
CEU “Topics in Combinatorics” course
Some of the topics covered in the February 3, 2015 class

Kneser graph KG(m, k) (m ≥ 2k > 0 is assumed, otherwise the graph is empty.) Vertices:
(

[m]
k

)

, i.e., the size-k subsets of the set [m] (or equivalently of any set of size m). Vertices x and y
are adjacent if and only they are disjoint.

Remark: Both the Borsuk graph Bk
δ and KG(m, n) are vertex-transitive graphs, i.e., its auto-

morphisms move every vertex to every vertex. The Kneser graphs are also edge-transitive, i.e.,
every edge is moved to every edge by an automorphism. Another similarity: with appropri-
ate choice of the parameters (namely m ≈ 2k) the graph KG(m, n) contains no short odd cy-
cles. Indeed, if x and y have a common neighbor z in KG(m, k), then x ∪ y ⊆ [m] \ z, thus
|x ∪ y| ≤ m − k and consequently |y \ x| ≤ m − 2k. For an odd cycle x0x1 . . . , x2l in KG(m, n) we
have k = |x2l \ x0| ≤ |x2 \ x0| + |x4 \ x2| + · · · + |x2l−2 \ x2l| ≤ l(m − 2n). Thus l ≥ k/(m − 2k).

Kneser’s conjecture (1955), proved by Lovász (1979), proof simplified by Bárány (1979) and
Greene (2002): χ(KG(m, k)) = m − 2k + 2

Easy direction (Kneser): χ(KG(n, k) ≤ m−2k+2. Proof by constructing a proper (m−2k+2)-
coloring: c(x) = min(x) if min(x) ≤ m − 2k + 1 and we use one additional color for the remaining
vertices, i.e., c(x) = m − 2k + 2 if min(x) > m − 2k + 1. Q.E.D.

Recall from last time one of the forms of the Borsuk theorem:
Lyusternik-Schnirelmann Theorem (2. form): If Hi ⊆ Sk are open for i = 1, . . . , k and none

of them contains a pair of antipodal points, then there is a pair of antipodal points not covered by
any of the sets, that is, x,−x ∈ Sk \ ∪k

i=1Hi.

Hard direction (Lovász): χ(KG(m, k) ≥ m − 2k + 2.
Proof (Greene, using LS2): Let u = m − 2k + 1 and S be a size-m subset of Su in general

position, i.e., each u + 1 vertices are linearly independent as vectors in Ru+1. Consider the vertex
set of KG(m, k) as V :=

(

S
k

)

(edges are still formed by disjoint vertices — this changes the names
of vertices not the graph structure). For x ∈ Su define the hemisphere around x as HS(x) := {y ∈
Su : x · y > 0}. For a coloring V → [u] define the sets Hi := {x ∈ Su : ∃v ∈ V, c(v) = i, v ⊆ HS(x)}
for i = 1, . . . , u. These sets are open, as Hi = ∪v∈V,c(v)=i ∩x∈v HS(x). Consider an arbitrary
x ∈ Su. The hemispheres HS(x) and HS(−x) are disjoint and together they cover Su except for a
great circle, i.e., the vectors orthogonal to x. By the general position assumption at most u elements
of S are on this great circle, thus at least m−u = 2k−1 points fall in HS(x)∪HS(−x). Thus, one
of the two hemispheres contain at least k elements of S. Let v be a size-k subset of S contained in
either HS(x) or HS(−x). The set Hc(v) contains x or −x. Now LS2 implies that one of the sets
Hi must contain an antipodal pair x, −x. This means that both HS(x) and HS(−x) contains a
color-i vertex. These vertices must be disjoint, thus adjacent, so c is not a proper coloring. Q.E.D.


