consecutive values, say i − 1 and i + 1. This completely determines β({i − 1})
and β({i + 1}) and these functions coincide on X = {i − 1, i, i + 1}, a contradiction again. The
contradictions prove the theorem.

Remark 7. Note that the above proof in fact shows that in any unlabeled compression scheme for
C5 there is a partial function with domain of size 3 that gets compressed to its full domain.

3 Upper bounds for C5’s

In this section we sketch some upper bounds, i.e., give unlabeled compression schemes for certain
families. When we receive a sample f |S , we interpret it as receiving a collection of 0’s and 1’s, and
we interpret the compression as keeping some of them (though we only keep the locations, not the
values). In the case of C5, when we receive a sample that contains 3 identical values, then we call
them a triple 0 or a triple 1, depending on the value. Recall that a triple 1 can only occur at 3
consecutive positions, and a triple 0 can only occur at 3 non-consecutive positions, so the set of
positions determines whether it is a triple 0 or a triple 1.

Definition 8. The join of two families of functions F ∗G = {(f, g) | f ∈ F , g ∈ G} is a family over
the disjoiont union of there domains where (f, g)(x) = f(x) if x belongs to the domain of F and
g(x) if x belongs to the domain of G. When we take the join of several copies of the same family,
we use the notation F∗n = F ∗ . . . ∗ F︸ ︷︷ ︸

n times

.

We obviously have VC(F∗G) = VC(F)+VC(G), but for compression schemes only UCS(F∗G) ≤
UCS(F) + UCS(G) follows from the definition, and equality does not always hold, as the following
statement shows. Recall that UCS(C5) = 3 by Theorem 6.

Proposition 9. UCS(C5 ∗ C5) ≤ 5.

Sample Compression Decoding

no triples keep all 1’s kept to 1, rest 0

triple 1 in C
(1)
5 keep triple and 1’s in C

(2)
5 triple from position,

triple 0 in C
(1)
5 keep triple and 0’s in C

(2)
5 kept in C

(2)
5 same

triple 1 in C
(2)
5 keep triple and 0’s in C

(1)
5 triple from position,

triple 0 in C
(2)
5 keep triple and 1’s in C

(1)
5 kept in C

(1)
5 opposite

Table 1: Compressing C5 ∗ C5.

Proof. For the proof we need to give an unlabeled compression scheme (α, β). There are several
possible schemes, one is sketched in Table 1. The compression α depends on whether there are, and

4

what type of triples in the labeled sample restricted to the domains of the two copies of C5. We

denote these domains by C
(1)
5 and C

(2)
5 .

If neither of them contains a triple, we just keep the 1’s in the labeled sample.

If C
(1)
5 contains a triple 1, but C

(2)
5 does not contain a triple 1, then we still just keep the 1’s.

If C
(1)
5 contains a triple 0, but C

(2)
5 does not contain a triple 0, then we keep all the 0’s in the

labeled sample.

If C
(2)
5 contains a triple 1, but C

(1)
5 does not contain a triple 0, then keep the triple 1 from C

(2)
5 ,

and the 0’s from C
(1)
5 .

If C
(2)
5 contains a triple 0, but C

(1)
5 does not contain a triple 1, then keep the triple 0 from C

(2)
5 ,

and the 1’s from C
(1)
5 .

Note that if the compressed sample contains three positions from either C
(1)
5 or C

(2)
5 , then those

positions formed a triple in the labeled sample and it was a triple 1 in case of three consecutive
positions and a triple 0 in case of three non-consecutive positions. This means that the compressed
sample determines which one of the five rules was used to obtain it and the decoding β can be
constructed accordingly.

Finally, notice that exactly one of the above 5 cases happens for every sample. (Although note
that for us it would be sufficient if at least one of them happened for every sample.)

This raises the question of how UCS(F∗n) behaves when n→∞. We can prove neither any lower
bound that would be better than n ·VC(F) for any F at all (notice that Proposition 9 only provides
an upper bound, but we do not know whether in general UCS(F ∗ G) ≥ UCS(F) + UCS(G) − 1
holds or not), nor show that UCS(F∗n) ≤ (1 + o(1))n ·VC(F) for every F . We make the following
conjecture.

Conjecture 10. limn→∞
UCS(C∗n5)

n exists and is strictly larger than 2.

We can prove that UCS(C∗n5) ≤ 2n+ 1 for n ≤ 5. Since the compression schemes are based on
similar ideas, we only sketch the scheme for n = 5.

Proposition 11. UCS(C∗55) ≤ 11.

Proof. We denote the 5 copies of C5’s by C
(0)
5 , . . . , C

(4)
5 , with indexing mod 5.

Among any three positions in a single C
(i)
5 there is a unique “central” element: the one that is

equidistant from the other two elements. We use that the two non-central elements determine the
central element uniquely. Although the central element is not enough to determine the other two
elements, it becomes enough once we know whether they are the positions in a triple 0 or a triple
1.

Similarly, among any three distinct sets C
(i)
5 , C

(j)
5 and C

(k)
5 , there is a unique central one, whose

index is equidistant (modulo 5) from the other two indices. E.g., from C
(0)
5 , C

(2)
5 and C

(3)
5 the

central one is C
(0)
5 , while from C

(0)
5 , C

(3)
5 and C

(4)
5 the central one is C

(4)
5 . We use again that the

non-central copies determine the central one uniquely.
The compression algorithm is sketched in Table 2. This Table needs to be interpreted in a

similar fashion as Table 1, this time we omit the lengthy description of the case analysis. Note that
for some labeled samples there are more rules to choose from for the compression – in this case, we
pick arbitrarily. It is important, however that there is always at least one rule that applies.

5

Sample Compression

no triple 1 keep all 1’s

triple 1 in some C
(i)
5

but no triple 0 anywhere

keep triple 1 in C
(i)
5

and 0’s in other C
(j)
5 ’s

exactly one triple 0 keep 0’s

exactly one triple 1
and at least two triple 0’s

fix two triple 0’s and one triple 1;
keep non-central triples and central
element of central triple, and 1’s
from rest

at least two triple 1’s and at least
two triple 0’s, and fifth does not
have exactly one 1

keep triple 1’s and central elements
of triple 0’s, and 1’s from fifth

two triple 1’s and at least two triple
0’s, and fifth has exactly one 1

keep triple 1’s and non-central ele-
ments of triple 0’s, and 1 from fifth

Table 2: Compressing C∗55 .

We have also omitted the decompression rules, as the compressed sample always determines
which rule was used to obtain it. To prove this statement, notice that we only keep three position

of the same C
(i)
5 if they form a triple in the labeled sample. If the first rule is used, no triple is kept.

In case the second or third rule is used, a single triple 1 or triple 0 is kept, respectively. If the fourth
rule is used, then two triples are kept, not both triple 1’s. Finally if either of the last two rules are
used, then at least two triple 1’s are kept. The compressed sample produced by the last two rules

are distinguished by the number of elements kept in the sets C
(i)
5 : if it is 3 + 3 + 2 + 2 + 1 in some

order, then the last rule was used, otherwise the fifth rule. Once we know which rule produced the
compressed sample the decoding can be done accordingly.

4 Further results

In this section we mention some further results. We start by defining some further families.
C−5 is obtained from C5 by deleting one function. Because of the symmetry, it does not matter

which one, so we delete the function 0-1-1-1-0. Here we represent functions by the sequence of their
values on 0, 1, 2, 3, 4. In this family, still any two positions can take any values (4 possibilities
each), but for some triples we have only 6 possibilities (instead of 7).

C4 is the restriction of C5 to four elements of the domain. Again, by symmetry it does not
matter which four, so we delete the central element 2. This is useful, because this way C4 also
becomes a restriction of C−5 .

Proposition 12. UCS(C4) = UCS(C−5) = 2.

Proof. The lower bounds follow from 2 = VC(C4) ≤ UCS(C4) ≤ UCS(C−5). For the upper bound,
we need to give a compression scheme of size two for C−5 . A possible algorithm is sketched in Table
3. Here we list the decoding of compressed samples only. We maintain a symmetry for the reflection
to the central element: If the compressed sample B is obtained from another compressed sample
A by reflection, then the decoding β(B) is also obtained from β(A) the same way. Accordingly, we

6

Compression Decoding

∅ 1-0-0-0-1

x-.-.-.-. 0-0-1-0-1

.-x-.-.-. 1-1-0-0-1

.-.-x-.-. 1-0-1-0-1

x-x-.-.-. 0-1-0-0-1

x-.-x-.-. 0-1-0-0-1

x-.-.-x-. 0-0-1-1-1

x-.-.-.-x 0-1-0-1-0

.-x-x-.-. 1-1-1-0-0

.-x-.-x-. 0-1-0-1-0

Table 3: Compressing C−5 ; elements of the compressed sample are marked with an x.

only list one of A and B in the Table. We omit the lengthy case analysis of why this compression
scheme works.

Now we continue by definining two more families.

P (k) is the family of all 2k boolean functions on a domain of k elements. Notice that P (k) =
P (1)∗k. As P (k) shatters its entire domain, we have VC(P (k)) = k. We also have UCS(P (k)) = k
as VC(P (k)) ≤ UCS(P (k)) and UCS(P (k) ≤ k is shown by the simple unlabeled compression
scheme that keeps the 1’s in the labeled sample. On the other hand, LCS(P (k)) can be smaller,
e.g., LCS(P (2)) = 1.

W6 is a symmetrizing extension of C5, with the same number of functions, but one more base
element. One can obtain it from C5 by adding an extra element to the base and extending each
function in the family to the new element such that the function has three zeros and three ones.
Figure 2 depict two functions of W6. The other eight functions are the rotations of these two. In
the family W6 the extra element plays no special role, in fact, W6 is two-transitive, i.e., any pair
of elements of its domain can be mapped to any other pair of elements with an automorphism. If
we convert the functions of W6 to 3-element sets, we get the unique 2 − (6, 3, 2) design. Since W6

is an extension of C5, VC(C5) ≤ VC(W6) and UCS(C5) ≤ UCS(W6) – it is easy to check that we
have equality in both cases, i.e., VC(W6) = 2 and UCS(W6) = 3.

Some further non-trivial upper bounds can be obtained for the joins involving these families.

Proposition 13. UCS(W6 ∗ P (1)) = 3.

Sample Compression Decoding

extra is not 1 keep 1’s of W6 kept 1, others 0

extra is 1 and triple 0 keep triple 0 kept 0, others 1

extra is 1, no triple 0 keep extra and 0’s extra 1, rest of kept 0, others 1

Table 4: Compressing W6 ∗ P (1).

Proof. The compression algorithm is sketched in Table 4, with ‘extra’ denoting the only bit of the
domain of P (1).

7

1

1 1

00

0

0

1 1

00

1

Figure 2: W6 consists of the 5 rotations of the above sets.

Note that C5 ∗P (1) is obtained from W6 ∗P (1) by restricting the domain and such a restriction
cannot increase the value of UCS, so this also implies UCS(C5 ∗P (1)) = 3. From this we can easily
get another proof for UCS(C5 ∗C5) ≤ 5 as follows. We have C5 ⊂ P (1) ∗C4, thus UCS(C5 ∗C5) ≤
UCS(C5 ∗ P (1) ∗ C4) ≤ UCS(C5 ∗ P (1)) + UCS(C4) ≤ 3 + 2, using Proposition 12.

Proposition 14. UCS(W6 ∗W6) ≤ 5.

Proof. This compression goes similarly to the one presented in Table 1 for C5∗C5. In fact, we can use
exactly the same compression scheme unless we get two triples in both W6’s, i.e., a labeled sample
that contains all 12 elements of the base. There are 10 ·10 = 100 possibilities for such a sample, and
for each we can pick a compression that keeps at least 4 elements from at least one of the two copies
ofW6, as these were not used yet. There are

(
6
5

)
·
(
6
0

)
+
(
6
4

)
·
(
6
1

)
+
(
6
4

)
·
(
6
0

)
+
(
6
0

)
·
(
6
4

)
+
(
6
1

)
·
(
6
4

)
+
(
6
0

)
·
(
6
5

)
= 222

such possible compressed samples, we can use a distinct one for each of the 100 problematic labeled
samples. This makes the decoding possible.

We end by a summary of the most important questions left open.

Summary of main open questions

• Is UCS(F)−VC(F) bounded?

• Is UCS(F ∗ G) ≥ UCS(F) + UCS(G)− 1?

• How does UCS(C∗n5) behave? Does lim UCS(n ∗ F)/n exist?

• Is there a k for every F such that UCS(F ∗ P (k)) = VC(F) + k?

Remarks and acknowledgment

We would like to thank Tamás Mészáros, Shay Moran and Manfred Warmuth for useful discus-
sions and calling our attention to new developments.

8

References

[1] J. Chalopin, V. Chepoi, S. Moran, M. K. Warmuth, Unlabeled sample compression schemes and corner peelings
for ample and maximum classes, arXiv preprint, https://arxiv.org/abs/1812.02099.

[2] S. Floyd and M. K. Warmuth, Sample compression, learnability, and the Vapnik-Chervonenkis dimension, in
Machine Learning, 21(3):269–304, 1995.

[3] D. Kuzmin and M. K. Warmuth, Unlabeled Compression Schemes for Maximum Classes, in Proceedings of the
18th Annual Conference on Computational Learning Theory (COLT 05), Bertinoro, Italy, pp. 591–605, June
2005.

[4] N. Littlestone and M. K. Warmuth, Relating data compression and learnability. Unpublished manuscript, ob-
tainable at http://www.cse.ucsc.edu/~manfred, June 10 1986.

[5] S. Moran and A. Yehudayoff, Sample compression schemes for VC classes, to appear in the Journal of the ACM.

[6] V. N. Vapnik, A. Ya. Chervonenkis, On the Uniform Convergence of Relative Frequencies of Events to Their
Probabilities, Theory of Probability & Its Applications. 16(2):264-280, 1971.

[7] M. K. Warmuth, Compressing to VC dimension many points, in Proceedings of the 16th Annual Conference on
Learning Theory (COLT 03), Washington D.C., USA, August 2003. Springer. Open problem. https://users.
soe.ucsc.edu/~manfred/pubs/open/P1.pdf.

9

