CEU “Topics in Combinatorics” course
On weak e-nets with respect to convex sets - covered in the March 18, 2014 class

Convex sets on the line are intervals. There is an k = |1/€| size e-net for any set S on the line
with respect to the intervals: If S = {z1,...,2,} and the points are indexed according their order
on the line, then the subset T' = {x;, 29, x3;,..., 2k, } is an e-net, where j = [en].

The situation is radically different for convex sets in the plane. These sets shatter any point
set in convex position, thus their VC-diension is infinite. Accordingly, there is no non-trivial e-net
for points in convex position with respect to all convex sets in the plane. (More precisely: any e-net
for a n points in convex position must have more than (1 — €)n elements.)

Let R be a set of ranges and S be a finite set with |S| =n, and 0 < e <1. We call a set T" a
weak e-net for S with respect to R, if for all R € R satisfying |[R N S| > en we have RNT # 0.

Note that the only difference between a weak e-net for a set S and an e-net for the same set
(with respect to the same ranges), is that the e-net is required to be a subset of S, while the weak
e-net is not. This flexibility allows us to find reasonably small weak e-nets in the plane with respect
to all convex sets.

Theorem, Alon-Barany-Fiiredi-Kleitman, 1992. There is a weak e-net of size O(1/€?) for
any finite set in the plane with respect to all convex sets.

Proof. Assume the size n of our finite set S in the plane is even and take a linel that separates
S into two subsets S; and Sy of size n/2. Consider the n?/4 line segments connecting a point of
S1 with a point of S5. All these segments intersect . Let V be the set of intersection points. For
simplicity we assume all these points are distinct, thus |V| = n?/4.

Let Ty be a weak 3¢/2-net for S, Ty a weak 3¢/2-net for So and T3 a €?/4-net for V. All nets
in the proof are with respect to the convex sets.

Claim: T := Ty UT5, UT3 is a weak e-net for S.

Indeed, if for a convex set R we have |RNSy| > 3en/4, then RNTy # (..

Similarly, if R is convex and |R N Sa| > 3en/4, then RN T, # (.

Finally if |[R NS| > en but none of the above two possibilities happen, then |[R N S1| > en/4
and |R N S2| > en/4. In this case R contains the endpoints of at least n?/16 of the connecting
segments and by convexity we have |[R N V| > n?/16, and therefore R NTs # () finishing the proof
of the claim.

Observe that V is on the line so we can choose |T3| < 4/€? as discussed earlier. For choosing
Ty and Ty we use recursion. This yields the following recursion on the optimal size c¢; of a weak
(2/3)F-nets in the plane with respect to convex sets:

e < 20,1 +4/(2/3)%.

We have ¢y = 1 for the starting point of this recursion. Repeated application of the above
recursion gives:

cr <A4/(2/3)%% +2-4/(2/3)%%72 122 .4/(2/3)%k% 4 ... 4 2k 4/(2/3)% 4 2F.

This is a decreasing geometric sequence, so the sum can be estimated ¢, = O(4/(2/3)2*). In other
words O(1/€?) size weak e-nets exist with respect to the convex sets whenever e = (2/3)* for some
integer k. To obtain a similar result for arbitrary € set k to be the smallest integer with (2/3)% < ¢
and notice that the ¢, = O(1/€?) and any weak (2/3)*-nets are also weak e-nets. Q.E.D.

Recursive application of this same proof yields the existence of polynomial size weak e-nets
with respect to convex sets in d-space. The simplest proof gives the size bound 0(6726171), but a
more clever proof gives O(e~4).



