CEU "Topics in Combinatorics" course

On weak ϵ-nets with respect to convex sets - covered in the March 18, 2014 class

Convex sets on the line are intervals. There is an $k=\lfloor 1 / \epsilon\rfloor$ size ϵ-net for any set S on the line with respect to the intervals: If $S=\left\{x_{1}, \ldots, x_{n}\right\}$ and the points are indexed according their order on the line, then the subset $T=\left\{x_{j}, x_{2 j}, x_{3 j}, \ldots, x_{k j}\right\}$ is an ϵ-net, where $j=\lceil\epsilon n\rceil$.

The situation is radically different for convex sets in the plane. These sets shatter any point set in convex position, thus their VC-diension is infinite. Accordingly, there is no non-trivial ϵ-net for points in convex position with respect to all convex sets in the plane. (More precisely: any ϵ-net for a n points in convex position must have more than $(1-\epsilon) n$ elements.)

Let \mathcal{R} be a set of ranges and S be a finite set with $|S|=n$, and $0<\epsilon \leq 1$. We call a set T a weak ϵ-net for S with respect to \mathcal{R}, if for all $R \in \mathcal{R}$ satisfying $|R \cap S| \geq \epsilon n$ we have $R \cap T \neq \emptyset$.

Note that the only difference between a weak ϵ-net for a set S and an ϵ-net for the same set (with respect to the same ranges), is that the ϵ-net is required to be a subset of S, while the weak ϵ-net is not. This flexibility allows us to find reasonably small weak ϵ-nets in the plane with respect to all convex sets.
Theorem, Alon-Bárány-Füredi-Kleitman, 1992. There is a weak ϵ-net of size $O\left(1 / \epsilon^{2}\right)$ for any finite set in the plane with respect to all convex sets.
Proof. Assume the size n of our finite set S in the plane is even and take a linel that separates S into two subsets S_{1} and S_{2} of size $n / 2$. Consider the $n^{2} / 4$ line segments connecting a point of S_{1} with a point of S_{2}. All these segments intersect l. Let V be the set of intersection points. For simplicity we assume all these points are distinct, thus $|V|=n^{2} / 4$.

Let T_{1} be a weak $3 \epsilon / 2$-net for S_{1}, T_{2} a weak $3 \epsilon / 2$-net for S_{2} and T_{3} a $\epsilon^{2} / 4$-net for V. All nets in the proof are with respect to the convex sets.

Claim: $T:=T_{1} \cup T_{2} \cup T_{3}$ is a weak ϵ-net for S.
Indeed, if for a convex set R we have $\left|R \cap S_{1}\right| \geq 3 \epsilon n / 4$, then $R \cap T_{1} \neq \emptyset$..
Similarly, if R is convex and $\left|R \cap S_{2}\right| \geq 3 \epsilon n / 4$, then $R \cap T_{2} \neq \emptyset$.
Finally if $|R \cap S| \geq \epsilon n$ but none of the above two possibilities happen, then $\left|R \cap S_{1}\right| \geq \epsilon n / 4$ and $\left|R \cap S_{2}\right| \geq \epsilon n / 4$. In this case R contains the endpoints of at least $n^{2} / 16$ of the connecting segments and by convexity we have $|R \cap V| \geq n^{2} / 16$, and therefore $R \cap T_{3} \neq \emptyset$ finishing the proof of the claim.

Observe that V is on the line so we can choose $\left|T_{3}\right| \leq 4 / \epsilon^{2}$ as discussed earlier. For choosing T_{1} and T_{2} we use recursion. This yields the following recursion on the optimal size c_{k} of a weak $(2 / 3)^{k}$-nets in the plane with respect to convex sets:

$$
c_{k} \leq 2 c_{k-1}+4 /(2 / 3)^{2 k} .
$$

We have $c_{0}=1$ for the starting point of this recursion. Repeated application of the above recursion gives:

$$
c_{k} \leq 4 /(2 / 3)^{2 k}+2 \cdot 4 /(2 / 3)^{2 k-2}+2^{2} \cdot 4 /(2 / 3)^{2 k-4}+\cdots+2^{k-1} \cdot 4 /(2 / 3)^{2}+2^{k} .
$$

This is a decreasing geometric sequence, so the sum can be estimated $c_{k}=O\left(4 /(2 / 3)^{2 k}\right)$. In other words $O\left(1 / \epsilon^{2}\right)$ size weak ϵ-nets exist with respect to the convex sets whenever $\epsilon=(2 / 3)^{k}$ for some integer k. To obtain a similar result for arbitrary ϵ set k to be the smallest integer with $(2 / 3)^{k} \leq \epsilon$ and notice that the $c_{k}=O\left(1 / \epsilon^{2}\right)$ and any weak $(2 / 3)^{k}$-nets are also weak ϵ-nets. Q.E.D.

Recursive application of this same proof yields the existence of polynomial size weak ϵ-nets with respect to convex sets in d-space. The simplest proof gives the size bound $O\left(\epsilon^{-2^{d-1}}\right)$, but a more clever proof gives $O\left(\epsilon^{-d}\right)$.

