CEU "Topics in Combinatorics" course

Some of the topics covered in the February 3, 2015 class

Kneser graph $K G(m, k)$ ($m \geq 2 k>0$ is assumed, otherwise the graph is empty.) Vertices: $\binom{[m]}{k}$, i.e., the size- k subsets of the set $[m]$ (or equivalently of any set of size m). Vertices x and y are adjacent if and only they are disjoint.

Remark: Both the Borsuk graph B_{δ}^{k} and $K G(m, n)$ are vertex-transitive graphs, i.e., its automorphisms move every vertex to every vertex. The Kneser graphs are also edge-transitive, i.e., every edge is moved to every edge by an automorphism. Another similarity: with appropriate choice of the parameters (namely $m \approx 2 k$) the graph $K G(m, n)$ contains no short odd cycles. Indeed, if x and y have a common neighbor z in $K G(m, k)$, then $x \cup y \subseteq[m] \backslash z$, thus $|x \cup y| \leq m-k$ and consequently $|y \backslash x| \leq m-2 k$. For an odd cycle $x_{0} x_{1} \ldots, x_{2 l}$ in $K G(m, n)$ we have $k=\left|x_{2 l} \backslash x_{0}\right| \leq\left|x_{2} \backslash x_{0}\right|+\left|x_{4} \backslash x_{2}\right|+\cdots+\left|x_{2 l-2} \backslash x_{2 l}\right| \leq l(m-2 n)$. Thus $l \geq k /(m-2 k)$.

Kneser's conjecture (1955), proved by Lovász (1979), proof simplified by Bárány (1979) and Greene (2002): $\chi(K G(m, k))=m-2 k+2$

Easy direction (Kneser): $\chi(K G(n, k) \leq m-2 k+2$. Proof by constructing a proper ($m-2 k+2$)coloring: $c(x)=\min (x)$ if $\min (x) \leq m-2 k+1$ and we use one additional color for the remaining vertices, i.e., $c(x)=m-2 k+2$ if $\min (x)>m-2 k+1$. Q.E.D.

Recall from last time one of the forms of the Borsuk theorem:
Lyusternik-Schnirelmann Theorem (2. form): If $H_{i} \subseteq S^{k}$ are open for $i=1, \ldots, k$ and none of them contains a pair of antipodal points, then there is a pair of antipodal points not covered by any of the sets, that is, $x,-x \in S^{k} \backslash \cup_{i=1}^{k} H_{i}$.

Hard direction (Lovász): $\chi(K G(m, k) \geq m-2 k+2$.
Proof (Greene, using LS2): Let $u=m-2 k+1$ and S be a size- m subset of S^{u} in general position, i.e., each $u+1$ vertices are linearly independent as vectors in R^{u+1}. Consider the vertex set of $K G(m, k)$ as $V:=\binom{S}{k}$ (edges are still formed by disjoint vertices - this changes the names of vertices not the graph structure). For $x \in S^{u}$ define the hemisphere around x as $H S(x):=\{y \in$ $\left.S^{u}: x \cdot y>0\right\}$. For a coloring $V \rightarrow[u]$ define the sets $H_{i}:=\left\{x \in S^{u}: \exists v \in V, c(v)=i, v \subseteq H S(x)\right\}$ for $i=1, \ldots, u$. These sets are open, as $H_{i}=\cup_{v \in V, c(v)=i} \cap_{x \in v} H S(x)$. Consider an arbitrary $x \in S^{u}$. The hemispheres $H S(x)$ and $H S(-x)$ are disjoint and together they cover S^{u} except for a great circle, i.e., the vectors orthogonal to x. By the general position assumption at most u elements of S are on this great circle, thus at least $m-u=2 k-1$ points fall in $H S(x) \cup H S(-x)$. Thus, one of the two hemispheres contain at least k elements of S. Let v be a size- k subset of S contained in either $H S(x)$ or $H S(-x)$. The set $H_{c(v)}$ contains x or $-x$. Now LS2 implies that one of the sets H_{i} must contain an antipodal pair $x,-x$. This means that both $H S(x)$ and $H S(-x)$ contains a color $-i$ vertex. These vertices must be disjoint, thus adjacent, so c is not a proper coloring. Q.E.D.

