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Abstract

We enrich the structure of finite simple graphs with a linear order
on either the vertices or the edges. Extending the standard question
of Turán-type extremal graph theory we ask for the maximal number
of edges in such a vertex or edge ordered graph on n vertices that
does not contain a given pattern (or several patterns) as subgraph.
The forbidden subgraph itself is also a vertex or edge ordered graph,
so we forbid a certain subgraph with a specified ordering, but we allow
the same underlying subgraph with a different (vertex or edge) order.
This allows us to study a large number of extremal problems that are
not expressible in the classical theory. In this survey we report on
ongoing research. For easier access we include sketches of proofs of
selected results.

1 Definitions

A vertex ordered graph or simply an ordered graph is a simple graph with a
linear order on the vertices. Formally, an ordered graph is a triple (V,E,<),

where V is the vertex set, E ⊆
(
V
2

)
is the edge set (so that (V,E) is a simple

graph) and < is a linear order relation on V . Similarly, an edge ordered
graph is a simple graph with a linear order on its edges, that is (V,E,<),
where (V,E) is a simple graph and < is a linear order relation on E. In this
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survey we assume that V is finite. We say that (V,E) is the simple graph
underlying the vertex or edge ordered graph (V,E,<) and (V,E,<) is a vertex
or edge ordering of the simple graph (V,E). The notions of isomorphism and
subgraph naturally extend to these graphs: An isomorphism between vertex
or edge ordered graphs is an isomorphism between the underlying simple
graphs that preserves the ordering. A subgraph of a vertex or edge ordered
graph is a subgraph of the underlying simple graph with the inherited vertex
or edge order.

Armed with these definitions we can extend some classic areas of graph
theory to ordered graphs. Here we do this for Turán-type extremal graph
theory and for most of this survey we consider vertex orderings. (See the last
section for some preliminary results from ongoing research on edge ordered
graphs.) Extremal graph theory asks for the maximal number of edges in a
simple graph of given size that avoids (i.e., does not contain as a subgraph) a
specified pattern or any member of a given family of patterns. In particular,
we are interested in the maximal number, ex(P , n), of edges in an n-vertex
simple graph that has no subgraph isomorphic to any member of the family
P . Note that we must require that P does not contain empty graphs (i.e.,
each member has at least one edge) in order for this definition to make sense.
In the case where the forbidden family consists of a single pattern we write
ex(P, n) to denote ex({P}, n). We call ex(P , n) the extremal function of the
family P and will concentrate on its asymptotic behavior. Accordingly, all
the asymptotic notations like O(·) and o(·) should be interpreted for a fixed
family P and, in particular, the implied constants in O(·) may depend on
this family.

For a natural extension of this theory to ordered graphs, we consider a
family P of ordered graphs and we look for the largest number ex<(P , n) of
edges in an n-vertex ordered graph with no ordered subgraph isomorphic to
any member of P . As before, we require that each member of P has at least
one edge and simplify the notation for singleton families by writing ex<(P, n)
to denote ex<({P}, n). Our remark on the asymptotic notation also applies
here.

Let us first observe that the extremal theory of ordered graphs is strictly
richer than classical extremal graph theory in the sense that the classical
questions can be equivalently asked in this setting, but we can also ask new
questions. In particular, for any family P of simple graphs one can form the
family P< consisting all orderings of the patterns in P and then we trivially
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have:
ex(P , n) = ex<(P<, n).

On the other hand, if we forbid, say, a single ordered graph P , the corre-
sponding extremal function ex<(P, n) has no direct analogue in the classical
theory. We naturally have ex<(P, n) ≥ ex(P , n), where P is the simple graph
underlying P , but this lower bound is typically very weak, since avoiding P in
a particular order is often much easier than avoiding it in all possible orders.

In the paper [5] Braß, Károlyi and Valtr establish a very similar theory.
Instead of a linear order on the vertices, they consider a cyclic order. They
have very nice results on the extremal function of certain cyclically ordered
graphs. These results have natural translations in the extremal theory of
ordered graphs. Let us also give credit to Füredi and Hajnal, who in the last
paragraph of their paper [12] explicitly ask for developing both the extremal
theory of vertex ordered graphs surveyed here and for that of the cyclically
ordered graphs as done later by Braß, Károlyi and Valtr.

Extensions of Ramsey theory to ordered graphs are also studied exten-
sively, see [1, 6].

Most of this survey is about the extremal theory of vertex ordered graphs.
In Section 2 the classical Erdős-Stone-Simonovits theorem and its general-
ization to vertex ordered graphs is presented. This result determines the
asymptotics of the extremal function of ordered graphs with interval chro-
matic number three or higher. We are satisfied with asymptotical results,
so we concentrate exclusively on ordered bipartite graphs (ordered graphs
with interval chromatic number two) in later sections. In Section 3 the close
connection between the extremal theory of ordered bipartite graphs and the
somewhat older extremal theory of 0-1 matrices is explained. Classical ex-
tremal graph theory always gives us a lower bound on the corresponding
ordered questions. In Section 4 we explore how far this lower bound can be
from the ordered extremal function. The case of forests is treated separately
in Section 5. Here the unordered theory gives a linear lower bound, and a
prominent open question is to decide if almost linear (say, n1+o(1)) bound also
hold for all ordered bipartite forests. This is known for a wide class of such
forests, but not for all. In Section 6 we present two simple results on the
class of ordered graphs with linear extremal functions. Finally, in Section 7
we present results about extremal functions arising from simultaneously for-
bidding two (or more) ordered graphs. While it is not known in the classical
extremal theory of graphs whether forbidding several graphs can result in
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an extremal function of lower order of magnitude than the ones obtained
from just one forbidden graph, we have many such examples in the ordered
setting.

In Section 8, the last section of this survey, we summarize recent research
on the extremal theory of edge ordered graphs.

2 Basic results

Any survey about extremal graph theory should start with the following
classical theorem of Turán from 1941, [30], of which the r = 2 special case
(the maximal number of edges in a triangle-free graph) was proved by Mantel
in 1907, [19]. The result gives the exact extremal function when the forbidden
graph is a complete graph. Further, for the (r + 1)-vertex complete graph
Kr+1 the theorem states that the unique (up to isomorphism) n-vertex graph
with the maximum number of edges avoiding Kr+1 is the Turán graph T (n, r)
formed by partitioning the vertices into r almost equal parts and letting a
pair of vertices form an edge if and only if they are from distinct parts. Note
that the number of edges of the Turán graph T (n, r) is (1−1/r)n2/2−O(1),
where the O(1) error term comes from unequal parts and can go as high as
r/8. As a consequence, we have:

Theorem 1 (Turán [30]). For every r ≥ 1 we have

ex(Kr+1, n) = (1− 1/r)
n2

2
−O(1).

A trivial generalization of this result to ordered graphs involves the or-
dered clique, the unique ordering of the complete graph. Let Kr+1,< stand
for the (r + 1)-vertex ordered clique and we trivially have ex<(Kr+1,<, n) =
ex(Kr+1, n). A more revealing generalization is about the ordered path Pr+1,<

obtained from the (r + 1)-vertex path Pr+1 with the natural order on the
vertices where edges connect neighboring vertices in the order. We have
ex<(Pr+1,<, n) = ex(Kr+1, n). Here the direction ≤ follows from the fact that
Pr+1,< is an ordered subgraph of Kr+1,< and ≥ follows from the fact that if
we order the vertices of T (n, r) in a way that the r parts become intervals
in the ordering, then the resulting ordered graph does not contain Pr+1,<

as an ordered subgraph. Note, however, that in the case r does not divide
n, this process yields several non-isomorphic extremal ordered graphs. Note
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also that the path Pr+1 has several non-isomorphic orderings for r > 1, and
by Theorem 3 below, all other orderings have substantially smaller extremal
functions.

The most general result in Turán-type extremal graph theory is the fol-
lowing consequence of the Erdős-Stone theorem, [7]. It basically states that
the extremal function of any simple graph is close to the extremal function
of the complete graph with the same chromatic number.

Theorem 2 (Erdős-Stone-Simonovits [9, 7]). Let P be a family of simple
graphs and r + 1 = minP∈P χ(P ) be the smallest chromatic number of a
member of this family. We have

ex(P , n) = (1− 1/r)
n2

2
+ o(n2).

Pach and Tardos, [24] gave a generalization of this result for ordered
graphs. It is based on finding the “correct” version of the chromatic number
for ordered graph.

The interval coloring of an ordered graph is a proper coloring of the
underlying simple graph in which each color class is an interval of the linear
order. The interval chromatic number of an ordered graph P is the smallest
number of colors in an interval coloring of P . We write χ<(P ) to denote the
interval chromatic number of P .

Note that the interval chromatic number is much simpler to compute than
the chromatic number because a greedy strategy suffices. Indeed, we can form
the first color class by taking longest initial segment of the vertices that form
an independent set and proceed similarly for subsequent color classes. The
process yields an interval coloring with the fewest possible colors. This is
because the first color class of any interval coloring is a subset of first color
class found above, so greedily choosing the longest possible interval cannot
hurt us later. Using this definition, the generalization of the Erdős-Stone-
Simonovits theorem is rather straightforward:

Theorem 3 (Erdős-Stone-Simonovits theorem for ordered graphs [24]). Let
P be a family of ordered graphs and r + 1 = minP∈P χ<(P ) be the smallest
interval chromatic number of a member of this family. We have

ex<(P , n) = (1− 1/r)
n2

2
+ o(n2).
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Proof. Order the vertices of the Turán graph with r-classes such that each
class becomes an interval of the ordering. This way we obtain an ordered
graph with interval chromatic number r, so it avoids all ordered graphs with
higher interval chromatic number, including all members of P . This provides
the lower bound for the extremal function ex<(P , n).

Let P ∈ P be an ordered graph with interval chromatic number r + 1.
The upper bound comes from the classical Erdős-Stone theorem. Let m be
the number of vertices of P . By the theorem, a simple graph on n vertices
with at least (1 − 1

r
+ ε)n2 edges contains the Turán graph T with r + 1

classes, each containing m vertices if n is large as a function of r, m and ε.
We show that any vertex ordering of T< of T contains P by induction on
r. This statement holds trivially for r = 0, so we start the induction here
(despite the fact that the theorem itself requires r > 0 as P cannot contain
an empty graph). For r > 0 we explicitly find a monotonic homomorphism
from P to T<. For this, identify the first interval I in an optimal interval
coloring of P . We map the vertices in I to the first k = |I| vertices of T< in
a single class of the underlying Turán graph. Let x be the last vertex used,
so it is the k’th vertex of the chosen class in T<. We choose the class so as
to make x appear as early in the vertex order as possible. Let us obtain the
induced subgraph T ′ of T< by deleting all vertices in the class of x and the
first k vertices in all other classes. Note that T ′ is an ordering of the Turán
graph with r classes, each containing m − k vertices, so by the inductive
hypothesis it contains P − I, an ordered graph of interval chromatic number
r on m − k vertices. This gives a mapping from P − I to T ′ (and so also
to T<) and together with our mapping of I provides the required monotonic
homomorphism. Indeed, the mapping is monotonic as the image of P − I is
inside T ′, therefore strictly after x, the last vertex in the image of I. It is
a homomorphism as T< contains a complete bipartite graph connecting the
image of I (and the whole class containing it) with T ′.

Just as the classic version of this theorem, it gives exact asymptotics for
the extremal function of ordered graphs unless the ordered graph is ordered
bipartite (i.e., has interval chromatic number 2). We will therefore concen-
trate on ordered bipartite graphs. Containment between ordered bipartite
graphs can also be visualized using the language of containment in 0-1 ma-
trices. This connection is explored in the next section.
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3 Connection to 0-1 matrices

A 0-1 matrix is simply a matrix with all entries being 0 or 1. The weight
of such a matrix is the number of its 1-entries. The 0-1 matrix A is said
to dominate the 0-1 matrix B of the same size if Aij ≥ Bij for all i and j,
that is, if B = A or B is obtained from A by replacing some 1-entries by
0-entries. A 0-1 matrix A is said to contain another 0-1 matrix P , if P is
dominated by a submatrix of A. Note that permuting rows or columns is not
allowed. If A does not contain P , we say it avoids P . The extremal problem
for 0-1 matrix containment can be formulated as computing (or estimating)
the following extremal function for families P of 0-1 matrices: Ex(P , n) is
the maximal weight of an n-by-n 0-1 matrix that avoids all matrices in P .
We require that all matrices in P have positive weights. We write Ex(P, n)
to denote Ex({P}, n).

For a 0-1 matrix P , let GP stand for the ordered bipartite graph whose
vertices correspond to the rows and columns of P , the order of the vertices
agrees with the order of rows and columns in P with all row-vertices preceding
all column vertices, and with an edge between a row-vertex and a column-
vertex if and only if the corresponding entry in P is 1. This makes P the
bipartite adjacency matrix of GP and turns the weight of P into the number
of edges in GP . The close connection between the extremal theory of ordered
bipartite graphs and 0-1 matrices follows from the trivial observation that if
a 0-1 matrix A contains another 0-1 matrix P , then the ordered graph GA

also contains GP . The converse is also true if the homomorphism of GP to
GA maps row-vertices to row-vertices and column-vertices to column-vertices.
This extra condition is automatically satisfied if both the last row and first
column of P contain at least one 1-entry, so in this case we have Ex(P, n) ≤
ex<(GP , 2n). There is no equality in general, because ex<(GP , 2n) is the
maximum number of edges among all ordered graphs on 2n vertices avoiding
GP and the extremal ones may not be ordered bipartite. Still, the two
extremal functions are really close to each other as shown by the following
observation:

Theorem 4 ([24]). For a 0-1 matrix P and the corresponding ordered bipar-
tite graph GP we have

Ex(P, n) ≤ ex<(GP , 2n) = O(Ex(P, n) log n).

The logarithmic term in the bound above is needed even for some small
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matrices, e.g., for the matrix

P =

(
1 1

0 1

)
.

For this matrix, we have Ex(P, n) = 2n−1, but for the corresponding ordered
graph GP one has ex<(GP , n) = n log n + O(n), where log stands for the
binary logarithm. A construction showing the lower bound for this later
estimate is an ordered graph whose vertices are adjacent if and only if their
distance in the ordering is a power of 2. To see that Ex(P, n) ≤ 2n − 1
notice that by removing the first 1 entry in every row and the last 1 entry in
every column in an n-by-n 0-1 matrix one removes at most 2n− 1 1 entries
(any 1 entry in the first column is also the first 1 entry in its row) and if the
remaining matrix still contains a 1 entry, then the original matrix contains P .
To see the reverse inequality Ex(n, P ) ≥ 2n − 1 simply consider the n-by-n
matrix with ones in the last row and first column and zeros elsewhere and
notice that it does not contain P .

The extremal theory of 0-1 matrices predates the related theory of ordered
graphs. Zoltán Füredi [11] established the extremal function for a specific 2-
by-3 0-1 matrix and used this result for a problem in combinatorial geometry:
he bounded the number of diagonals of equal length in a convex n-gon.
Independently, Bienstock and Győri [3] found the extremal function of few
small 0-1 matrices. Later Füredi and Hajnal [12] started a systematic study
of the extremal theory of 0-1 matrices. This latter paper not only contained
many nice results, but was also rich in conjectures and had a significant effect
on future research.

4 Connections between ordered and unordered

extremal functions

Füredi and Hajnal, [12] made the following general conjecture: Ex(P, n) =
O(ex(GP , n) log n), where P is any 0-1 matrix with positive weight and GP

is the simple graph underlying the ordered graph GP . We will see that his
conjecture is way too strong and fails in general, but it was still influential in
subsequent research. It is not hard to see that a reverse of the conjectured in-
equality, namely ex(GP , n) ≤ Ex(P, n) always holds, so the conjecture states
that the two quantities Ex(P, n) and ex(GP , n) are close. We saw in Theo-
rem 4 that Ex(P, n) and ex<(GP , n) are close, so here we focus on comparing
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ex<(GP , n) and ex(GP , n). In other words, we ask how much more edges can
we have in an ordered graph of a given size if we only forbid one particular
bipartite ordering of a simple graph G as a subgraph compared to forbidding
all orderings of G. Note that it is important to insist that the forbidden
ordering of a bipartite graph should have interval chromatic number two,
otherwise Theorem 3 provides the easy answer: the two quantities can be
very far apart. Indeed, for an ordered tree P of interval chromatic number
larger than 2 one has ex<(P, n) = Θ(n2) but ex(P , n) = Θ(n).

These considerations lead us to formulate the following question:

Question 1. How high can the ratio ex<(P,n)

ex(P ,n)
be for an ordered bipartite graph

P with more than one edge, where P stands for its underlying simple graph?

The paper [24] gives the example with the largest known ratio. Let Qk

be the following ordered graph on 2k vertices v1, v2, . . . , v2k (in this order)
and the following 2k edges: vivk+i for 1 ≤ i ≤ k, vi+1vk+i for 1 ≤ i ≤ k − 1
and v1v2k. Note that the interval chromatic number of Qk is two and its
underlying simple graph is the cycle C2k.

Theorem 5 ([24]). There exist ordered bipartite graphs on n vertices with
Θ(n4/3) edges that contain none of the ordered graphs Qk.

Proof. Consider an arrangement of n/2 points and n/2 lines in the Euclidean
plane with m incidences, i.e., point-line pairs with the point on the line. The
celebrated Szemerédi-Trotter theorem [27] states that m = O(n4/3). This
theorem is tight, so we can select the points and the lines in such a way that
m = Θ(n4/3). (For example, points of an appropriate square grid and the
lines containing the most of these points will work.)

We turn this arrangement into a graph whose vertices are the points
and lines in the arrangement and the edges correspond to pairs forming an
incident. This graph has n vertices and m = Θ(n4/3) edges. We order
the vertices of the constructed graph to turn it into an ordered graph. In
our ordering point-vertices preceed line-vertices, this makes the constructed
ordered graph ordered bipartite. We fix a coordinate system such that no
line in the arrangement is vertical and order the point-vertices according
their x-coordinates and we order the line-vertices according their slope (we
break ties arbitrarily in both cases).

To finish the proof of the theorem we need to show that the constructed
ordered graph does not contain Qk for any k. Assume for contradiction
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that it does, so the vertices vi of Qk correspond to points and lines in the
arrangement. Clearly, a vertex vi with i ≤ k must correspond to a point pi,
while vi with i > k corresponds to a line li. Using the incidences represented
by the edges vivk+i and vi+1vk+i we conclude that the line segments pipi+1

(belonging to the line lk+i) form a convex chain for i = 1, . . . , k − 1. The
contradiction comes from the observation that l2k is the line p1pk connecting
the two end points of this chain, thus its slope cannot exceed the slopes of
all the segments in the chain (as it should since v2k is the last in the vertex
order).

Theorem 5 implies that ex<(Qk, n) = Ω(n4/3) for every k. On the other
hand the simple graph underlying Qk is the cycle C2k and by the Bondy-
Simonovits theorem [4] we have ex(C2k, n) = O(n1+1/k). This gives a lower
bound of Ω(n1/3−1/k) for the ratio in Question 1 for the ordered graph Qk.
This also shows that conjecture mentioned in the beginning of this section
fails for the bipartite adjacency matrix of Qk whenever k > 3. We do not
know if any pattern achieves a ratio of Ω(n1/3) in Question 1. For an upper
bound for the same ratio we trivially have O(n), as both the enumerator and
the denominator are functions between n and n2. In fact, they are O(n2−ε)
for some ε > 0 depending on the size of P by the Kővári-Sós-Turán theorem
[18], so the ratio is always O(n1−ε), but no better upper bound is known in
general.

Question 1 asks how far the extremal function of a forbidden ordered
bipartite can be from the extremal function of the family of all orderings of
the same underlying graph. In similar vein one can ask how far the extremal
functions of two distinct bipartite orderings of the same underlying graph
might be from each other. I do not know of any results in this very inter-
esting direction, but results of Győri, Korándi, Methuku, Tomon, Tompkins
and Vizer on the extremal function of various bipartite orderings of even
cycles, [15], might later prove useful to establish such gaps. This question is
also related to the problem discussed in Section 7. The gap established in
Theorem 5 will also show up between the extremal functions of two different
bipartite orderings of the same even cycle or it is the case that forbidding all
orderings of an even cycle of length at least 8 results in a substantially smaller
extremal function than forbidding just one ordering. The latter would an-
swer a variant of Question 2 in Section 7 (note that for simplicity we ask
Question 2 about forbidding a pair of ordered graphs and here we need to
consider larger families).
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5 Forests

The Füredi-Hajnal paper [12] formulated the special case of their conjecture
mentioned in the previous section separately for cycle-free patterns. Here
we call a 0-1 matrix P cycle-free if the corresponding simple graph GP is
cycle-free, that is a forest. In this case, ex(GP , n) (the extremal function
of an unordered forest) is trivially linear, so their conjecture boils down to
stating Ex(P, n) = O(n log n) for any cycle-free 0-1 matrix P . The log factor
in the conjecture probably came from the the first matrix considered in this
context [11, 3]:

T =

(
1 0 1
1 1 0

)
that happen to be cycle-free and its extremal function is Θ(n log n).

Here we formulate a closely related but somewhat weaker conjecture:

Conjecture 1 For an ordered bipartite forest P and any c > 1, we have

ex<(P, n) = o(nc).

Note first that if this conjecture is true, then it characterizes the ordered
graphs with almost linear extremal functions. Indeed, if P is not ordered
bipartite, then ex<(P, n) = Θ(n2) by Theorem 3, while if the underlying
graph P contains a cycle, then ex<(P, n) ≥ ex(P , n) = Ω(nc) for some c > 1.
The latter statement follows from a simple application of the probabilistic
method.

Note that stronger conjectures could be formulated by replacing o(nc)
with a bound O(n logc n) for a constant c = cP depending on P , or even with
an O(n log n) bound. Conjecture 1 and the conjecture with the O(n logc n)
bound are still open and by Theorem 4 are equivalent to the similar conjec-
tures about Ex(M,n) for cycle-free 0-1 matrices M . The strongest form of
the conjecture (an O(n log n) bound) was also considered for a while and was
supported by the fact that it was easy to find an extremal function of order
Θ(n log n), but there was no known example of an ordered bipartite forest
whose extremal function grows faster. If true, it would imply the Füredi-
Hajnal conjecture for cycle-free patterns mentioned above. But Seth Pettie,
[26], found a cycle-free 0-1 matrix with extremal function slightly higher than
n log n: for this matrix M one has Ex(M,n) = Ω(n log n log log n). By this,
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he also disproved the strengthening of Conjecture 1 with the O(n log n) up-
per bound, but the conjecture may still hold with the bound O(n log2 n).
Pettie’s result was slightly improved and the current best lower bound is due
Park and Shi [25]. They found cycle-free 0-1 matrices Mm with Ex(Mm, n) =
Ω(n log n log log n · · · log(m) n), where log(m) denotes the m-times-iterated log-
arithm function.

On the positive side, ex<(P, n) = O(n logc n) was established in [24] for
all ordered bipartite forests with at most 6 vertices. The exponent c in this
result can be chosen to be three less than the number of vertices in P . For
most of the small ordered bipartite graphs the bound follows from this simple
observation.

Lemma 1 ([24]). Let P be a 0-1 matrix. Suppose that the last column of P
contains a single 1 entry and let us obtain P ′ from P by deleting this last
column. We have

Ex(P, n) = O(Ex(P ′, n) log n).

As the example of the matrix T above shows, the extra log factor is
sometimes necessary in Lemma 1. It is reasonable to conjecture the following
stronger form of this lemma also holds. If so, it easily implies Conjecture 1,
even with the stronger O(n logc n) bound.

Conjecture 2. Let P be 0-1 matrix and let us obtain P ′ from P by deleting
a column that contains a single 1 entry. We have

Ex(P, n) = O(Ex(P ′, n) log n).

The most general positive result toward Conjecture 1 appears in the paper
[17] by Korándi, Tardos, Tomon and Weidert. They call a split of a 0-1 matrix
P into two matrices P ′ and P ′′ an legal horizontal split if P is obtained by
placing P ′ atop P ′′ (so in particular all three matrices have the same number
of columns) and at most one of the columns have a one entry in both P ′ and
P ′′. A a 0-1 matrix P is vertically degenerate if it can be partitioned into
single line matrices by a sequence of legal horizontal splits. Note that all
vertically degenerate 0-1 matrices are cycle-free. All cycle-free 0-1 matrices
with at most three rows are vertically degenerate, but there are 4-row cycle-
free 0-1 matrices that are not vertically degenerate (see below). Using a
density increment argument, they prove the following theorem.
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Theorem 6 ([17]). Let P be a vertically degenerate 0-1 matrix with l rows.
We have

Ex(P, n) = n2O(log1−1/l n).

This result implies that Conjecture 1 holds for all ordered graphs GP ,
where P is a vertically degenerate 0-1 matrix. By symmetry, Conjecture 1 is
also true for all GP , where P is horizontally degenerate, that is, the transpose
of P is vertically degenerate, but it has not been proved for any larger class
of ordered bipartite forests. The smallest open case is an ordered path on 8
vertices, specifically GM for the matrix

M =


1 0 1 0
0 1 0 1
0 0 1 0
1 0 0 1

 .

Note that M has no legal horizontal or vertical split (where a legal vertical
split is the legal horizontal split of the transpose). The following matrix
N can be split into into trivial (one-by-one) matrices using a sequence of
vertical and horizontal splits, but still it is neither vertically nor horizontally
degenerate because the splits alternate in direction. Verifying Conjecture 1
for such matrices is probably simpler than for matrices like M above and
may be the next logical step in verifying Conjecture 1.

N =


1 0 1 0 1
0 1 0 1 0
1 0 0 0 0
0 1 0 0 1


In the rest of this section we give a very rough sketch of the proof of

Theorem 6 because it may give some insights as to the limitation of this par-
ticular technique. For the technical details (for example the exact settings of
the parameters) we refer to the paper [17]. Let us introduce a few notations.
Let A be an m-by-kn 0-1 matrix. We consider A to be the union of k vertical
blocks, each consisting of n consecutive columns. We say that the 0-1 matrix
Q with k columns has a block respecting embedding in A if A contains Q in
such a way that the submatrix of A dominating Q has all its columns coming
from distinct vertical blocks (that is, the column corresponding to the ith
column of Q must come from the ith vertical block of A for every i). The

13



advantage of block respecting embeddings is that if Q has legal horizontal
split into matrices Q′ and Q′′, then it is much easier to combine the block
respecting embeddings of Q′ and Q′′ to form a block respecting embedding of
Q than it is without the extra condition. Indeed, one only has to check that
Q′ uses rows of A higher than the ones used by Q′′ and the single column that
has a 1 entry in both Q′ and Q′′ use the same column of A. The disadvantage
is that simply requiring that A has a lot of 1 entries is not enough to force
the existence of a block respecting embedding. Instead we will insist that the
1 entries are evenly distributed with the following definition: we say that A
is (k, u)-complete if among the n entries in the intersection of any row and
any vertical block, one always finds at least u 1-entries.

We say that a 0-1 matrix Q with k columns easily embeds if for a certain
range of the parameters n, m and u and for every m-by-kn (k, u)-complete
0-1 matrix A either Q has a block respecting embedding in A or one can
find a submatrix of A which is significantly denser than A itself. We do
not give the precise values of m and u required here, but the reader may
think of u = nε for some ε > 0 and “significantly denser” may mean an
s-by-s submatrix with weight s1+ε

′
, where ε′ > ε depends on ε but not of n.

The proof of Theorem 6 is based on two lemmas. The first states that if Q
has a legal horizontal split to Q′ and Q′′ and both Q′ and Q′′ easily embed,
then so does Q (with a slight deterioration in the parameters). As single
line matrices easily embed, this lemma implies the same for all vertically
degenerate matrices. The second lemma takes care of the extra uniformity
condition. It states that any 0-1 matrix A has a (k, u)-complete submatrix
with comparable size and density to A or a submatrix of significantly larger
density.

Consider the 0-1 matrix

Q =


1 1 0
0 0 1
1 0 0
0 1 1

 .

Q is horizontally degenerate, so GQ satisfies the statement of Conjecture 1,
but it is not vertically degenerate, and so we do not know if it easily embeds.
It is easy to see that permuting the columns of a 0-1 matrix does not ruin
the property that it easily embeds, neither does adding extra columns with
a single 1 entry. In this way showing that Q easily embeds would imply the
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same for both matrices M and N above and would establish the statement
of Conjecture 1 for GM and GN .

6 Linear extremal functions

Füredi and Hajnal [12] conjectured and later Marcus and Tardos [20] proved
that Ex(P, n) = O(n) for permutation matrices P . It is not hard to see
that this result can be restated in the following equivalent form (although
Theorem 4 does not directly imply this equivalence).

Theorem 7 ([20]). The extremal function of any ordered bipartite matching
P is linear. That is,

ex<(P, n) = O(n).

Conjecture 1, if true, characterizes all ordered graphs with almost linear
extremal functions. It would be nice to find a characterization of ordered
graphs or 0-1 matrices with linear extremal functions. One possibility is
finding all minimally nonlinear matrices. We call a 0-1 matrix P minimally
nonlinear, if its extremal function Ex(P, n) is nonlinear, but Ex(P ′, n) = O(n)
for all 0-1 matrices P ′ 6= P contained in P . It might be possible to find such
a characterization, but the following theorem indicates that this is a difficult
task:

Theorem 8 (Geneson and Keszegh [13, 16]). There are infinitely many min-
imally nonlinear matrices.

Note that “minimally nonlinear” simple graphs (for the classic extremal
graph theory) are well understood despite the fact that there are infinitely
many of them: they are the cycles. Keszegh, [16], foud a sequence of 0-1 ma-
trices H0, H1, . . . (shown below with the zeros omitted for clarity) that show
some repetitive behavior. He did not prove that they are minimally nonlinear,
instead he showed that they are nonlinear, specifically Ex(Hi, n) = Ω(n log n)
for all i, and thus each contains a minimally nonlinear matrix. Then Geneson,
[13], showed that no two of them can contain the same nonlinear matrix.

H0 =


1 1

1
1

1
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H1 =



1 1
1

1
1

1
1

1



H2 =



1 1
1

1
1

1
1

1
1
1

1



7 Interaction between ordered graphs

In this section we compare the extremal functions of families of several for-
bidden patterns with the extremal function of just a single member of that
family. Let us start with the classical extremal theory of graphs. Clearly, we
have

ex({G,H}, n) ≤ min(ex(G, n), ex(H,n)). (∗)
By Theorem 2, the two sides are asymptotically the same for non-bipartite
graphs G and H. It is easy to see that they differ by a factor of less than
2 if only one of the graphs is bipartite. Indeed, if G is bipartite and H is
not, one can make any simple graph avoiding G itself bipartite by deleting
less than half of its edges. For bipartite graphs, the situation is more com-
plicated. We say that G and H interact if the two sides of (*) differ more
than by a constant factor. It is not known if there exists any interacting
pair of graphs. Erdős and Simonovits, [8], conjecture that there exists no
interaction between graphs, but more recently Faudree and Simonovits, [10],
conjecture the opposite. Specifically, they conjecture that the cycle C4 and
the subdivision of the complete graph K4, in which each edge is subdivided
with a single new vertex, do interact.
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Let us emphasize that here we do not care for constant factors in the ex-
tremal functions. Finding weakly interacting pairs, that is, where ex({G,H})
is a constant factor less than min(ex(G, n), ex(H,n)) is considerably simpler.
The Erdős-Stone-Simonovits theorem prevents even weak interactions be-
tween non-bipartite graphs, but a bipartite and a non-bipartite graph can
interact weakly. Specifically, Erdős and Simonovits [8] prove that C4 and
C5 do interact weakly. Similar questions were also studied in the context of
uniform hypergraphs, where answering a question of Mubayi and Rödl, [23],
Mubayi and Pikhurko, [22] find weakly interacting pairs of r-uniform hyper-
graphs with extremal function Θ(nr) for all r > 2. The weakly interacting
pairs (or families) with such high extremal functions are called non-principal
families. Earlier József Balogh, [2], found non-principal families of 3-uniform
hypergraphs of larger finite size. Note that for graphs (i.e., r = 2) non-
principal families do not exist.

In contrast to graphs, it is not hard to find a lot of interactions in the
extremal theory of ordered graphs and 0-1 matrices. Consider the 3-by-2 ma-

trix T =

(
1 0 1
1 1 0

)
. Füredi [11] and Bienstock and Győri [3] proved that

Ex(T1) = Θ(n log n). By symmetry, the extremal functions of the matrices

T2 =

(
1 1 0
1 0 1

)
, T3 =

(
1 0 1
0 1 1

)
and T4 =

(
0 1 1
1 0 1

)
are the same.

The following theorem implies that each of T2, T3 and T4 interacts with T :

Theorem 9 ([28]).
Ex({T, T2}, n) = Θ(n)

Ex({T, T3}, n) = Θ(n log n/ log log n)

Ex({T, T4}, n) = Θ(n log log n)

The close connection between the extremal functions of 0-1 matrices and
ordered graphs makes it easy to turn these interactions into interactions
between ordered graphs.

These results represent the first step toward exploring interactions be-
tween different patterns. It would be interesting to find stronger interactions,
where the ratio between the right and left sides of (*) is larger than loga-
rithmic, ideally a power on n. We remark that the conjectured interaction
between bipartite graphs in [10] is of this stronger nature.

Question 2 Are there ordered graphs G and H such that

ex<({G,H}, n) = O(min(ex<(G, n), ex<(H,n))/nε)

17



for some ε > 0?

8 Edge ordered graphs

In this final section we survey some preliminary results from ongoing re-
search of the author with Dániel Gerbner, Abhishek Methuku, Dániel T.
Nagy, Dömötör Pálvölgyi and Máté Vizer [14] on the extremal theory of
edge ordered graphs. Recall that we defined edge ordered graphs in Sec-
tion 1 analogously to (vertex) ordered graphs, but now the linear order is on
the edges of a simple graph. The extremal function for a family P of edge
ordered graphs is also defined analogously: we are looking for the largest
number ex′<(P , n) of edges in an n-vertex edge ordered graph with no edge
ordered subgraph isomorphic to any member of P . We require that P does
not contain empty graphs and we write ex′<(P, n) to denote ex′<(P , n) when
P = {P} is a singleton.

As a natural first step we generalize the Erdős-Stone-Simonovits theorem
for edge ordered graphs. As for the corresponding theorem for vertex ordered
graph, namely Theorem 3, the main thing here is to find the “correct” notion
of the chromatic number. Then the result follows easily from the original
Erdős-Stone theorem [9]. We say that a simple graph strongly contains the
edge ordered graph G if every edge ordering of H contains G as an edge
ordered subgraph. We define the order chromatic number of an edge ordered
graph G to be the smallest chromatic number of a simple graph strongly
containing G. In case no graph strongly contains G we say that the order
chromatic number of G is infinity.

Theorem 10 (Erdős-Stone-Simonovits Theorem for a single edge ordered
forbidden graph). If the order chromatic number of the edge ordered graph G
is infinity we have

ex′<(G, n) =

(
n

2

)
.

If the order chromatic number of G is r + 1 we have

ex′<(G, n) = (1− 1/r)
n2

2
+ o(n2).

This theorem determines the extremal function ex′<(G, n) exactly if the
order chromatic number of G is infinity, it determines the extremal function
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asymptotically, if the order chromatic number is larger than 2, but tells fairly
little in case the order chromatic number is 2.

As an example consider the cycle C4 and its three different edge orderings:
C1234

4 , C1324
4 and C1243

4 . Here we number the edges according the ordering
and the upper index represents the numbers along the cycle, so in C1243

4

the first and last edges are opposite in the cycle. Any simple graph can be
edge ordered by first imposing a linear order on the vertices, then ordering
the edges ab with a < b by the lexicographic order on the pairs (a, b). We
call this the lexicographic edge order. It is easy to see that no graph with
a lexicographic edge order contains either C1234

4 or C1324
4 . This means that

these two edge ordered graphs have order chromatic number infinity. The
order chromatic number of C1243

4 is 2. This can be seen directly or follows
from the following result. For the statement of the result we need to define
the edge ordered graph K lex

n,n. This is the lexicographic edge ordering of the
complete bipartite graph Kn,n obtained from a vertex order in which one
vertex class precedes the other.

Theorem 11. The non-empty edge ordered graph G on n vertices has order
chromatic number 2 if and only if it is contained in K lex

n,n.

Theorem 10 says little about the extremal function of C1243
4 . Naturally,

the edge ordering can only increase the extremal function, so we have

ex′<(C1243
4 , n) ≥ ex(C4, n) = Θ(n3/2).

Applying techniques of the paper [21] we prove a nearly matching upper
bound:

Theorem 12. ex′<(C1243
4 , n) = O(n3/2 log n).

We do not know if the logarithmic term is needed in this estimate.
We list here results on a selection of other specific forbidden edge ordered

graphs of order chromatic number two. We start with edge ordered graphs
whose connected components are (edge ordered) stars. We call them edge
ordered star forests. Their extremal functions are obtained through known
estimates in generalized Davenport-Schinzel theory.

Theorem 13. For any edge ordered star forest F we have ex′<(F, n) ≤ n2α(n)
c

for some exponent c depending on F . Here α denotes the inverse of the
Ackermann function. For the edge ordered star forest F0 consisting of two
components and five edges with one component consisting of the second and
fourth edge we have ex′<(F0, n) = Ω(nα(n)).
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We specify edge orderings of a path Pk+1 by an upper index listing the
ranks of the k edges along the path, so for example P 1342

5 stands for the edge
ordered path where the edges along the path follow as first-third-fourth-
second. This is the shortest edge ordered path where we could not find the
exact order of magnitude of the extremal function.

Theorem 14. For an edge ordered path P on three edges we have ex′<(P, n) =
Θ(n). For an edge ordered path P on four edges we have either ex′<(P, n) =

Θ(n) or ex′<(P, n) = Θ(n log n) or ex′<(P, n) =
(
n
2

)
or P is isomorphic to

P 1342
5 or the equivalent P 4213

5 . In this last case we have ex′<(P, n) = Ω(n log n)
and ex′<(P, n) = O(n log2 n).

In the rest of this section we consider forbidden families of edge ordered
graphs and possible weak interaction (see Section 7) between the members
of such a family. Note that we formulated Theorem 10 for a single forbidden
edge ordered graph. This is because some families of forbidden edge ordered
graphs behave differently than any of their members alone, see Theorem 16(ii)
below for an example. Note that this contrasts with the situation for simple
graphs and vertex ordered graphs, where the Erdős-Stone-Simonovits the-
orem (Theorem 2) and its variant for vertex ordered graphs (Theorem 3)
prevent any such weak interaction. To be more specific, we will see that
such weak interaction does not happen between two edge ordered graphs
of order chromatic number three but it does happen between certain edge
ordered graphs of order chromatic number four and above. To be able to
generalize the Erdős-Stone-Simonovits theorem to families of forbidden edge
ordered graphs we need to extend the definition of order chromatic number
from edge ordered graphs to families of such graphs. Let the order chromatic
number of a family P be the smallest chromatic number of a simple graph
H such every edge ordering of H contains a member of P as an edge ordered
subgraph. Again, if no such H exists, the order chromatic number is infinite.
With this definition we have the following generalization of Theorem 10.

Theorem 15 (Erdős-Stone-Simonovits Theorem for a family of forbidden
edge ordered graphs). If the order chromatic number of the family P of edge
ordered graphs is infinity we have

ex′<(P , n) =

(
n

2

)
.

20



If the order chromatic number of P is r + 1 we have

ex′<(P , n) = (1− 1/r)
n2

2
+ o(n2).

The following result gives a specific example when a pair of edge ordered
graphs behaves differently than either members.

Theorem 16. (i) The order chromatic number of a family of edge ordered
graphs is 2 if and only if the family has a member with order chromatic
number 2.

(ii) The order chromatic number of both edge orderings P 1423
5 and P 2314

5 of
the path P5 is infinity, but the order chromatic number of the family
{P 1423

5 , P 2314
5 } is 3.

Part (i) of this theorem follows easily from Theorem 11. For part (ii)
note that no graph with a lexicographic edge ordering contains P 2314

5 , so the
order chromatic number of P 2314

5 is infinity. The same statement about P 1423
5

follows from symmetry. The statement on the pair {P 1423
5 , P 2314

5 } can be
derived directly or follows from an analogue of Theorem 11 for families of
edge ordered graphs of order chromatic number 3. While these analogous
results for order chromatic number three and above can be easily deduced
from Ramsey’s theorem, one has to deal with exceedingly many different
homogeneous edge orderings. Here we state the result for order chromatic
number infinity only, where we have to consider only four homogeneous edge
orderings of the complete graph Kn as follows: Let K(1)

n be the lexicographic
edge ordering of Kn. For K(2)

n let us consider the vertex set of Kn to be
{1, 2, . . . , n} and order the edges ab with a < b according to the lexicographic
order on the pairs (a,−b). Let us obtain K(3)

n and K(4)
n by reversing the edge

order in K(1)
n and K(2)

n , respectively.

Theorem 17. The order chromatic number of a family P of edge ordered
graphs is infinity if and only if there exists 1 ≤ i ≤ 4 such that the graphs
K(i)
n contain no member of P for any n.
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[5] P. Braß, Gy. Károlyi, P. Valtr, A Turán-type extremal theory of convex
geometric graphs, in: B. Aronov et al. (Eds.), Discrete and Compu-
tational Geometry–The Goodman-Pollack Festschrift, Springer, Berlin,
2003, pp. 275–300.

[6] D. Conlon, J. Fox, C. Lee, B. Sudakov, Ordered Ramsey numbers, Jour-
nal of Combinatorial Theory, Ser. B 122 (2017), 353–383.
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