
High rate fingerprinting codes and the fingerprinting capacity

Ehsan Amiri∗ Gábor Tardos†

Abstract
Including a unique code in each copy of a distributed
document is an effective way of fighting intellectual piracy.
Codes designed for this purpose that are secure against
collusion attacks are called fingerprinting codes.

In this paper we consider fingerprinting with the mark-
ing assumption and design codes that achieve much higher
rates than previous constructions. We conjecture that these
codes attain the maximum possible rate (the fingerprinting
capacity) for any fixed number of pirates. We prove new up-
per bounds for the fingerprinting capacity that are not far
from the rate of our codes. On the downside the accusation
algorithm of our codes are much slower than those of earlier
codes.

We introduce the novel model of weak fingerprinting
codes where one pirate should be caught only if the identity
of all other pirates are revealed. We construct fingerprinting
codes in this model with improved rates but our upper bound
on the rate still applies. In fact, these improved codes
achieve the fingerprinting capacity of the weak model by
a recent upper bound.

Using analytic techniques we compare the rates of our

codes in the standard model and the rates of the optimal

codes in the weak model. To our surprise these rates

asymptotically agree, that is, their ratio tends to 1 as t

goes to infinity. Although we cannot prove that each one of

our codes in the standard model achieves the fingerprinting

capacity, this proves that asymptotically they do.

1 Introduction

To ensure protection of their copyright, content produc-
ers often make each copy of their productions unique by
embedding a distinct code in each. For this to work they
have to be able to hide the positions where the code is
embedded. A collision attack is performed by a group of
malicious users (the pirates), who compare their copies
and identify the positions where they differ as a posi-
tion of the embedded code. They can then arbitrarily
change the code in these positions. We assume however
that they do not notice the positions of the hidden code
where all their codes agree and therefore they cannot
alter these positions. This is the marking assumption.

A fingerprinting code is a carefully selected collec-
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tion of codewords (in fact a randomized procedure to
obtain them) that makes the distributor able to catch
at least one of the pirates who perform such an collu-
sion attack. The mathematical definition (see below)
was first given by Boneh and Shaw [3].

1.1 The model: We start with introducing simple
notation. We fix a finite alphabet Σ. In this paper
we consider the binary alphabet Σ = {0, 1} but finger-
printing is studied over larger alphabets too (although
there seems to be little advantage in using them unless
one replaces the marking assumption used here with a
stronger assumption). For a positive integer n we de-
note by [n] the set {1, . . . , n} of positive integers not ex-
ceeding n. For a sequence X of length n and i ∈ [n] we
denote the ith entry in X by Xi, i.e., X = (X1, . . . , Xn).

An (arbitrary digit) pirate-strategy for a set T of
pirates and for codes of length n over an alphabet Σ is
any (deterministic or randomized) algorithm that takes
as input the codewords Xv ∈ Σn of the pirates v ∈ T
and outputs a forged codeword F ∈ Σn that satisfies the
so called marking assumption, i.e., if for some j ∈ [n]
the digits Xv

j agree for all v ∈ T , then we also have
Fj = Xv

j .
A fingerprinting code of length n over the alphabet

Σ for the users in the set U consist of an accusation
algorithm and a randomized procedure that generate
codewords Xv ∈ Σn for users v ∈ U (and possibly some
additional input for the accusation algorithm). The
accusation algorithm takes the output of this procedure
and a forged codeword F ∈ Σn and outputs a set
A(F ) ⊆ U of accused users. If F was obtained by a
set T ⊆ U of users performing a pirate-strategy and
v ∈ A(F ) for some user v /∈ T , then we say that v
is falsely accused, while if T and A(F ) are disjoint we
say the pirates are not caught. (One may assume A
always accuses a single user and then the two types
of error coincide, but it is sometimes better to allow
A(F ) = ∅ because false accusations are considered worse
than declaring failure.)

We call a fingerprinting code ε-secure against t
pirates if for any set T ⊆ U of users of size |T | ≤ t
using any pirate-strategy the probability that either the
pirates are not caught or some user is falsely accused is
at most ε. The bound is on the overall probability of



either type of error.
The rate of the fingerprinting code is R =

log|Σ| |U |
n .

A fingerprinting scheme of rate R over the alphabet
Σ is an infinite sequence of fingerprinting codes Ci over
Σ for the set Ui of users such that |Ui| goes to infinity
and the rate Ri of Ci tends to R. We say that a
fingerprinting scheme is t-secure if Ci is εi-secure against
t pirates with εi tending to 0. The t-fingerprinting
capacity is the maximum achievable rate of t-secure
fingerprinting schemes.

The goal of fingerprinting research is to find efficient
and secure fingerprinting codes. The paramount prob-
lem in the application of fingerprinting codes is the high
cost of embedding every single digit of the code. This
makes it important to design secure fingerprinting codes
that are short, or equivalently, have high rate. In par-
ticular, recent research focused on finding or estimating
the t-fingerprinting capacity for various values of t.

1.2 Previous work: Boneh and Shaw [3] were
first to define fingerprinting secure against collu-
sion attacks. They proposed such codes of length
O(t4 log(N/ε) log(1/ε)) for N users that are ε-secure
against t pirates. This translates to a t-secure finger-
printing scheme with rate of Θ(1/t4). The same paper
gave a lower bound of Ω(t log(1/(tε))) for the length of
the fingerprinting code with the same parameters. As
this bound does not depend on the number of users it
does not give an upper bound on the rates of t-secure
fingerprinting schemes.

Later the second author [9] constructed fingerprint-
ing codes of length at most 100t2 log(N/ε) for N users
that are ε-secure against t pirates. This construction
yields a t-secure fingerprinting scheme of rate 1/(100t2).
The same paper gave an Ω(t2 log(1/ε)) bound on the
length of any fingerprinting code with the above pa-
rameters. Although this is within a constant factor of
the length achieved by the construction for small error
rates ε < 1/N , as this lower bound (just like that of
Boneh and Shaw) does not depend on the number of
users it does not directly translate to any upper bound
on the rates of t-secure fingerprinting schemes.

The constant 100 in the length 100t2 log(N/ε) was
subsequently improved by several papers. In particular
all the papers [8, 7, 2, 6, 5] go through the code and
the proof in [9] and optimize various parameters to im-
prove various aspects of the code without fundamentally
changing the basic structure of the code construction
and the accusation algorithm. We are concerned here
with improvements of the code length that translates
directly to improved rates. While some of these pa-
pers rely on reasonable, but not fully justified assump-
tions and others are estimating the improvement fac-

tor based on experimental evidence, the most significant
and mathematical rigorous improvement is achieved by
Nuida et al. [5]. For large t their rates are slightly below
19 times larger than those in [9].

Anthapadmanabhan, Barg and Dumer [1] choose
a different, information theoretic approach. They con-
struct t-secure fingerprinting schemes whose rates for
t = 2 and 3 are much higher than previously obtained
rates but the rate of their schemes deteriorates exponen-
tially with t. They are the first to prove upper bounds
on the rates of t-secure fingerprinting schemes. The up-
per bounds in their paper is given in terms of a hard to
evaluate information theoretic minimax formula. They
estimate this formula and prove strong upper bounds
on the t-fingerprinting capacity for small values of t
(namely 2 and 3) and an O(1/t) asymptotic bound.

1.3 Our results: In this paper we combine the two
approaches represented by [9] and [1] to obtain finger-
printing codes of rates higher than those achieved with
either method separately.

Our method for constructing the codewords is very
similar to the construction in [9]: There one uses a con-
tinuous distribution to select certain bias probabilities
Pj used in the construction of the codeword, here we
replace this continuous distribution by a discrete dis-
tribution fine-tuned for the given number t of pirates.
(Note that Nuida et al. [6] also propose a discrete dis-
tribution but a different one and there the primary goal
is also different: to reduce memory usage.) The optimal
distribution is found through a game-theoretic equilib-
rium.

As opposed to the codeword construction, our accu-
sation algorithm is fundamentally different from that of
[9] and it is inspired by the paper [1]. Unlike the simple
and efficient accusation algorithm in [9] that uses only
a user’s own codeword to decide whether to accuse him,
this algorithm (like the codes in [1]) consider all t-tuple
of users in order to find who should be accused. It seems
that this considerable slowdown is the price one has to
pay for the better rates.

For t = 2 our codes coincide with the codes given
in [1] but for t ≥ 3 our rates are better than the rates of
previous codes. We numerically estimate the achieved
rates for t ≤ 7 and prove the Rt ≥ t−2/(2 ln 2) +
o(t−2) asymptotic bound on the rate of our t-secure
codes. This improves the rates of the codes in [9]
by a factor over 72 for large values of t and thus
overshadows previous improvements that were mostly
numerical and kept the basic structure of that code.
More importantly than the actual numeric factor is that
we believe these rates are optimal: they achieve the
fingerprinting capacity.



We give a very simple deduction of an O(t−2) upper
bound on the t-fingerprinting capacity from results in
[9]. This bound attains the correct order of magnitude
and applies for arbitrary alphabet sizes and even to the
unreadable digit model of fingerprinting (see, e.g., [9]).
We also derive a similar upper bound with a better
constant factor from analytic evaluation of a bound
proved in [1] improving the O(t−1) bound of that paper.

In section 5 we introduce a new model we call weak
fingerprinting. In this model the accusation algorithm
receives substantial help: when it tries to find one of the
pirates the identity of all the other pirates are revealed.
We construct fingerprinting codes of improved rates in
this model. As established recently these improved
codes attain optimal rates. This result will be published
separately, but here we explore its consequences.

The weak fingerprinting model may be considered
unreasonably lenient toward the accuser/distributor,
so it may come as a surprise that the rate of our
fingerprinting codes in the standard and the weak
models asymptotically agree. As the codes for the weak
model are optimal, this implies that the fingerprinting
capacities of the two models also agree asymptotically
and our codes in the standard model are close to
optimal: for any ε > 0 and large enough t their rates are
within a factor of 1− ε of the fingerprinting capacity.

1.4 Proofs: For lack of space we omit most proofs in
this version of the paper. We give outlines of those
proofs we feel most important. Please refer to the
upcoming full journal version for the detailed proofs.

2 The construction

Before presenting our fingerprinting codes we moti-
vate the construction with introducing a few relevant
concepts. We start with simple probabilistic pirate-
strategies we call channel-based and a simple method
for code generation we call bias-based.

Let us stress that although these restricted classes
are useful they are not restricting our results in any
way. Both types of fingerprinting codes we construct
use bias-based code generation but our upper bounds
apply to arbitrary fingerprinting codes, even to those
using different code generation algorithms.

Similarly, channel-based pirate-strategies are useful
sources of intuition but we prove that our codes are
secure against any pirate-strategy, even against non
channel-based strategies.

A t-channel or channel for short is a typically
randomized procedure that produces an output bit f
from an input x ∈ {0, 1}t. It is determined by the
function S : {0, 1}t → [0, 1] defined as S(z) = Pr[f =
1|x = z]. We use the function S and the channel it

determines interchangeably. We say that the pirates
u1, . . . , ut use the channel S if they apply a randomized
pirate-strategy that produces each bit of the forged
codeword F independently, obtaining Fj through the
channel S from the input x = (x1, . . . , xt), where xi is
the jth bit of the codeword of the pirate ui.

We call the channel S eligible if S(0 . . . 0) = 0
and S(1 . . . 1) = 1. Clearly, if a t-tuple of pirates
use an eligible channel, then they obey the marking
assumption. We call a pirate-strategy channel-based if
the pirates use an eligible channel.

Note that in a general pirate-strategy each individ-
ual bit of the forged codeword may depend on the en-
tire codewords of the pirates. The channel-based pirate-
strategies are those where bit j of the forged codeword
only depends on the jth bit of the codewords, and fur-
thermore the pirates use the same channel to obtain
each bit of the forged codeword independently. Such
strategies are often referred to as “multiple user mem-
oryless channels”. channel-based pirate-strategies with
a symmetric channel (see definition in Section 4.1) are
called bias-strategies in [9].

A bias-based code generation is a two phase process
determined by the probability distribution D on the
interval [0, 1] (the bias distribution) and the codelength
n. Given D and n first we select the bias vector
P = (P1, . . . , Pn) by selecting the individual biases
Pj ∈ [0, 1] independently for j ∈ [n], each according
to the distribution D. In the second phase we select the
bits of the codewords Xv for all users v. We select each
bit of each such codeword independently. For the bit
Xv
j we use the bias Pj , i.e., we have Pr[Xv

j = 1] = Pj .
The fingerprinting codes constructed in [9] use bias-

based code generation with a continuous bias distribu-
tion. Here we use a discrete bias distribution fine tuned
for channel-based pirate-strategies. We will then estab-
lish that they are also secure against an arbitrary pirate-
strategy.

Throughout this section we consider the positive in-
teger parameter t fixed. It will eventually represent the
bound on the number of pirates. For p ∈ [0, 1] and a
channel S we define the distribution Bp,S on the binary
vector x ∈ {0, 1}t and the binary variable f ∈ {0, 1}
by choosing the individual digits xi of x independently
for i ∈ [t] with an identical distribution of expectation
p and finally obtaining f from x through the channel
S. We define Ip,S to be the mutual information I(x; f)
in this distribution. For the definition of mutual infor-
mation and other information theoretic terms (entropy,
conditional entropy, conditional mutual information and
relative entropy) we refer the reader to Chapter 1.1 of
the textbook [4]. Note that we use binary logarithm in
defining all these quantities.



To motivate the above definition and the game
theoretic approach below assume that in a fingerprinting
code the code generation is bias-based and we have
performed the first phase of this code generation (so
the bias Pj is fixed for all j) but the second phase is yet
to be performed. Also assume that t pirates u1, . . . , ut
will use channel S to obtain the forged codeword F .
Fix j ∈ [n] and consider the vector x ∈ {0, 1}t given by
xi = Xui

j and the binary value f = Fj . The pair (x, f)
is distributed here according to BPj ,S so it is natural to
say that IPj ,S = I(x; f) is the amount of information the
bit Fj of the forged codeword F reveals of the identity
of the pirates. Although this statement is not precise it
gives a good intuition why the pirates want to minimize
this quantity and why the distributor tries to maximize
it and motivates the following two person game.

Paula (representing the pirates) chooses an eligible
channel S and David (the distributor) chooses a prob-
ability p ∈ [0, 1]. The players choose simultaneously
without seeing the other player’s choice. After making
their choice they learn about each other’s choices and
Paula pays David Ip,S .

The proof (omitted here) is based on a continuous
version of the minimax theorem of game theory and
the observation that Paula is always better off using a
pure strategy (i.e., a deterministic choice of an eligible
channel) than a mixed strategy (i.e., a randomized choice
of the channel). The equilibrium of the game, whose
existence is stated in the lemma gives us the optimal
bias distribution for the code generation part of our
fingerprinting codes and it also determines the rate
achievable by these codes.

Lemma 2.1. We have

min
S

max
p

Ip,S = max
D

min
S
Ep∈D[Ip,S ],

where p ∈ [0, 1], S is an eligible channel, D is a distri-
bution over [0, 1] and Ep∈D[·] represents the expectation
as p is distributed according to D.

We use St to denote a channel S minimizing
maxp Ip,S and Dt to denote a distribution D on [0, 1]
maximizing minS Ep∈D[Ip,S ]. We let Vt stand for the
common value of this minimum and maximum and set
Rt = Vt/t. For technical reasons we need that Dt is
concentrated to a finite number of values. See Section 7
estimates on the size of the support.

The novelty in the fingerprinting code is in the
involved accusation algorithm. In effect we look for a
set of users such that the forged codeword “looks like”
it was created by that set of users using a channel-based
pirate-strategy. We then accuse a carefully selected
subset of these users. Pirates may use complicated,

non channel-based strategies, but, as we will show in
Lemma 3.1 below, no matter what they do, with high
probability the distributor will find such a channel-
based strategy producing a similar forged codeword.

Given a t-tuple u = (u1, . . . , ut) of distinct users,
their codewords Xui , the bias vector P ∈ [0, 1]n and a
forged codeword F ∈ {0, 1}n we define a distribution Bu
on (x, f, p) where x ∈ {0, 1}t, f ∈ {0, 1} and p ∈ [0, 1].
We obtain Bu by choosing j ∈ [n] uniformly at random
and setting p = Pj , f = Fj and xi = Xui

j for i ∈ [t].
Bu is, in fact, the joint type of the codewords Xui

for i ∈ [t], F and the bias vector P . Here the type
of a sequence is simply the distribution of a uniform
random element of the sequence. If A1, . . . , Ai are
sequences of the same length n, then their joint type
is the distribution of (A1

j , A
2
j , . . . , A

i
j) for a uniform

random j ∈ [n]. See more on types in [4, Chapter 1.2].
Here we only mention that types employ randomness
“on a different level” than the construction of the
fingerprinting codes. When speaking about the types
of codewords or about Bu we treat codewords as fixed
sequences. But in reality codewords themselves are
constructed in a randomized fashion. This makes
their types and also the joint type Bu (themselves
distributions) random variables.

For a distribution D over [0, 1] and an eligible
channel S we define BD,S to be the distribution over
(x, f, p), where p ∈ [0, 1] is chosen according to D and
then (x, f) is chosen according to Bp,S .

Note that if the codeword generation is bias-based
with bias distribution D and the pirates u1, . . . , ut use
a channel-based pirate-strategy with the channel S to
obtain the forged codeword F , then the distribution
of the vector (Xu1

j , . . . , Xut
j , Fj , Pj) is exactly BD,S for

every fixed j ∈ [n] and these vectors are independent.

We are now ready to define our fingerprint codes
denoted by Et,R,δ,n. Here t is the number pirates it is
designed to be secure against, R > 0 is the rate, n is
the codelength and δ > 0 is a security parameter.
Codeword generation: We use bias-based codeword
generation with the bias distribution Dt. We let the set
U of users be of cardinality |U | = N = b2Rnc.
Accusation algorithm: To accuse users based on the
forged codeword F we select a t-tuple u of distinct users
from U and an eligible channel S satisfying that the
total variation distance between the distributions Bu
and BDt,S is at most δ. If there is no suitable choice for
S and u we declare failure. After fixing S and u we select
a minimal nonempty set Q ⊆ [t] with the property that
in the distribution BDt,S we have I(xQ; f |p) ≥ |Q|Rt,
where xQ is the collection of the variables xi with i ∈ Q.
Finally we accuse the users ui for the indices i ∈ Q.
Note that if suitable u and S are found then we will be



able to find a suitable set Q too, as for the set Q = [t] we
have xQ = x, |Q| = t and I(x; f |p) = Ep∈Dt [Ip,S ] ≥ tRt
by Lemma 2.1.

Theorem 2.1. For any t and arbitrary R < Rt there
exists a positive δ such that the fingerprinting codes
Et,R,δ,n for n ≥ 1 form a t-secure fingerprinting scheme
of rate R.

For the proof we have to show that if δ is small
enough for t and R, then the error rate of the codes
Et,R,δ,n tend to zero. We state the error bound sep-
arately for the two types of error (failure and falsely
accusing a user) in the next section.

It is useful (although not required in the definition)
that the error bound on falsely accusing somebody
applies even if the size of the pirate coalition exceeds
t. This ensures that if the distributor’s assumption on
the maximal number of malicious users is violated, then
only the probability of failure (not accusing anybody)
goes up but innocent users are still not likely to get
framed. The codes described in [9] have this favourable
property regardless of the coalition size. Our codes here
have almost the same property. For technical reasons we
require some bound on the pirate coalition, but anything
subexponential (i.e., 2o(n)) suffices here instead of the
constant bound t.

Corollary 2.1. The t-fingerprinting capacity is at
least Rt.

Conjecture 2.1. The t-fingerprinting capacity is ex-
actly Rt.

For numerical and asymptotic estimates on Rt
see Section 4. For upper bounds on t-fingerprinting
capacity see Section 6.

3 Error bound for the codes

We will show that the probability of either form of
error is exponentially small. We call a probability
exponentially small if it can be bounded by 2−cn for
some c > 0. We consider the parameters t, δ and R
fixed, c may depend on them, but not on the running
parameter n.

Given a t-tuple u of users and the joint type Bu
the perceived strategy of u is the channel S defined by
S(b) = E[f |x = b] for all b ∈ {0, 1}t with Pr[x =
b] > 0, where the expectation and the probability
are in the distribution Bu. For values of b with
P [x = b] = 0 we arbitrarily define S(b) = 0 with
the exception of S(1 . . . 1) = 1 (to make S eligible if
possible). With notation from [4] this perceived strategy
is the conditional type of the forged codeword given the
codewords of the users in u.

Our first lemma bounds the probability of the
pirates are not caught.

Lemma 3.1. Consider the fingerprinting code Et,R,δ,n
and a set of at most t pirates performing any pirate-
strategy. Let u be a t-tuple of distinct users including
all the pirates. Then the perceived strategy S of u is
an eligible channel and the probability that the total
variation distance between Bu and BDt,S exceeds δ is
exponentially small.

Proof. In the analysis of our fingerprinting codes (i.e.,
here and in the proof of Lemma 3.2) we always assume
that the pirates use a deterministic strategy to com-
pute the forged codeword from their codewords. Se-
curity against such pirates implies the same degree of
security against pirates using a randomized strategy.
See for example [9] for the simple argument. Note that
our accusation algorithm is based on finding a channel-
based pirate-strategy outputting a similar forged code-
word and this hypothetical channel-based strategy is
typically probabilistic.

Note that S is indeed eligible by the marking
assumption.

Consider the joint distribution of x and p in the
two distributions (i.e., ignore f for now). They take a
finite number of possible values. The bias Pj is chosen
according to Dt independently for every j ∈ [n] and
then Xui

j is chosen independently and with expected
value Pj . As (x, p) is distributed the same way in BDt,S

(for any S) the distribution of (x, p) in Bu (the joint
type of the codewords Xui for i ∈ [t] and P ) is the
distribution obtained by n independent samples of the
distribution of (x, p) in BDt,S . By the Chernoff bound
the probability that the relative frequency of any of the
possible values differs from its probability in BDt,S by
any constant amount is exponentially small. Thus the
probability that the distributions of (x, p) in Bu and
BDt,S differ by at least δ/2 in total variation is also
exponentially small.

We need to show that this distance is not signifi-
cantly increased by considering f too. The main point
to note here is that the pirates produce the forged code-
word without having access to the bias probabilities be-
yond observing their codewords that depend on them.
Thus any correlation between f and p given x is Bu
happens by coincidence and not by the design of the
pirates. Now if we let f truly independent from p by
defining the distribution B∗ on (x, f, p) where (x, p) is
distributed as in Bu and f is obtained from x through
the channel S, then, clearly, the total variation distance
between B∗ and BDt,S is the same as the total vari-
ation distance between the two distributions on (x, p)
bounded above. We finish the proof by bounding the



total variation distance between B∗ and Bu and the
statement of the lemma follows by the triangle inequal-
ity.

For this second part of the proof we reverse the
order of picking the bias vector and picking the the
codewords for the pirates. Formally we consider the
following four phase process:

1. First we pick a preliminary bias vector P ′ by
choosing P ′j independently for each j ∈ [n], each
value according to the distribution Dt.

2. Next we pick the binary codewords Xui for i ∈ [t]
by selecting all digits Xui

j ∈ {0, 1} independently
for i ∈ [t] and j ∈ [n] such that E[Xui

j ] = P ′j .

3. Next we pick the real bias vector P selecting uni-
formly at random among all such vectors satisfying
that the joint type of the codewords Xui and P is
the same as the joint type of the codewords Xui

and P ′. Using the notation of [4] the requirement
is that the conditional types of P and P ′ given the
codewords Xui should agree.

4. Finally we pick the codewords not selected in phase
2 by independently picking all the digits Xv

j ∈
{0, 1} for v ∈ U \ {u1, . . . , ut}, j ∈ [n] such that
E[Xv

j ] = Pj .

Notice that if in the crucial third phase we picked
P = P ′ the construction would be identical to that
defining our fingerprinting code. We allow however
some randomness for the choice of the bias vector. No-
tice that all bias vectors we allow to be chosen at this
point are obtained in the original construction with ex-
actly the same chance. Each yields the codewords Xui

in the original construction with the same probability.
Thus choosing uniformly randomly among them does
not break this symmetry and our twisted construction
above yields the same distribution on the codewords
and the bias vector as the original construction. There-
fore this twisted construction is a legitimate alternative
method for generating the same fingerprinting code.

Notice that after phase 2 the codewords of the
pirates are fixed and thus the forged codeword F they
produce is also determined and so is the channel S.
(Recall that we consider deterministic pirate-strategies.)
The distribution B∗ seem to depend on P but, in fact,
it is also determined after phase 2 as our restriction on
the choice of P in phase 3 makes sure that B∗ is the
same as it were with the P = P ′ choice. In contrast the
joint type Bu really depends on the bias vector P to be
determined only in phase 3.

We claim that however the first two phases of the
construction go, the (conditional) probability that Bu

(as determined in the third phase) will not be within
δ/2 of the fixed distribution B∗ is exponentially small.
This is clearly enough to finish the proof of the lemma.

As B∗ and Bu are concentrated on a finite number
of possible values it is enough to bound the probability
of a choice in phase 3 that makes the probability of a
fixed value differ by more than some constant. Because
of the random choice in phase 3 this event can be
combinatorially expressed as the size of the intersection
H ∩ H ′ significantly deviating from its expectation,
where H is a fixed set and H ′ is a uniform random
subset of given size of a certain base set. The proof
is finished by a standard application of the Chernoff
bound. See details in the full version.

Lemma 3.2. For any t, R < Rt and small enough δ > 0
the following holds for the fingerprinting codes Et,R,δ,n.
For an arbitrary subexponential size set of users (the pi-
rates) performing an arbitrary pirate-strategy the prob-
ability that anybody gets falsely accused is exponentially
small.

The game theoretic definition of Dt and Rt yields
relatively easily that that Bu is not likely to be close to
any BDt,S for a t-tuple u of innocent users. Avoiding
this similarity is necessary to avoid falsely accusing one
of the members of u.

Unfortunately, similar statement can not be said
about mixed t-tuples consisting of some innocent users
and some pirates. The involved selection of the subset
of u to be accused is designed to separate some pirates
from the non-pirates in such mixed company. Proving
that this selection is done right and the code does
not falsely accuse innocent users is technically more
challenging and for lack of space we only sketch the
proof here. Notice that the proof does not use the
marking assumption, so applies even if it is violated.

Proof. We fix the bias vector P and the codewords of
the pirates arbitrarily. This fixes the forged codeword
F too, but the codewords of the innocent users are
still obtained via the process defining our fingerprinting
code. We claim that the statement of Lemma 3.2 holds
regardless of these initial choices. This implies the same
bound overall.

If somebody is accused, then they are the users ui
for i ∈ Q, where a t-tuple u of users, an eligible channel
S and Q ⊆ [t] is chosen by the accusation algorithm. Let
Q0 be the subset of Q consisting of the indices i with ui
a pirate and let Q1 = Q \Q0. The falsely accused users
are ui with i ∈ Q1. We have to bound the probability
of Q1 6= ∅.

Recall that for an index set H ⊆ [t] we write xH for
the sequence of values xi with i ∈ H. If Q1 6= ∅ then we



have I(xQ0 ; f |p) ≤ |Q0|Rt in BDt,S by the minimality
of Q. We also have |Q|Rt ≤ I(xQ; f |p) = I(xQ0 ; f |p) +
I(xQ1 ; f |xQ0 , p). We conclude that I(xQ1 ; f |xQ0 , p) ≥
|Q1|Rt.

All this computation regards the probability space
BDt,S but we are more interested in the joint type Bu.
All functions considered take on a bounded number of
values (recall that we consider t fixed). As the mutual
information depends continuously on the probabilities
with which the combinations of these values are ob-
tained we conclude that if the total variation distance
between Bu and BDt,S is small enough almost the same
bound holds in Bu. More precisely the inequality

I(xQ1 ; f |xQ0 , p) ≥ |Q1|Rt + δ′(3.1)

holds in Bu for any δ′ > 0 as long as δ is sufficiently
small as a function of t and δ′. In what follows we bound
the probability of (3.1) holding for some u, Q1 6= ∅ and
Q0.

Notice that the mutual information above is deter-
mined by Q0, Q1 and the joint distribution of xQ, f and
p in Bu, i.e., by the joint type of the codewords Xui for
i ∈ Q, F and P . In other words we can safely ignore
the codewords Xui with i /∈ Q that also appear in the
joint type Bu.

Let us fix now Q and u (and thus Q0 and Q1). We
bound the probability that a given type B is obtained
as the joint type of the codewords Xui for i ∈ Q, F
and P . Recall that we consider now the bias vector P
and the codewords of the pirates (i.e., Xui for i ∈ Q0)
and also the forged codeword F fixed. If obtaining B as
the joint type with these fixed values is possible at all,
then B will be the joint type for 2nH(xQ1 |xQ0 ,f,p)+O(logn)

different choices for the codewords Xui with i ∈ Q1.
This computation is considered standard in information
theory and we are counting here the so called V -shell.
See [4, Chapter 1.2]. Here (and later in this paragraph)
H refers to entropy in B and the hidden constant in
the O notation depends only on t. A similar argument
gives that the number of choices for these codewords
that lead to the joint type of Xui for i ∈ Q1 and P
being the same as the distribution of (xQ1 , p) in B (if
at all possible) is 2nH(xQ1 |p)+O(logn). As the probability
of a particular choice for these codewords is determined
by the joint type of the codewords and the bias vector
P all these choices are equiprobable. This yields

P [ZB ] ≤ P [ZB |Z ′B ] = 2−nI(xQ1 ;xQ0 ,f |p)+O(logn)(3.2)

where ZB denotes the event that B is the joint type
of Xui for i ∈ Q, F and P , while Z ′B denotes larger
event that the joint type of Xui for i ∈ Q1 and P is the
distribution of (xQ1 , p) in B, and I denotes the mutual
information in B.

The probability that (3.1) holds for some fixed Q
and z is the sum of the probabilities of the events
ZB for the joint types B satisfying (3.1). For such a
distribution B we have

P [ZB ] ≤ 2−nI(xQ1 ;xQ0 ,f |p)+O(logn)

≤ 2−nI(xQ1 ;f |xQ0 ,p)+O(logn)

≤ 2−n|Q1|Rt+δ
′n+O(logn).

Here the first inequality is (3.2), the second follows from
a general property of the entropy and the last is an
application of (3.1). The number of possible joint types
B is polynomial in n, therefore 2−n|Q1|Rt+δ

′n+O(logn)

also bounds the total probability of (3.1) holding in Bu
for some fixed u and Q.

Finally we add up the above estimate for all choices
of u and Q with Q1 6= ∅ and find that the probability of
accusing an innocent user is at most 2(R−Rt+δ

′)n+o(n).
This is exponentially small as claimed if δ′ < Rt −R.

4 Evaluation of the rates

4.1 Few pirates: We make the computational search
for the rates Rt simpler by restricting attention to
(strongly) symmetric channels and distributions as de-
fined below. This reduces the number of parameters in
the minimization for St from 2t − 2 to dt/2e − 1.

Let us fix t as in the previous section. For a
binary vector x ∈ {0, 1}t we write |x| =

∑t
i=1 xi. We

call the channel S symmetric if S(b) = S(c) whenever
b, c ∈ {0, 1}t satisfy |b| = |c|. S is strongly symmetric if
we further have S(b) + S(c) = 1 whenever |b| + |c| = t.
We call a discrete distribution D on [0, 1] symmetric if
for every x ∈ [0, 1] the probabilities of x and 1 − x are
equal.

Recall that St is an eligible channel minimizing the
left hand side of the equation in Lemma 2.1, while Dt is
a (discrete) distribution on [0, 1] maximizing the right
hand side.

Lemma 4.1. We can choose St to be a strongly sym-
metric channel and Dt to be a symmetric distribution.

For the simple proof see the full version of this
paper.

Using the lemma we can computationally find the
rate Rt and the corresponding channel St and distribu-
tion Dt. See our results in Table 1.

For t = 2 we don’t even have to search for St as
there is only a single strongly symmetric eligible chan-
nel. The corresponding distribution D2 is concentrated
on 1/2 yielding uniform random codewords and a rate
of R2 = 1/4. The same simple code has also been pro-
posed in [1].

For t ≥ 3 the codes we construct are new and
achieve better rates than previously suggested codes.



t Support of Dt St Rt
2 0.5 0, 0.5, 1 0.25
3 0.26, 0.74 0, 0.38, 0.62, 1 0.0975
4 0.227, 0.773 0, 0.27, 0.5, 0.73, 1 0.0545
5 0.18, 0.82 0, 0.23, 0.36, 0.64, 0.77, 1 0.0338
6 0.15, 0.85 0, 0.19, 0.31, 0.5, 0.69, 0.81, 1 0.0232
7 0.13, 0.50, 0.87 0, 0.16, 0.26 , 0.44, 0.56, 0.74, 0.84, 1 0.0168

Table 1: Optimal channels and distributions and the rate for t up to 7. The third column lists values of St(x) in
increasing order of |x|. All numbers for t ≥ 3 are numeric approximations.

4.2 Many pirates (asymptotics): The next theo-
rem establishes exact asymptotics for the rates achieved
by our codes. For large t the improvement over the
codes in [9] is over 72-fold. More importantly, they are
asymptotically optimal as we will see in Section 6.

Theorem 4.1.

Rt ≥
1

(2 ln 2)t2
− o(t−2) =

0.721 . . .+ o(1)
t2

Se the proof in the full version of the paper. For
lack of space we only give a very rough sketch here.

Our goal is to give a lower bound for Vt = tRt using
Vt = maxp Ip,St . Here Ip,St is a mutual information and
as such can be expressed as the expectation of a relative
entropy:

Ip,St = Ep[h(St(x)||g(p))],

where h(a||b) denotes the relative entropy of the
Bernoulli random variables with expectations a and b,
Ep[·] denotes expectation in the distribution Bp,St and
g(p) = Ep[f ].

We use a strong form of Pinsker inequality (that we
could not find in the literature) to relate this relative
entropy to (St(x)− g(p))2.

We use Cauchy-Schwarz to bound Ep[(St(x) −
g(p))(|x| − pt)] and use the surprising identity

Ep[(St(x)− g(p))(|x| − pt)] = (p− p2)g′(p)

to bound the derivative g′(p) of g(p). This yields a
differential equation-like inequality bounding g′(p). The
boundary conditions g(0) = 0 and g(1) = 1 follow
from marking assumption, which, together with the
differential equation give the lower bound part of the
theorem.

5 Weak fingerprinting

In this section we introduce a model for fingerprinting
in which the accusation algorithm gets a huge help:
when searching for one of the pirates it learns from
an “oracle” the identity of all the other pirates. See

the formal definition below. It is not surprising that
we can adapt our fingerprint codes to this setup and
increase their rate somewhat. We introduce this model
mainly because the information theoretic upper bounds
on the capacity work in this model too and show that the
capacities of the weak and the standard fingerprinting
models agree asymptotically as t goes to infinity. As the
upper bound on the rate (to be published separately)
matches the capacity of the new codes we have exact
one letter characterisation of the weak t-fingerprinting
capacity for every t, see Theorem 6.3.
Definition: A weak fingerprinting code consists of
a distribution algorithm, an oracle and an accusation
algorithm. The distribution algorithm works the same
as in the standard model and so is the type of pirate-
strategies we allow. After a set of pirates output a
forged codeword the oracle chooses one of the pirates
and reveals the identity of all other pirates. The
oracle has full access to the outputs of the distribution
algorithm, the forged codeword and also to the set of
pirates. Finally the accusation algorithm has access to
the output of the distribution algorithm and the oracle
and the forged codeword and tries to guess the pirate
kept hidden by the oracle.

Note that the oracle is part of the fingerprinting
code, so it collaborates with the accusation algorithm:
it will choose the pirate that is most vulnerable.

Secure weak fingerprinting schemes are defined as
in the standard model and the weak t-fingerprinting
capacity is the maximal rate achievable by a t-secure
weak fingerprinting scheme.

In the rest of this section we adapt our fingerprint
codes constructed in Section 2 to the weak model
while increasing their rate. Both the minimax result
(Lemma 5.1) the construction is based on and the
correctness (Theorem 5.1) are proved the same way as
in the standard model, so we omit these proofs.

For i ∈ [t], p ∈ [0, 1] and S an eligible channel
we define I(i)

p,S to be the conditional mutual information
I(xi; f |x(i)) in the probability space Bp,S . Here x(i) :=
(x1...xi−1xi+1...xt).



Now we consider the game in which Paula chooses a
channel S and David chooses a pair (p, i) with p ∈ [0, 1]
and i ∈ [t]. After their simultaneous choices Paula pays
I
(i)
p,S to David. As in Section 2 we argue that Paula is

always better off using a pure strategy than a mixed one.
As for Lemma 4.1 we use symmetry to prove that David
can choose an optimal mixed strategy (distribution
over (p, i)) in which p and i are independent and i is
distributed uniformly over [t].

Lemma 5.1. We have

max
D

min
S
Ep∈D,i∈Ut

[I(i)
p,S ] = min

S
max
p,i

I
(i)
p,S ,

where p ∈ [0, 1], i ∈ [t], S is an eligible channel, D is a
distribution over [0, 1] and Ut is the uniform distribution
over [t].

We use Stw to denote a channel S minimizing the
right hand side and Dt

w to denote a distribution D
maximizing the left hand side. We let Wt stand for
the common value of this minimum and maximum.

Let Ft,R,δ,n be the following weak fingerprint code.
The parameters have the same meaning as in Et,R,δ,n.
For simplicity we assume here that the number of pirates
is exactly t. As the accusation algorithm learns the
number of pirates anyway, it is easy to remove this
simplifying assumption.
Codeword generation: We use bias-based codeword
generation with the bias distribution Dt

w. The code-
length is n and the number of users is b2Rnc.
Oracle: Let u = (u1, . . . , ut) be the t-tuple of pirates
and let S be their perceived strategy. The oracle chooses
a pirate ui with Ep∈Dt [I

(i)
p,S ] ≥Wt and outputs the other

pirates. By the definition of Wt and Dt such index i
always exists.
Accusation algorithm: Let T ′ = {u1, . . . , ut−1} be
the output of the oracle. For any user ut ∈ U \ T ′
we consider the tuple u = (u1, . . . , ut−1, ut) and the
perceived strategy S of u. We accuse ut if S is eligible,
the total variation distance between the distributions
Bu and BDt,S is at most δ and Ep∈Dt

[I(t)
p,S ] ≥ Wt.

In case no user or more than one user satisfies these
conditions the accusation algorithm fails.

Theorem 5.1. For any t and R < Wt there exists a
positive δ such that the fingerprinting codes Et,R,δ,n for
n ≥ 1 form a t-secure fingerprinting scheme of rate R.

6 Upper bounds on the fingerprinting capacity

Recall that [9] contains a lower bound on the length
of fingerprinting codes but as it does not depend on the
number of users it does not translate to an upper bound
on the rate. To fix this we make this bound depend on

the number of users by first reducing the error bound
while restricting the code to a small set of users, then
applying the original bound to this restricted code. As
the upper bound in [9] applies very generally, so does
this bound: it applies to the so called unreadable digit
model and it also shows that using non-binary alphabets
do not make fingerprinting schemes shorter. We state
the result in its simplest form here. For the proof see
the full version of this paper.

Theorem 6.1. The t-fingerprinting capacity is
Θ(1/t2).

The only previous upper bound on the t-
fingerprinting capacity was O(1/t) by Anthapadman-
abhan, Barg and Dumer [1]. This was derived from
what they call the “weak converse upper bound”: R ≤
minS maxp Ip,S . This bound gives R ≤ Vt = tRt =
Θ(1/t).

In the same paper they also prove the “strong
converse upper bound” on the t-fingerprinting capacity:

R ≤ Ct := min
S

max
D

max
i
I(xi; f |x(i)),(6.3)

where the minimization is over eligible channels S,
the maximization is for distributions D over the in-
dependent Bernoulli random variables xi and I de-
notes conditional mutual information in the probabil-
ity space obtained by choosing the variables xj ac-
cording to D and getting the 0-1 variable f from
x = (x1, . . . , xt) through the channel S. Recall that
x(i) = (x1, . . . , xi−1, xi+1, . . . , xt). The proof of this
bound also applies to the weak fingerprinting capacity.

The strong converse upper bound is indeed stronger
then the previous one but it is harder to evaluate it
asymptotically and in [1] Ct is only estimated for t = 2
and 3 (by setting S to be the uniform channel: S(x) =
|x|/t). We find exact asymptotics using approximation
theory. See the proof in the full version.

Theorem 6.2. The (weak) t-fingerprinting capacity is
at most Ct with

Ct =
π2

8 ln 2
t−2 + o(t−2) =

1.77 . . .+ o(1)
t2

.

The strongest upper bound is obtained by strength-
ening the bound (6.3) of [1] by limiting the maximiza-
tion for iid. random Bernoulli variables xi. This simpli-
fies the formula and makes it equal to the one defining
Wt. Therefore the upper bound and the rate of our
weak codes coincide.

Theorem 6.3. The weak t-fingerprinting capacity is
Wt = minS maxp,i I

(i)
p,S. We have

Wt =
1

(2 ln 2)t2
+ o(t−2).



The proof of this theorem is to be published sep-
arately, we state it here as it implies the optimality of
the weak fingerprinting codes constructed in this paper
and the asymptotic optimality of our standard finger-
printing codes.

t 2 3 4 5 6 7
Rt 0.250 0.097 0.054 0.034 0.023 0.017
Wt 0.311 0.137 0.078 0.050 0.034 0.025

Table 2: Lower and upper bounds on the t-
fingerprinting capacity for t up to 7

7 Concluding remarks

In this section we list further directions of research
related to the present paper.

Clearly, we would like to find the exact value of the
t-fingerprinting capacity. In particular, we would like
to see our Conjecture 2.1 proved establishing that our
codes achieve optimal rate.

It would also be desirable to improve the analysis
of the codes in this paper to have useful estimates on
the achievable rates with prescribed length and error
probabilities. Our result here give tight estimates of
the limit of the rate as the codelength goes to infinity
but we do not say anything about the rates for specific
finite parameters. Note that [9] gave codes and bounds
for all settings of the parameters.

To obtain such explicit rate bounds one has to make
all computations in this paper explicit. This job is
straightforward for most of the paper, here we mention
a single point that requires more elaboration: The size
of the probability space plays an important role in most
of our estimates. Our variables are binary except for
the bias: we choose the biases according to the discrete
distribution Dt. Therefore we need to estimate the size
of the support of Dt. For this we have:

Lemma 7.1. The size kt of the support of the distribu-
tion Dt satisfies√

t

(4 ln 2) log t
≤ kt ≤

5
2
t− 1.

See the proof in the journal version of this paper.

Finally we consider the computational complexity
of our fingerprinting codes. We find that the code
generation is very efficient but the accusation algorithm
is rather slow. This algorithm has to guess a t-tuple u of
users and an eligible channel S for which the joint type
Bu is very close to the distribution BDt,S . Finding the
pair with the smallest distance would mean optimizing

for both u and S, but by Lemma 3.1 it is enough to
optimize for u and take S to be the perceived strategy
of u. Computing the perceived strategy S and the total
variation distance between BDt,S and Bu can be done
efficiently in time O(tn + 2tkt). The bottleneck is that
all t-tuples of users must be considered. This is much
slower than the efficient algorithm in [9] that decides in
time linear in the codelength whether a given user is to
be accused.

It would be interesting to see if it is possible to
combine the high rates of the codes in this paper with
the efficiency and simplicity of the accusation algorithm
in [9] or there is an interesting type of tradeoff between
the rates of fingerprinting codes and the efficiency of
their accusation algorithm.
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