
CEU “Topics in Combinatorics” course
Some of the topics covered in the February 14, 2017 class

The k-dimensional sphere as the unit sphere in Euclidean (k + 1)-space: Sk := {x ∈ Rk+1 : ||x|| = 1}.
The points x and −x in Sk are called antipodal.

Borsuk-Ulam Theorem: If f : Sk → Rk is continuous, then ∃x ∈ Sk satisfying f(x) = f(−x).
Lyusternik-Schnirelmann Theorem (1. form): If Hi ⊆ Sk are (relative) open for i = 1, . . . , k and none

of them contains a pair of antipodal points, then there is a pair of antipodal points not covered by any of
the sets, that is, x,−x ∈ Sk \ ∪ki=1Hi.

Lyusternik-Schnirelmann Theorem (2. form): If Hi ⊆ Sk are (relative) open for i = 1, . . . , k + 1 and
none of them contains a pair of antipodal points, then together they do not cover Sk (i.e., ∪k+1

i=1Hi 6= Sk).

A combinatorial proof through Tucker’s lemma (similar to the proof of Brouwer’s fixed point theorem
through Sperner’s lemma studied in class) is possible. A more standard proof is using simple algebraic
topology.

Here we prove their equivalence only.

BU implies LS1: Given open sets Hi ⊆ Sk for i = 1, . . . , k we define f : Sk → Rk by f(x) :=
(d(x, Sk \H1), . . . , d(x, Sk \Hk)), where d stands for the (Euclidean) distance. Note that this is continuous,
so by BU we have x ∈ Sk with f(x) = f(−x). We claim that this antipodal pair satisfies the statement of
LS1. Fix i. As Hi is open we have x ∈ Hi if and only if d(x, Sk \Hi) > 0 (and similarly for −x). We have
d(x, Sk \Hi) = d(−x, Sk \Hi): this value cannot be positive, because then Hi would contain an antipodal
pair, so it is 0, and thus Hi contains neither x or −x. This holds for all i. Q.E.D.

LS1 implies LS2: We have k + 1 open subsets in the sphere Sk. Apply LS1 for the first k: there is an
antipodal pair x, −x missed by all of them. But the last set can only cover on of this two points, so the
other one is not covered. Q.E.D.

LS2 implies BU: Let vi be the i’th coordinate vector (all zero with a 1 at position i) for i = 1, . . . , k and
vk+1 = (−1, . . . ,−1). Consider a continuous function f : Sk → Rk. For i = 1, . . . , k + 1 set Hi = {x ∈ Sk :
(f(x)−f(−x)) ·vi > 0}. This is open and does not contain an antipodal pair. By LS1 there is x ∈ Sk outside
all these sets. This means (f(x)− f(−x)) · vi ≤ 0 for all i. This means that all coordinates of f(x)− f(−x)
are non-positive, but there sum is non-negative. Thus, we have f(x) = f(−x). Q.E.D.

Borsuk graph Bkδ : Here 0 < δ < 2 and k is a positive integer. Vertex set: Sk (infinite). Vertices x and y
are adjacent if and only if d(x, y) > δ (Euclidean distance). Take δ close to 2, then “almost antipodal” pairs
are adjacent.

Finite Borsuk graph: Take a finite set S ⊆ Sk with every point x ∈ Sk having y ∈ S with d(x, y) < ε :=
1− δ/2. Form the induced subgraph Bkδ [S].

Claim: χ(Bkδ [S]) ≥ k + 2
Proof using LS2: Let c : S → [k + 1] be a coloring. Let Hi be the ε-neighborhood of c−1(i), namely

Hi := {x ∈ Sk : ∃y ∈ S, d(x, y) < ε, c(y) = i}. As union of open ε-neighborhoods, the sets Hi are open.
By the choice of S together they cover Sk. By LS1, one of the sets Hi must contain an antipodal pair, x
and −x. By the definition of Hi it means that vertices y, z ∈ S must exist with c(y) = c(z) = i, d(x, y) < ε
and d(−x, z) < ε. Here d(x,−x) = 2, so by the triangle inequality we have d(y, z) > 2 − 2ε = δ. Thus, the
coloring c is not proper. Q.E.D.

Kneser graph KG(n, k) (n ≥ 2k > 0 is assumed, otherwise the graph has no edges.) Vertices:
(
X
k

)
, for

some fixed n-set X, i.e., the k-subsets of X. Vertices x and y are adjacent if and only they are disjoint.

Remark: Both the Borsuk graph Bkδ and the Kneser graph KG(n, k) are vertex-transitive graphs, i.e.,
its automorphisms move every vertex to every vertex. The Kneser graphs are also edge-transitive, i.e.,
every edge is moved to every edge by an automorphism. For the Borsuk graphs automorphisms come from
rotations of the sphere, for the Kneser graphs they come from permutations of X. Another similarity: with
appropriate choice of the parameters (namely δ close to 2 and n close to 2k) the graphs Bkδ and KG(n, k)
contains no short odd cycles. To see this for the Borsuk graphs observe that if d(x, y) > δ for x, y ∈ Sk,
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then d(x,−y) < ε′ for ε′ =
√

4− δ2 (Pythagoras). Now for an odd cycle x0x1 . . . , x2l in Bkδ we have
δ < d(x0, x2l) ≤ d(x0,−x1) + d(−x1, x2) + · · ·+ d(−x2l−1, x2l) < 2lε′. Thus l > δ/(2ε′).

Similarly, if x and y have a common neighbor z in KG(n, k), then y − x ⊆ X − (x ∪ z) and therefore
|y − x| ≤ |X − (x ∪ z)| = n − 2k. For an odd cycle x0x1 . . . , x2l in KG(n, k) we have k = |x2l \ x0| ≤
|x2 \ x0|+ |x4 \ x2|+ · · ·+ |x2l−2 \ x2l| ≤ l(n− 2k). Thus l ≥ k/(n− 2k).

Kneser’s conjecture (1955), proved by Lovász (1979), proof simplified by Bárány (1979) and Greene
(2002): χ(KG(n, k)) = n− 2k + 2

Easy direction (Kneser): χ(KG(n, k) ≤ n−2k+2. Proof by constructing a proper (m−2k+2)-coloring.
We take an arbitrary subset X ′ ⊂ X of size 2k − 1 and let the color of the vertex x be any element of x
outside X ′. We used n − 2k + 1 colors so far and all color classes are independent sets. We use an extra
color for the remaining vertices, namely those contained in X ′. This is also an independent set. Q.E.D.

Hard direction (Lovász): χ(KG(n, k) ≥ n− 2k + 2.
Proof (Greene, using LS1): Let u = n− 2k+ 1 and use a set X of n points in Su in general position for

the base set in KG(n, k). General position means that each u+ 1 points are linearly independent as vectors
in Ru+1. So now the vertex set of KG(n, k) is V =

(
X
k

)
.

For x ∈ Su define the hemisphere around x as HS(x) := {y ∈ Su : x · y > 0}. For a coloring c : V → [u]
define the sets Hi := {x ∈ Su : ∃v ∈ V, c(v) = i, v ⊆ HS(x)} for i = 1, . . . , u. These sets are open, as
Hi = ∪v∈V,c(v)=i ∩x∈v HS(x). Consider an arbitrary x ∈ Su. The hemispheres HS(x) and HS(−x) are
disjoint and together they cover Su except for the vectors orthogonal to x. By the general position assumption
at most u elements of X are orthogonal to x, thus at least n− u = 2k − 1 points fall in HS(x) ∪HS(−x).
Thus, one of the two hemispheres contain at least k elements of X. Let v be a k-subset of X contained in
either HS(x) or HS(−x). The set Hc(v) contains x or −x. Now LS1 implies that one of the sets Hi must
contain an antipodal pair x, −x. This means that both HS(x) and HS(−x) contains a color-i vertex. These
vertices must be disjoint, thus adjacent, so c is not a proper coloring. Q.E.D.
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