
Conflict-free colorings of graphs and hypergraphs

János Pach∗

EPFL, Lausanne and CCNY, New York

Gábor Tardos†

Simon Fraser University, Burnaby

Abstract

A coloring of the vertices of a hypergraph H is called conflict-free if each hyperedge E of
H contains a vertex of “unique” color that does not get repeated in E. The smallest number
of colors required for such a coloring is called the conflict-free chromatic number of H, and
is denoted by χCF(H). This parameter was first introduced by Even et al. (FOCS 2002) in a
geometric setting, in connection with frequency assignment problems for cellular networks. Here
we analyze this notion for general hypergraphs. It is shown that χCF(H) ≤ 1/2 +

√

2m + 1/4,
for every hypergraph with m edges, and that this bound is tight. Better bounds of the order of
m1/t log m are proved under the assumption that the size of every edge of H is at least 2t − 1,
for some t ≥ 3. Using Lovász’s Local Lemma, the same result holds for hypergraphs, in which
the size of every edge is at least 2t − 1 and every edge intersects at most m others. We give
efficient polynomial time algorithms to obtain such colorings.

Our machinery can also be applied to the hypergraphs induced by the neighborhoods of the
vertices of a graph. It turns out that in this case we need much fewer colors. For example, it is
shown that the vertices of any graph G with maximum degree ∆ can be colored with log2+ǫ ∆
colors, so that the neighborhood of every vertex contains a point of “unique” color. We give
an efficient deterministic algorithm to find such a coloring, based on a randomized algorithmic
version of the Lovász Local Lemma, suggested by Beck, Molloy and Reed. To achieve this, we
need (1) to correct a small error in the Molloy-Reed approach; (2) to restate and reprove their
result in a deterministic form.

∗Supported by NSF Grant CCF-08-30272, and by grants from NSA, PSC-CUNY, Hungarian Research Foundation

OTKA, and BSF. Email: pach@cims.nyu.edu
†Supported by NSERC grant 329527, and by OTKA grants T-046234, AT-048826, and NK-62321. Email:

tardos@cs.sfu.edu

1 Introduction

Let H be a hypergraph with vertex set V (H) and (hyper)edge set E(H), and let c : V (H) →
{1, 2, 3, . . .} be a coloring of its vertex set. We say that c is a proper coloring if no edge E ∈ E(H)
consisting of at least two points is monochromatic. The smallest number of colors required for such
a coloring is usually called the chromatic number of H, and is denoted by χ(H). A coloring is a
rainbow coloring if for every edge E ∈ E(H), no two vertices of E receive the same color. The
minimum number of colors, χRB(H), used in a rainbow coloring is the rainbow chromatic number
of H. For a special class of hypergraphs defined by geometric means, Even, Lotker, Ron, and
Smorodinsky (FOCS 2002) introduced an intermediate notion: a coloring of H is called conflict-
free if every non-empty edge E ∈ E(H) contains a vertex whose color does not get repeated in E.
The minimum number of colors in such a coloring is the conflict-free chromatic number, denoted
by χCF(H). Obviously, every rainbow coloring is conflict-free and every conflict-free coloring is
proper, therefore we have

χ(H) ≤ χCF(H) ≤ χRB(H),

for every hypergraph H.
For graphs (2-uniform hypergraphs), the above three chromatic numbers coincide. However,

they can wildly differ in general. For instance, for the complete 4-uniform hypergraph K
(4)
7 , con-

sisting of all 4-element subsets of a 7-element set, we have χ(K
(4)
7) = 3, χCF(K

(4)
7) = 5, and

χRB(K
(4)
7) = 7.

The study of conflict-free colorings was originally motivated by a frequency assignment problem
for cellular networks [AHK03]. We regard the base stations that form the backbone of a network as
vertices of a hypergraph H, and the frequencies used by the base stations as colors. The range of
communication of a mobile agent (client), that is, the set of base stations it can communicate with,
is represented by a hyperedge E ∈ E(H). To avoid interference among radio signals, we want to
assign frequencies to the base stations so that every agent can tune to a frequency that is used by
a unique base station within its range. Frequencies are expensive, therefore, we want to minimize
the number of frequencies used.

With this model in mind, Even et al. [ELRS03], as well as the authors of many later contri-
butions, considered this question in geometric settings [PT03], [HS05], [Ch06], [ChFK06], [S07],
[AEG07], [BCS08]. In most cases, H is a hypergraph defined by taking nonempty intersections of a
finite point set in Rd with a family of geometric objects (balls, half-spaces, Jordan regions, boxes),
or the dual of such a hypergraph [AS06]. Various deterministic and randomized, static and on-line
versions of the question have also been considered; see [C08], for a survey.

The conflict-free chromatic number exhibits some unique properties and raises a number of
combinatorial and algorithmic questions, interesting on their own right. The aim of the present
paper is to establish some basic results on this new parameter for general hypergraphs and for some
special classes (“neighborhood hypergraphs”).

Our starting point is the following simple observation that can be obtained by generalizing and
strengthening an argument of Cheilaris [C08]. The degree of a vertex v in a hypergraph is the
number of (hyper)edges containing v.

Theorem 1 Let H be a hypergraphs with |E(H)| <
(

s
2

)

edges for some positive integer s, and let
∆ be the maximum degree of a vertex in H. Then the conflict-free chromatic number of H satisfies

1

(a) χCF(H) < s;

(b) χCF(H) ≤ ∆ + 1.

Both bounds are optimal and the corresponding colorings can be found in linear deterministic time.

It follows from part (a) that for every hypergraph with m edges,

χCF(H) ≤ 1

2
+

√

2m +
1

4
. (1)

To see that the above bounds cannot be improved, consider the complete graph Ks as a 2-uniform
hypergraph. It has

(

s
2

)

edges and maximum degree s− 1, yet all conflict-free colorings must assign
different colors to all of its vertices.

This example also suggests that the presence of many small edges, particularly, edges of size
two, may force the conflict-free chromatic number to be large. If we have a lower bound on the size
of the edges of our hypergraph, Theorem 1 can be substantially improved.

Theorem 2 For any positive integers t and Γ, the conflict-free chromatic number of any hypergraph
in which each edge is of size at least 2t−1 and each edge intersects at most Γ others, is O(tΓ1/t log Γ).

There is a randomized polynomial time algorithm to find such a coloring.

It follows that if H is a hypergraph of m edges, each of size at least 2t − 1, then

χCF(H) ≤ Ctm
1/t log m, (2)

where Ct > 0 is a constant depending only on t. Moreover, a coloring with this property can be
constructed by a deterministic polynomial time algorithm.

For any fixed t ≥ 3, this bound is better than (1). The first interesting question here is to decide
whether (2) remains true under the weaker assumption that the size of every edge is at least t. If
for any fixed t ≥ 3, the answer is yes, then the result is nearly optimal: the conflict-free chromatic

number of K
(t)
s , the complete t uniform hypergraph on s vertices with m =

(

s
t

)

edges (s ≥ 2t) is at

least s
2 = Ω(m1/t).

In what follows, we analyze the conflict-free chromatic numbers of some special hypergraphs
associated with graphs. We have to introduce some notation and terminology.

Given a graph G and a vertex x ∈ V (G), the neighborhood NG(x) = N(x) of x is defined as the
set consisting of x and all vertices in G connected to x. The set ṄG(x) = Ṅ(x) = N(x) \ {x} is
called the pointed neighborhood of x. The conflict-free chromatic parameter κCF(G) of G is defined
as χCF(H) for the hypergraph H with

V (H) = V (G), E(H) = {NG(x) : x ∈ V (G)}.

The pointed version of this parameter, κ̇CF(G), is defined analogously, except that instead of H we
have to consider the hypergraph Ḣ with edge set E(Ḣ) = {ṄG(x) : x ∈ V (G)}. Studying these
parameters for a given graph (network) G is not irrelevant to the frequency assignment problem
described at the beginning of this paper.

We start with an example. Let K ′
s be the graph obtained from the complete graph Ks on s

vertices by subdividing each edge with a new vertex. Each pair of the s original vertices form the

2

pointed neighborhood of a new vertex, so all original vertices must receive different colors in any
conflict-free coloring of the corresponding hypergraph Ḣ. Thus, we have κ̇CF(K ′

s) ≥ s and it is
easy to see that equality holds here. On the other hand, K ′

s is bipartite and any proper coloring
of a graph is a conflict-free coloring of the hypergraph formed by the neighborhoods of its vertices.
This shows that κCF(K ′

s) = 2, for any s ≥ 2.
The example illustrates that the pointed conflict-free chromatic parameter of a graph cannot be

bounded from above by any function of its non-pointed variant. For many other graphs, the latter
parameter is larger. For instance, let H denote the graph obtained from the complete graph K4 by
subdividing a single edge with a vertex. It is easy to check that κCF(H) = 3, while κ̇CF(H) = 2.
However, it is not difficult to verify that

κCF(G) ≤ 2κ̇CF(G), (3)

for any graph G. This inequality holds, because in a conflict-free coloring of the pointed neighbor-
hoods, each neighborhood N(x) also has a vertex whose color is not repeated in N(x), unless x
has degree one in the subgraph spanned by one of the color classes. One can fix these offending
neighborhoods by carefully splitting each color class into two.

Cheilaris [C08] proved that the pointed conflict-free chromatic parameter of any graph with n
vertices satisfies κ̇CF(G) ≤ 2

√
n. Inequality (1) provides a slightly better bound.

Corollary 3 The pointed conflict-free parameter of any graph G of n vertices satisfies

κ̇CF(G) ≤ 1

2
+

√

2n +
1

4
.

This bound is asymptotically tight, as shown by the graph K ′
s defined above, which has n =

(

s
2

)

+ s vertices and for which κ̇CF(K ′
s) = s.

Using Theorem 2 the last result can be substantially improved if we assume that the minimum
degree δ = δ(G) of the vertices in G is not too small.

Corollary 4 The pointed conflict-free chromatic parameter of any graph G with n vertices and
minimum degree δ(G) ≥ 2t − 1 (t ≥ 3 integer) satisfies κ̇CF(G) = O(tn1/t log n).

It is an interesting open problem to decide whether the last statement remains true for all
graphs G with n vertices and minimum degree δ(G) ≥ t. For example, does κ̇CF(G) = o(

√
n) hold

for all cubic graphs with n vertices?
We can also bound the pointed conflict-free chromatic parameter of a graph G using Theorem 2

and setting t = ⌈δ/2⌉ and Γ = ∆2, where δ and ∆ denote the minimum and maximum degrees of
G, respectively. In case these parameter are not too widely separated we obtain a polylogarithmic
bound:

Corollary 5 The pointed conflict-free chromatic parameter of any graph G with maximum degree
∆ satisfies κ̇CF(G) = O(log2 ∆), provided that the minimum degree δ of G satisfies δ = Ω(log ∆).

One may conjecture that there is very little difference between the pointed conflict-free chromatic
parameter and its non-pointed counterpart. After all, the two neighborhood hypergraphs in question
are almost the same: each edge of the second hypergraph can be obtained from the corresponding

3

edge of the first one by adding a single vertex. This may give us slightly more leeway how to color
the neighborhoods of vertices of small degree, but this cannot dramatically change the situation.
To our surprise, this intuition turned out to wrong. In sharp contrast with Corollary 3 the non-
pointed conflict-free chromatic parameter of a graph with n vertices is at most polylogarithmic in
n, without making any restriction on the degrees.

Theorem 6 The conflict-free chromatic parameter of any graph G with n vertices satisfies κCF(G) =
O(log2 n). The corresponding coloring can be found by a deterministic polynomial time algorithm.

The last bound is not far from optimal.

Theorem 7 There exist graphs on n vertices with conflict-free chromatic parameter Ω(log n).

It is an interesting open problem to close the gap between the last two bounds.
For the (non-pointed) conflict-free parameter of graphs of arbitrary size but limited degree, we

establish an upper bound which is only slightly worse than the bound in Theorem 6.

Theorem 8 The conflict-free chromatic parameter of any graph G with maximum degree ∆ satisfies
κCF(G) = O(log2+ε ∆) for any ε > 0. The corresponding coloring can be found by a deterministic
polynomial time algorithm.

Unlike in Corollary 5, in the last statement we did not have to make any assumption on the
minimum degree of the vertices. All logarithms used in this paper are meant to be based 2.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively. Section 4 contains the proofs
of Theorems 6 and 7. The existential part of Theorem 8, based on Lovász Local Lemma [EL75], is
presented in Section 5.

Turning the existence proof of Theorem 8 into a constructive one poses a challenge. The
difficulty lies in making the use of the Lovász Local Lemma efficient. Following the pioneering
work of Beck [Bec91], several algorithmic versions of the Local Lemma have been developed [A91],
[MR98], [CzS00a], [CzS00b], [LLRS01], [MR02]. A very recent randomized algorithm of [MT09]
also applies here.

To obtain a deterministic algorithm, we have to use the approach of Molloy and Reed [MR98].
However, we have to make several changes in the original argument to avoid the possible pitfalls.
We list the problems we have to deal with.

1. The theorem of Reed and Molloy requires a somewhat stronger assumption than Lovász’
condition dp < e−1 in the original lemma. To satisfy this stronger inequality, we have to modify
the values of our parameters.

2. For the algorithm, we need to be able to compute the probability of the bad events conditioned
on some of the variables being fixed. In Section 6, we give an efficient algorithm for this purpose.

3. The proof of Reed and Molloy [MR98] has a small error. This problem does not effect most
applications of the theorem, where the underlying random variables have a bounded range and take
each of their values with a probability bounded away from 0. We use the geometric distribution,
therefore, in our case these conditions are not satisfied. In Section 6, we outline the Molloy-Reed
result, describe a problem with its original proof, and restate and prove the result in a correct

4

form (Theorem 10), explicitly dealing with the small probabilities in the distribution of the random
variables.

4. Finally, the Molloy-Reed theorem claims only the existence of an efficient randomized algo-
rithm and not a deterministic one. They mention that in most applications their algorithm can be
derandomized. To avoid dealing with the derandomization separately, our Theorem 10 (Section 6)
is formulated and proved as a general statement, which guarantees the existence of a deterministic
algorithm. (As usual, this algorithm can be best understood as a derandomized version of a more
natural probabilistic one.)

The constructive proof of Theorem 8, based on our Theorem 10, is presented in Section 7.

2 Proof of Theorem 1

Our argument is based on Cheilaris’ proof [C08] of the fact the pointed conflict-free chromatic
parameter of any graph with n vertices is at most 2

√
n.

First we establish (b). Consider a hypergraph H with maximum degree at most ∆. Order the
vertices of H arbitrarily, and one by one assign colors to them from a set of ∆ + 1 colors. Make
sure that the color of the first vertex of any edge E does not get repeated in E. When we process
a vertex v of degree d, this requirement may exclude at most d colors. Thus, there is still at least
one color left for v.

To prove (a), consider a hypergraph with fewer than
(

s
2

)

edges. We describe an algorithm, which
produces a conflict-free coloring of H with at most s − 1 colors. At step i (i = 1, 2, . . .), we find a
vertex vi of degree at least s − i, provided that such a vertex exists. We color vi with a new color,
and remove it from H together with all edges containing it. Then we proceed to step i + 1. As
no other vertex will be colored to the color of vi, all edges removed at step i will end up having a
vertex of unique color: namely, vi. If there is no vertex vi of degree at least s − i, the maximum
degree of the vertices of the remaining hypergraph H ′ is smaller than s − i. Now, by part (b) of
the theorem, there is a conflict-free coloring of H ′ with s − i previously unused colors.

This algorithm must terminate at step s − 1 or before. Otherwise, the total number of edges
removed during the first s − 1 steps of the procedure would be at least

∑s−1
i=1 (s − i) =

(

s
2

)

, but H
had fewer edges to begin with. If the algorithm terminates in step i, then i − 1 colors were used
in the earlier steps and at most s − i colors in the last step, so that the coloring uses fewer than s
colors altogether.

Clearly, the above proofs are algorithmic. Furthermore, they can be implemented in time O(nm)
for any hypergraph with n vertices and m edges. 2

3 Proof of Theorem 2

The geometric distribution with parameter p (0 < p ≤ 1) is the distribution on positive integers
that assigns probability p(1 − p)i−1 to the value i.

We start with an auxiliary result.

Lemma 9 Let us color each element of a set V independently, according to the geometric distribu-
tion with parameter p. If |V | ≥ 2t − 1 for a positive integer t, then the probability that no element
of V receives a unique color (one that is not received by any other element of V) is at most 2(etp)t.

5

Proof: It will be more convenient to consider the randomized coloring of V as a gradual process.
We order the elements arbitrarily. In the first phase, we process the elements of V one by one in
this order and for each element v we make an independent choice. With probability p we color v
with color 1 and with probability 1 − p we leave it uncolored. In phase i, i ≥ 2, we consider the
uncolored elements in their preassigned order and for each of them we make another independent
choice: with probability p they receive color i and with probability 1 − p they remain uncolored.
This process gets repeated as long as there is an uncolored element. It is easy to verify that at the
end of this process the elements of V are colored independently, each according to the geometric
distribution with parameter p.

Let us first assume that |V | = 2t − 1. Notice that if no color is unique in V , then there are at
most t− 1 colors used. To bound the probability of this let σ be a partition of V into k nonempty
classes. The probability that the partition induced by the coloring is σ is at most p2t−1−k. Indeed,
in order to obtain the partition σ, we have to choose to color at the right phase for each of the
|V | − k elements that are not the first ones in their equivalence classes. Since the total number of
k-partitions of n elements is S(2t−1, k) ≤ k2t−1/k! ≤ (e/k)kk2t−1, the probability of using precisely
k colors is at most Xk = ek(kp)(2t−1)−k. We can assume that p < 1/(2t), otherwise the claimed
bound is meaningless. This implies that the sequence Xk is exponentially increasing for k ≤ t − 1.
The total probability of using at most t − 1 colors is at most

∑t−1
k=1 Xk < 2Xt−1 ≤ (ept)t proving

the claim.
Now assume that |V | ≥ 2t and let V ′ consist of the 2t elements of V that receive their colors last

during the multi-phase coloring process described above. We consider the set V ′ and the coloring of
the elements in V \V ′ fixed and concentrate on the random coloring of V ′. Notice that if no color is
unique in V , then there is at most a single unique color in V ′ and thus at most t colors are used in
V ′. We bound the probability of this similarly to the previous case. For a partition σ of |V ′| with k
classes the probability that the random coloring of V ′ induces this σ is at most p2t−k. The number
of k-partitions is bounded by k2t/k! ≤ (e/k)kk2t, so the probability that V ′ receives exactly k colors
is at most Yk = ek(kp)2t−k. With the p < 1/(2t) assumption this is exponentially increasing for
k ≤ t and the total probability of V ′ receiving at most t colors is at most

∑t
k=1 Yk < 2Yt = 2(etp)t

as claimed. 2

Proof of Theorem 2: We start with selecting 2t− 1 vertices of each edge and delete all vertices not
selected for any edge. As a result all edges of the remaining hypergraph have between 2t − 1 and
(2t − 1)(Γ + 1) vertices. Once a suitable conflict free coloring is found for this hypergraph we can
extend it to the original graph by coloring all previously deleted vertices with a single unused color.
We can assume that t < Γ as for larger values of t the bound claimed in the theorem becomes
worse. For the rest of this proof we assume no edge has more than 2Γ2 vertices.

Let us color each vertex of the hypergraph independently according to the geometric distribution
with parameter p = Γ−1/t/(30t).

By Lemma 9, the probability that an edge does not have a unique color is at most 1/(5Γ). We
set a threshold T = O(tΓ1/t log Γ) such that the probability of any given vertex getting a color
above T is less than 1/(20Γ3). For an edge e of the hypergraph we let Af be the event that either
the coloring of f is not conflict free or some vertex of the edge receives a color above the threshold
T . We have P [Af] < e−1/(Γ + 1) and the event Af is independent from the collection of all other
event Ag with the edge g disjoint from the edge f . The Lovász Local Lemma states that under
these conditions all the events Af can be simultaneously avoided. This means the existence of a
conflict free coloring with T colors. 2

6

4 Proofs of Theorems 6 and 7

Proof of Theorem 6: Let G be a graph with n vertices. We color the vertices of G recursively.
First, we find an independent set I1 and color all of its vertices by color 1. This color will not be
used for any other vertex of G. Next we remove all vertices from G, which belong to I1 or have
precisely one neighbor in I1. No matter how we extend this coloring, every vertex that has been
removed so far will have a neighbor of unique color: namely, a neighbor of color 1. Repeating this
procedure for the remaining graph, as long as at least one vertex is left, we define color classes
I2, I3, etc. Finally, we obtain we a partial coloring with independent color classes I1,. . . , Ik such
that the neighborhood of every vertex contains a point of unique color. Using a new color for all
uncolored vertices, we obtain a conflict-free coloring of G. Notice that the last color class typically
does not form an independent set in G.

The efficiency of this procedure, as well as the number of colors used, depends on the number
of vertices removed in each step. We claim that, by a proper choice of the independent set I, in
each step one can remove an at least Ω(1/ log n) fraction of the remaining vertices. Moreover, such
an independent set I can be found in randomized linear and deterministic polynomial time. This
yields a deterministic polynomial time algorithm to construct a vertex coloring of G with O(log2 n)
colors such that every neighborhood has a vertex of unique color.

First we select a maximal independent set S of vertices in G. For the randomized procedure,
let I be obtained by picking an integer i uniformly randomly from the interval 0 ≤ i ≤ log n, and
then selecting I ⊆ S by setting v ∈ I with probability 2−i, independently for each vertex v ∈ S. It
is easy to see that, for any vertex w of G, the probability that w gets removed in the first step is
Ω(1/ log n). Indeed, for any vertex w ∈ S, w gets removed if we pick i = 0. For any w /∈ S which
has j ≥ 1 neighbors in S, if we pick i = ⌊log j⌋, then w gets removed with probability at least e−2.
Thus, the expected number of removed points is Ω(n/ log n).

We can turn this randomized procedure into a deterministic one in the standard way: we set i
first, and then we decide v ∈ I separately for each vertex v ∈ S, every time computing the expected
value (for the remaining choices) of the number of vertices removed, and making sure that this
number does not decrease. This way, we surely find a set I for which the number of removed
vertices is at least as large as its expected value. 2

Proof of Theorem 7: A graph G is called k-super-universal for some parameter k ≥ 1 if for any set
of vertices A ⊆ V (G) with |A| ≤ k and for any B ⊆ A, there is a vertex x ∈ V (G), x 6∈ A, which is
connected to no element of B, but to all elements of A \ B.

We claim that if a graph G is k-super-universal, then κCF(G) > k/2. To see this, let us color
the vertices of G with at most k/2 colors. We will show that there is a neighborhood N(x) in
which no color appears precisely once. Let B be the set of all vertices x that have a “unique” color,
that is, a color not given to any vertex other than x. Further, let A be the set obtained from B
by adding two representative vertices for each “non-unique” color. Clearly, |A| ≤ k and by the
super-universality G has a vertex x not in A which has no neighbor in B and which is connected
to every vertex in A \ B. Clearly, each color occurring in N(x) appears at least twice.

To show the existence of super-universal graphs, consider the random graph G = G(n, 1/2) on
n vertices with edge probability 1/2. It is well known (and easy to show) that G is almost surely
k-super-universal for some k = Ω(log n). This establishes the existence of n-vertex graphs G with
κCF(G) = Ω(log n). 2

7

5 Proof of existence for Theorem 8

Let f(∆) denote the maximum of κCF(G) over all graphs G with maximum degree at most ∆. As
the chromatic numbers of any such graph is at most ∆ + 1, we have f(∆) ≤ ∆ + 1.

To prove the much stronger bound on f(∆) claimed in Theorem 8 we use recursion.
Let G be a graph with maximum degree at most ∆ ≥ 6. We color the vertices of G indepen-

dently, according to the geometric distribution with parameter q = 1/(33 log ∆). We use the Lovász
Local Lemma [AS00] with the following two types of “bad” events.

1. For any vertex v of degree at least 2t− 1, where t = 3 log ∆, let Bv denote the event that the
neighborhood of v has no unique color.

2. For any vertex v, let B′
v denote the event that the color of v is larger than 100 log2 ∆.

The probability of each of these events is at most p = 1/(6∆2). For the events Bv, this follows
from Lemma 9.

Since the vertices were colored independently, the events Bv and B′
v are independent of the

collection of events Bx and B′
y, whenever x is at distance at least 3 from v and y is at distance at

least 2 from v. As the maximum degree in G is ∆, each bad event is independent from all but fewer
than d = 2∆2 other bad events. We have dp < e−1. In view of the Local Lemma, this implies that
there exists a coloring that avoids all bad events. Let us fix such a coloring χ. This is a coloring
with at most 100 log2 ∆ colors, for which the neighborhood of any vertex of degree at least 2t − 1
has a unique color.

We use recursion to fix the potential problems with the neighborhoods of small degree vertices.
Let G′ be the subgraph of G induced by the vertices, whose degrees in G are smaller than 2t − 1.
Clearly, the maximum degree of G′ is at most ∆′ = 2t − 2. Let χ′ be a (not necessarily proper)
vertex coloring establishing κCF(G′) ≤ f(∆′). This coloring uses at most f(∆′) colors and the
neighborhood of any vertex has a unique color.

First, extend χ′ to a vertex coloring χ′′ of G by adding a new color to all vertices of G that do
not belong to G′. Then we combine χ and χ′′ by assigning to a vertex v of G the pair (χ(v), χ′′(v)).
This combined coloring uses at most 100 log2 ∆(f(∆′) + 1) colors. In view of the properties of
χ, the neighborhood of each vertex v with degree larger than ∆′ has a unique color. Because of
the properties of χ′′, the same is true for the remaining (low degree) vertices. Thus, we obtain
κCF(G) ≤ 100 log2 ∆(f(∆′) + 1), and, since G was an arbitrary graph with maximum degree at
most ∆, we have

f(∆) ≤ 100 log2 ∆(f(6 log ∆ − 2) + 1).

This recursion solves to f(∆) = O(log2 ∆ log2+ε log ∆) = O(log2+ε ∆), for any ε > 0. 2

6 Algorithmic Local Lemma

Before fixing the problems related to the Molloy-Reed algorithm, listed at the end of the Introduc-
tion, we give a brief overview of this algorithm and the algorithm of Beck it is based on.

Both algorithms assume that the probability space under consideration is determined by mutu-
ally independent random variables and each of the bad events Bi is determined by a subset Ai of
the variables. Let p be an upper bound on the probability of any one bad event and d be an upper
bound on the number of sets Aj intersected by a single set Ai. The algorithm finds an assignment

8

of values to the random variables that makes none of the bad events occur if d9p < 1/8 (or if a
similar other inequality holds).

The simplest form of the algorithm consists of two sweeps. In the first sweep, we fix the values
of the random variables one by one in an arbitrary order. Each variable is assigned a random value
according to its distribution. While doing so, we keep track of the conditional probability of each
bad event (that is, the probability that it occurs if we finish the first sweep by keeping the values
of all variables already fixed and choosing the values of the remaining variables according to their
probabilities). We also choose a threshold p < T < 1 and proclaim a bad event dangerous if its
probability gets T or higher.

The algorithms of Beck and Molloy-Reed differ in their treatment of the dangerous events. If
the bad event Bi becomes dangerous, Beck freezes all the variables in Ai, that is, the variables in
Ai that have not yet been fixed will not get fixed during the first sweep. Clearly, the conditional
probability of a bad event will not change during the first sweep, after it becomes dangerous.
Beck’s algorithm is designed for the case when all the elementary random variables are uniform 0-1
variables. Fixing one of them to any value will increase the probability of any event by a factor
of at most 2. Thus, dangerous events have a probability between T and 2T at the end of the first
sweep, while the probability of all other bad events clearly remain below T . It is not hard to show
that no bad event gets dangerous with probability larger than p/T .

Molloy and Reed, however, allow arbitrary random variables. Therefore, they cannot bound
the “jump” in the conditional probability caused by fixing a single random variable. Hence, they
“undo” the fixing of the random variable that caused some bad event to turn dangerous. They
still label the offending bad event as dangerous and freeze all its variables not fixed earlier, among
them they freeze the last variable that they tried to fix but could not. This guarantees that all bad
events, dangerous or otherwise, have probability at most T at the end of the first sweep. They fail
to notice, however, that the innocent looking act of “undoing” does increase the probability of a
bad event if we tend to do it in cases when the conditional probability would decrease. For a toy
example to illustrate this phenomenon, consider s log s independent and identically distributed 0-1
random variables Fi, for some large real s, such that P [Fi = 1] = 1/s. For every i, let Bi denote
the event that Fi = 1 and let B0 denote the event that Fi = 0 for all i. The probability of each
of these events is around 1/s. If we try and fix the values of these random variables, most will
be fixed to 0, but those Fi whose values we try to fix to 1 make the corresponding Bi dangerous.
Thus, the value of none of the variables will be fixed to 1 during the first sweep. This makes B0

become dangerous with overwhelming probability.

In what follows, we restate the result of Beck, Molloy, and Reed in a correct form, taking care
of small probabilities in the distribution and constructing a deterministic algorithm.

Theorem 10 Let F = {F1, . . . , Fm} be a collection of mutually independent discrete random vari-
ables. For 1 ≤ i ≤ n, let Ai be a subset of F and Bi an event determined by the values of the
variables Fj ∈ Ai. Assume that

1. for each Bi, we have P [Bi] ≤ p;

2. each Ai intersects at most d other Aj;

3. the range of a variable Fi contains at most k values and the probability of each of them is at
least δ;

9

4. |Ai| ≤ s, for each i;

5. pd9 < δ2/200;

6. for each 1 ≤ i ≤ n, Fj1 , . . . , Fjl
∈ Ai, and for any values wu in the range of Fju

(1 ≤ u ≤ l),
one can compute the conditional probability P [Bi|Fj1 = w1, . . . , Fjl

= wl] in time t.

Then we have a deterministic O(dkmt + kmn4 + ntks(d2+1) log log n) time algorithm that finds eval-
uations of the variables Fj such that none of the events Bi occur. In case pd10 log log n < δ2/64
holds, the running time can be reduced to O(dkmt + kmn4).

As mentioned above, the proof is based on sweeps fixing the values of some but not all random
variables. First we establish the properties of a single sweep. Let Fj , Ai, Bi, p, d, k, and δ be as
in Theorem 10, and assume that they satisfy the conditions 1, 2, 3, and 6 there. Let G be the
graph defined on the n vertices B1, . . . , Bn, connecting Bi and Bj by an edge if Ai and Aj intersect.
Recall that, by condition 2, this graph has maximum degree at most d.

Lemma 11 For p < T < 1 and for any positive integer r satisfying (T/(4pd3))r > n, one can
find suitable values of some of the variables Fj in O(km(dt+n(4d3)r−1)) deterministic time, which
satisfy the following two conditions:

(i) The conditional probability of all events Bi remain below T/δ.

(ii) Let G′ be the subgraph of G spanned by the vertices Bi that are not fully evaluated, that is,
for which Ai contains unevaluated variables. All connected components of G′ have at most
(d2 + 1)(r − 1) vertices.

Proof: Following Beck’s approach, we evaluate the variables Fj one by one, always recomputing the
probabilities of the events Bi conditioned on the variables evaluated so far. If the probability of an
event Bi becomes at least T , we declare this event dangerous, and freeze all variables in Ai that
have not been evaluated yet. We never evaluate frozen variables and continue until there exists a
variable Fj that is neither frozen nor evaluated. This procedure and condition 3 guarantee that
at the end of the procedure (i) is true. For satisfying condition (ii), we need to specify how the
individual variables are evaluated.

A set of exactly r events Bi that form an independent set in G but span a connected subgraph
in G3, is called a (2,3)-tree. Elementary calculations show that there are at most n(4d3)r−1 (2,3)-
trees and they can be efficiently enumerated. We call a (2,3)-tree dangerous if all of its vertices are
dangerous. The probability of a (2,3)-tree at a given moment is the probability that all its elements
will hold, conditioned on the values of the variables already evaluated. This is simply the product
of the conditional probabilities of the elements of the (2,3)-tree. We maintain the sum S of the
probabilities of all (2,3)-trees throughout the algorithm. When evaluating a variable Fj , we choose
a value that does not lead to an increase of S. As S is the expected number of (2,3)-trees with all
their elements satisfied, the linearity of expectations ensures that such a choice is possible.

The probability of a (2,3)-tree at the start of the algorithm is at most pr, by condition 1. Thus,
the inequality S ≤ n(4pd3)r < T r holds at the start of the algorithm, and, by our choice of the
evaluations, it also holds at the end. The probability of a dangerous (2,3)-tree is at least T r, so no
dangerous (2,3)-tree is created during the algorithm.

10

To prove condition (ii), consider a component C of G′, and let C ′ be a maximal independent
set of dangerous vertices in C. It is easy to see that C ′ is connected in G3. If |C ′| ≥ r holds,
one can find a subset of C ′ of size exactly r that is still connected in G3. That subset would be
a dangerous (2,3)-tree, a contradiction. Thus |C ′| < r. But every vertex of C is connected to a
dangerous vertex of C and every dangerous vertex of G is connected to an element of C ′. So the
degree bound on G implies the bound on |C| claimed in (ii).

To estimate the running time note that we evaluate a subset of the m independent variables by
trying each of at most k possible values for them. At every try we have to update the conditional
probability of the at most d + 1 events affected and update S by recomputing the probabilities of
the (2, 3)-trees. 2

Proof of Theorem 10: Setting T = 8pd4 and r = ⌊log n/ log(2d)⌋ + 1, Lemma 11 gives us an
O(dkmt + kmn4) algorithm for evaluating some of the variables in such a way that the conditional
probability of no event Bi is more than p′ = 8d4p/δ. For some of the events Bj , all variables in Aj

will be evaluated in this first sweep, and, as p′ < 1, these events Bi do not occur. The remaining
events Bi span the subgraph G′ of G. By Lemma 11, all connected components of G′ have fewer
than n′ = (d2 + 1)r vertices.

As the events in different components do not share variables, we can apply Lemma 11 to each
component separately. For this second sweep we set T ′ = 8d4p′ and r′ = ⌊log n′/ log(2d)⌋ + 1.
Without increasing the bound on the running time, we evaluate some more random variables such
that the conditional probability of all events Bi are at most p′′ = 8p′d4/δ and the components
of the subgraph G′′ of G spanned by the events Bi still not fully evaluated have size at most
n′′ = (d2 + 1) log n′/ log(2d). By condition 5, we have p′′ < 1, so the fully evaluated events Bi do
not hold.

Finally, we evaluate the remaining variables in each component separately, by exhaustive search.
By condition 4, each component contains at most n′′s variables, and, by condition 3, each of those
variables has at most k possible values. We can test in time t if an event Bi occurs under a given
evaluation. To prove that the exhaustive search will actually find a solution for which none of the
events Bi occur, we use the Local Lemma. The setting of our parameters and condition 5 ensures
that the condition (d + 1)p′′ < e−1 of the Local Lemma is satisfied.

In the case when pd10 log log n < δ2/64, the expected number of the events Bi satisfied in any
single component of G′′ is at most p′′n′′ < 1. Therefore, we can replace the costly exhaustive search
by a sequential evaluation of the remaining random variables, each time making sure that this
expected number does not grow. 2

7 Efficient algorithm for conflict-free coloring

A forthcoming paper of Moser and Tardos [MT09], based on [M09], presents a general algorithmic
version of the Local Lemma. This version applies without any significant restrictions, and it provides
an efficient randomized algorithm to find the right setting of the underlying independent random
variables, for which no “bad” events occur, whenever the existence of such a setting is guaranteed
by the Local Lemma. This yields an efficient randomized algorithm to find a vertex-coloring with
the properties claimed in Theorem 8. This process also parallelizes well, yielding an O(log2 n) time
randomized parallel algorithm with a polynomial number of processors for the same job.

It seems, however, that the same process does not lend itself easily to derandomization, unless
the bad events are independent from all but a constant number of other bad events. Unfortunately,

11

this condition is not satisfied in our case. To obtain a deterministic algorithm for finding a coloring
with the properties described in Theorem 8, we have to turn to Theorem 10.

Theorem 12 For any ε > 0, there exists a polynomial time deterministic algorithm for finding a
vertex coloring of any graph G with maximum degree ∆, which shows that κCF(G) = O(log2+ε ∆).

Proof: As in the proof of Theorem 8, we use recursion. If ∆ is small enough, we properly color G
with ∆ + 1 colors and this vertex coloring serves as our conflict-free coloring of the neighborhoods.
For every sufficiently large ∆, we define a threshold ∆′ = Θ(log ∆) and find a vertex coloring χ with
O(log2 ∆) colors, for which the neighborhood of any vertex of degree at least ∆′ has an element
of unique color. Then we use recursion on the subgraph of G spanned by the vertices of degree
smaller than ∆′ to obtain a coloring χ′, which is conflict-free on the neighborhoods. Finally, we
extend χ′ by a single new color given to the high degree vertices, and obtain our final coloring as
the product of this extended coloring and χ.

The challenge is to turn the probabilistic existence proof for the coloring χ based on the Local
Lemma into an efficient algorithm for finding χ.

We set t = 30 log ∆, ∆′ = 2t−1, and q = 1/(11t). Consider a random variable F with geometric
distribution of parameter q, and let k be the smallest integer with P [F > k] ≤ 1/(2∆ + 2). Note
that k < log(2∆ + 2)/q = O(log2 ∆). Let F ′ be the distribution of F conditioned on F ≤ k. This
distribution has a range of k possible values, and the least likely value, k, is taken with probability
at least δ = q/(2∆ + 2).

Let us take independent random variables χ(v) distributed as F ′, for each vertex v of G. The
value of χ(v) is the color of the vertex v. For any vertex v of degree at least ∆′, let Bv be the
event that no unique color appears in the neighborhood of v. Clearly, Bv is determined by χ(w) for
w ∈ N(v). As G has maximum degree ∆, any neighborhood N(v) has at most s = ∆ + 1 elements
and intersects at most d = ∆2 other neighborhoods N(w).

We could bound the probability of Bv by 2(eqt)t < 2−t = ∆−30, using Lemma 9, if the distri-
butions of the colors χ(v) were according to the geometric distribution with parameter q. The true
distribution is obtained by conditioning on the value being at most k. With probability at least
1/2, the colors of the vertices in N(v) would still not exceed k, even if we allowed the unbounded
geometric distribution, so the probability of Bv is at most twice of what it would be with the
geometric distribution: p = 2∆−30 ≥ P [Bv].

We can now apply Theorem 10 to the random variables χ(v) and to the events Bv. Conditions
1–4 are satisfied. Condition 5 is satisfied for large enough ∆. Condition 6 is also satisfied for some
t polynomial in the size of G; see Lemma 13 below. By Theorem 10, we find the required vertex
coloring χ. The running time of the algorithm is polynomial, provided that d = O(log log n). In
the case when d > 1000 log log n, the stronger inequality pd10 log log n < δ2/64 also holds. So we
obtain a polynomial time algorithm in every case. 2

It remains to prove that the conditional probability of a unique color is efficiently computable.

Lemma 13 Let a discrete distribution D be given by specifying the probabilities of all values in
its range, let s and t be nonnegative integers, x1, . . . , xs, constants, y1, . . . , yt independent random
variables distributed according to D. The probability of having no value that appears exactly once
in the sequence x1, . . . , xs, y1, . . . , yt can be computed in deterministic polynomial time in s, t and
the size of the range of D.

12

Proof: We assume without loss of generality that the range of D is 1, . . . , u, and that the con-
stants xi belong to this range, for 1 ≤ i ≤ s. We use dynamic programming to compute the
probability P (v, w) that there is no value z with z ≥ v that appears exactly once in the sequence
x1, . . . , xs, y

′
1, . . . , y

′
w, where y′1, . . . , y

′
w are independent random variables distributed according to

the distribution D conditioned on y′i ≥ v.
We compute P (v, w), for 1 ≤ v ≤ u and 0 ≤ w ≤ t. It is easy to compute P (u, w), as the

distribution is deterministic there. For P (v, w) with v < u, one computes the probability Pv,w,i that
exactly i of the w random variables take the value v and calculates P (v, w) =

∑

Pv,w,iP (v+1, w−i),
where the summation extends over all 0 ≤ i ≤ w with the possible exception of the (at most one)
value of i that makes v appear exactly once in the sequence. Finally, P (1, t) is the probability we
had to compute. 2

Acknowledgment. We are grateful to Panagiotis Cheilaris, Andreas Holmsen, and Radoš Radoičić
for many interesting remarks and suggestions. The idea of considering conflict-free colorings for
hypergraphs formed by the neighborhoods of the vertices in graphs emerged in discussions with
them at the geometry seminar at NYU.

References

[AEG07] D. Ajwani, K. Elbassioni, S. Govindarajan, and S. Ray: Conflict-free coloring for rect-
angle ranges using O(n0.382) colors, in: Proc. 19th Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2007, pages 181–187.

[A91] N. Alon: A parallel algorithmic version of the local lemma, Random Structures & Algorithms
2 (1991), 367–378.

[AS06] N. Alon and S. Smorodinsky: Conflict-free colorings of shallow discs, in: 22nd Ann. ACM
Symposium on Computational Geometry (SoCG), 2006, 41–43.

[AS00] N. Alon and J. Spencer: The Probabilistic Method. 2nd ed., John Wiley & Sons], New York,
2000.

[AHK03] K. Aardal, S. van Hoesel, A. Koster, C. Mannino, and A. Sassano: Models and solution
techniques for frequency assignment problems, 4OR: A Quarterly Journal of Operations Research
1 (2003), 261–317.

[BCS08] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky: Deterministic conflict-free coloring for
intervals: from onine to online, ACM Transactions on Algorithms 4 (2008), 44:1–44:18.

[Bec91] J. Beck: An algorithmic approach to the Lovász local lemma, Random Structures & Algo-
rithms 2 (1991), 343–365.

[Beh71] M. Behzad: The total chromatic number of a graph: A survey, in: Combinatorial Mathe-
matics and its Applications (Proc. Conf., Oxford, 1969), Academic Press, London, 1971, 1–8.

[C08] P. Cheilaris: Conflict-Free Coloring, PhD thesis, City University of New York, 2008.

[Ch06] K. Chen: How to play a coloring game against a color-blind adversary, in: Proceedings of
the 22nd Annual ACM Symposium on Computational Geometry (SoCG), 2006, 44–51.

[ChFK06] K. Chen, A. Fiat, H. Kaplan, M, Levy, J. Matoušek, E. Mossel, J. Pach, M. Sharir,
S. Smorodinsky, U. Wagner, and E. Welzl: Online conflict-free coloring for intervals, SIAM J.
Comput. (SICOMP) 36 (2006), 1342–1359.

13

[CzS00a] A. Czumaj and C. Scheideler: A new algorithm approach to the general Lovász local
lemma with applications to scheduling and satisfiability problems, in: Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, ACM, New York, 2000, 38–47.

[CzS00b] A. Czumaj and C. Scheideler: Coloring nonuniform hypergraphs: a new algorithmic
approach to the general Lovsz local lemma, in: Proceedings of the Ninth International Conference
“Random Structures and Algorithms” (Poznan, 1999), Random Structures Algorithms 17 (2000),
213–237.

[D05] R. Diestel: Graph Theory (3rd ed.), Graduate Texts in Mathematics 173, Springer-Verlag,
Berlin, 2005.

[EL75] P. Erdős and L. Lovász: Problems and results on 3-chromatic hypergraphs and some related
questions, in: Infinite and Finite Sets (to Paul Erdős on his 60th birthday), Vol. II, A. Hajnal
et al., eds., North-Holland, Amsterdam, 1975, 609-627.

[ELRS03] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky: Conflict–free colorings of simple geo-
metric regions with applications to frequency assignment in cellular networks, SIAM J. Comput.
33 (2003), 94–136.

[HS05] S. Har-Peled and S. Smorodinsky: Conflict-free coloring of points and simple regions in the
plane, Discrete and Computational Geometry 34 (2005), 47–70.

[HMR97] H. Hind, M. Molloy, and B. Reed: Colouring a graph frugally, Combinatorica 17 (1997),
469–482.

[LLRS01] T. Leighton, C.-Y. Lu. S. Rao, S, and A. Srinivasan: New algorithmic aspects of the local
lemma with applications to routing and partitioning, SIAM J. Comput. 31 (2001), 626–641.

[MR98] M. Molloy and B.Reed: Further algorithmic aspects of the local lemma, in: Proceedings of
the 30th Annual ACM Symposium on Theory of Computing (1998), 524–529.

[MR02] M. Molloy and B. Reed: Graph Colouring and the Probabilistic Method, Algorithms and
Combinatorics 23, Springer-Verlag, Berlin, 2002.

[MS05] M. Molloy and M. R. Salavatipour: A bound on the chromatic number of the square of a
planar graph, J. Combin. Theory Ser. B 94 (2005), 189–213.

[M09] R. Moser: A constructive proof of the Lovász Local Lemma, STOC 2009, to appear.

[MT09] R. Moser and G. Tardos: A constructive proof of the general Lovász Local Lemma,
manuscript, 2009.

[PT03] J. Pach and G. Tóth: Conflict-free colorings, in: Discrete and Computational Geometry,
Algorithms Combin. 25, Springer, Berlin, 2003, 665–671.

[S07] S. Smorodinsky: On the chromatic number of some geometric hypergraphs, SIAM J. Discrete
Math. 21 (2007), 676–687.

[W77] G. Wegner: Graphs with given diameter and a coloring problem, Technical Report, Univer-
sity of Dortmond, 1977.

[W00] A. Woldar: Rainbow graphs, in: Codes and Designs (Columbus, OH, 2000), Ohio State
Univ. Math. Res. Inst. Publ. 10, de Gruyter, Berlin, 2002, 313–322.

14

