
CEU “Topics in Combinatorics” course
Topics covered in the February 18, 2014 class

Notation: [n] denotes the positive integers up to n, i.e., [n] = {1, 2, . . . , n}. An r-coloring of a
set H is a function f : H → [r]. We call f(x) the color of x. We call a subset A ⊆ H monochromatic

if f(x) = f(y) whenever x, y ∈ A.
An arithmetic progression of size k is a set {a, a+b, a+2b, . . . , a+(k−1)b}, where the increment

b is not zero. We write [k]d for the d-dimensional grid of side k, that is [k]d = {(x1, . . . , xd) | ∀i ∈
[d] : xi ∈ [k]}. A combinatorial line in [k]d is obtained by fixing some, but not all the coordinates
and making the remaining coordinates equal. In other words it is the image of an injective function
f : [k] → [k]d satisfying that each coordinate i 7→ (f(i))j is either a constant or the identity
function. An example: the following three points form a combinatorial line in [3]8:

(1, 1, 2, 1, 1, 3, 1, 1)

(1, 2, 2, 1, 2, 3, 2, 2)

(1, 3, 2, 1, 3, 3, 3, 3)

Note that each combinatorial line in [k]d contains k elements.

In the following theorems k, r and n denote positive integers.

Van der Waerden theorem (1927): For all k and r there exists n such that in any r-coloring
of [n] there is a monochromatic arithmetic progression of size k.

Erdős-Turán conjecture (1936), Szemerédi theorem (1975) (Roth proved it for k = 3 in
1953 and Szemerédi for k = 4 in 1969): For all k and r there exists n such that all H ⊆ [n] with
|H| ≥ n/r contains an arithmetic progression of size k.

Hales Jewett theorem (1963): For all k and r there exists n such that in any r-coloring of [k]n

there is a monochromatic combinatorial line.

Density Hales Jewett theorem by Fürstenberg and Katznelson (1991): For all k and r
there exists n such that all H ⊆ [k]n with |H| ≥ kn/r contains a combinatorial line.

Let us denote the smallest n satisfying the requirements of above theorems V dW (k, r), Sz(k, r),
HJ(k, r) and DHJ(k, r), respectively. We can consider the theorems to state that these numbers
are finite.
— The density version implies the coloring version, namely V dW ((k, r) ≤ Sz(k, r) and HJ(k, r) ≤

DHJ(k, r). Indeed, the largest color class must contain at least a 1/r fraction of all elements,
look for a monochromatic structure in that color.

— The combinatorial line version implies the arithmetic progression version, namely V dW (k, r) ≤
kHJ(k,r) and Sz(k, r) ≤ kDHJ(k,r). To see this let us redefine [n] temporarily to be the numbers
from 0 to n − 1. This does not change the problems we consider. Now we can make a 1-1
correspondence between [km] and [k]m by writing the numbers in [km] as m-digit numbers in
base k (possibly with leading zeros). The inequalities follow since all the combinatorial lines in
[k]n correspond to arithmetic progressions. Note, however, that many arithmetic progressions
do not correspond to combinatorial lines.

The proofs of the VdW and HJ theorems are tricky inductions, but are relatively simple. The
proofs of their density versions are much more involved. By now there are several proofs for both
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density theorems above, one of the simplest ones is a proof of DHJ that was a result of many
mathematicians on-line collaboration in a so called Polymath project in 2009.

In the rest of this note we give a proof of the Hales Jewett theorem through a very tricky
induction. We will look for something that is both more and less than what the theorem requires.
It is a bigger set but not quite monochromatic.

We start with extending the notion of a combinatorial line. A d-space in [k]n is an injective
map f : [k]d → [k]n such that for all j ∈ [n] its projection fj : [k]d → [k] given by fj(x) = (f(x))j

is either a constant function or one of the coordinate functions x 7→ xi. Note that a combinatorial
line is the image of a 1-space. Here is an example of a 3-space in [3]8:

f(x, y, z) = (1, z, 3, x, x, z, 3, y).

We call the following sets Ad
i the faces of [k]d for i = 0, 1, . . . , d:

Ad
i = {x ∈ [k]d | xi = k if i ≤ k and xi < k if i > k}.

Note that these are pairwise disjoint subsets in [k]d. Here are the faces of [3]2:

A2
0 = {(1, 1), (1, 2), (2, 1), (2, 2)},

A2
1 = {(3, 1), (3, 2)},

A2
2 = {(3, 3)}.

Given a coloring of [k]n we call a d-subspace f of [k]n almost monochromatic if the image of the
faces of [k]d are monochromatic. The color of the image of different faces may be different.

Let HJ(k, r, d) stand for the smallest n such that in any r-coloring of [k]n there is an almost
monochromatic d-space. At this time we do not know that such an n exists, we let HJ(k, r, d) be
infinite if no such n exists. The following recursions will establish that HJ(k, r) and HJ(k, r, d)
are finite for all k,r and d.
Lemma 1. For all k ≥ 2 and r we have HJ(k, r) ≤ HJ(k, r, r).

Proof: Let us fix an r-coloring of [k]n with n = HJ(k, r, r). By the choice of n we have an
almost monochromatic r-space f : [k]r → [k]n. Each of the images f(Ar

i ) for i = 0, 1, . . . , d are
monochromatic. By the pigeon hole principle there are two of them f(Ar

i ) and f(Ar
j) for some

0 ≤ i < j ≤ r that have the same color. Consider the combinatorial line L ⊆ [k]r obtained by fixing
the first i coordinates to k, the last d − j coordinates to 1 and making the remaining coordinates
equal. One element of L (when the middle coordinates are k) is in Ar

j , all the remaining elements
in L are in Ar

i . Thus, the image f(L) of L is a monochromatic line in [k]n as needed. Q.E.D.

Lemma 2. For all k and r we have HJ(k, r, 1) ≤ HJ(k − 1, r).
Proof: Let us fix an r-coloring of [k]n with n = HJ(k − 1, r). By the choice of n we find a

monochromatic combinatorial line L in the restriction of our coloring to [k−1]n. There is a 1-space
f in [k]n such that the image of the face A1

0 is exactly L, hence monochromatic. This means that
f is itself almost monochromatic as there is only one other face to consider, but A1

1 has a single
element, thus its image is automatically monochromatic. Q.E.D.

Lemma 3. For all k, r and d, and for z = HJ(k, r, d) we have HJ(k, r, d + 1) ≤ z + HJ(k, rkz

, 1).
Proof: We set r∗ = rkz

, w = HJ(k, r∗, 1), n = z + w. For x ∈ [k]z and y ∈ [k]w we denote
their concatenation by xy. This is the element of [k]n whose first z coordinates gives x and last w
coordinates give y.
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Let c : [k]n → [r] be an arbitrary r-coloring of [k]n. For y ∈ [k]w we let c∗(y) : [k]z → [r] be
the r-coloring of [k]z defined by c∗(y)(x) = c(xy). (This is the restriction of c to the points with
the last w coordinates fixed.). Note that there are r∗ possible r-colorings of [k]z, thus c∗ can be
considered an r∗-coloring of [k]w. (In a true r∗-coloring the colors are the elements of [r∗] but the
actual values of the colors do not matter, just the number of colors used.)

By the choice of w there is an almost monochromatic 1-space f : [k] → [k]w for the coloring c∗.
This means that the image f(A1

0) of A1
0 = [k − 1] is monochromatic in c∗. Let us denote its color

by c0 : [k]z → [r]. By the choice of z there is an almost monochromatic d-space g : [k]d → [k]z in
[k]z for the r-coloring c0. We define h : [k]d+1 → [k]n by h(x1, . . . , xd+1) = g(x1, . . . , xd)f(xd+1).
This is clearly a (d+1)-space in [k]n. We claim it is almost monochromatic. If so, that finishes the
proof of the lemma.

We need to show that for i = 0, 1, . . . , d + 1 the image h(Ad+1
i ) of the face Ad+1

i is monochro-
matic for c. This is trivial for i = d+1, as Ad+1

d+1 is a singleton. For i ≤ d we claim that the color of

any point in f(Ad+1
i ) is the same as the color of g(Ad

i ) under c0 (recall that g(Ad
i ) is monochromatic

in c0). Indeed, if x = (x1, . . . , xd+1) ∈ Ad+1
i , then x′ = (x1, . . . , xd) ∈ Ad

i and xd+1 < k. Thus
c∗(f(xd+1)) = c0 and c(h(x)) = c(g(x′)f(xd+1)) = c∗(f(xd+1))(g(x′)) = c0(g(x′)). Q.E.D.

Proof of the Hales Jewett theorem: We prove by induction on k that HJ(k, r) is finite for any
k and r.

The k = 1 base case is trivial with HJ(1, r) = 1.
Assume that k ≥ 2 and HJ(k − 1, r) is finite for any r. We need to prove that HJ(k, r) is

finite for any r. First we prove by induction on d that HJ(k, r, d) is finite for any d and r.
The base case of this inside induction is d = 1. We have HJ(k, r, 1) ≤ HJ(k−1, r) by Lemma 2

and thus it is finite by the (outside) inductive hypothesis.
For the inductive step of the inside induction assume HJ(k, r, d′) is finite for every r and d′ ≤ d

and we prove the same for d′ = d + 1. Indeed, by the (inside) inductive hypothesis z = HJ(k, r, d)
is finite and so is w = HJ(k, rkz

, 1). By Lemma 3 HJ(k, r, d + 1) ≤ z + w is also finite as needed.
Having finished the inside induction we know that HJ(k, r, r) is finite for every r. By Lemma 1

we have HJ(k, r) ≤ HJ(k, r, r) and so HJ(k, r) is also finite for every r finishing the outside
inductive step and the proof of the Hales Jewett theorem. Q.E.D.

Assignment:
1. We saw V dW (k, r) ≤ kHJ(k,r). Modify the argument to get a better correspondence, i.e.,

bound V dW (k, r) by a smaller (not exponential) function of HJ(k, r). What about the similar
connection between Sz(k, r) and DHJ(k, r)?

2. We use a doubly exponential function rkz

of z in the statement of Lemma 3. State and
prove a stronger version of this lemma in which this doubly exponential function is replaced by a
simple exponential function of k r, d and z.

3. A simple consequence of the Van der Waerden theorem is that if you color all positive

integers with finitely many colors, then there will be arbitrarily long monochromatic arithmetic
progressions. Will there always be monochromatic infinite arithmetic progressions?
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