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Abstract

We construct unsatisfiable k-CNF formulas where every clause has k dis-

tinct literals and every variable appears in at most
(
2

e
+ o(1)

)
2
k

k
clauses. The

Lopsided Local Lemma, applied with assignement of random values according
to counterintuitive probabilities, shows that our result is asymptotically best
possible. The determination of this extremal function is particularly important
as it represents the value where the k-SAT problem exhibits its complexity
hardness jump: from having every instance being a YES-instance it becomes
NP-hard just by allowing each variable to occur in one more clause.

The asymptotics of other related extremal functions are also determined.
Let l(k) denote the maximum number, such that every k-CNF formula with
each clause containing k distinct literals and each clause having a common
variable with at most l(k) other clauses, is satisfiable. We establish that the
lower bound on l(k) obtained from the Local Lemma is asymptotically optimal,
i.e., l(k) =

(
1

e
+ o(1)

)
2k.

The construction of our unsatisfiable CNF-formulas is based on the binary
tree approach of [16] and thus the constructed formulas are in the class MU(1)
of minimal unsatisfiable formulas having one more clauses than variables. To
obtain the asymptotically optimal binary trees we consider a continuous ap-
proximation of the problem, set up a differential equation and estimate its
solution. The trees are then obtained through a discretization of this solution.

The binary trees constructed also give asymptotically precise answers for
seemingly unrelated problems like the European Tenure Game introduced by
Doerr [9] and the search problem with bounded number of consecutive lies,
considered in a problem of the 2012 IMO contest. As yet another consequence
we slightly improve the best known bounds on the maximum degree and maxi-
mum edge-degree of a k-uniform Maker’s win hypergraph in the Neighborhood
Conjecture of Beck.
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1 Introduction

The satisfiability of Boolean formulas is the archetypal NP-hard problem. Somewhat
unusually we define a k-CNF formula as the conjunction of clauses that are the
disjunction of exactly k distinct literals. (Note that most texts allow shorter clauses
in a k-CNF formula, but fixing the exact length will be important for us later on.)
The problem of deciding whether a k-CNF formula is satisfiable is denoted by k-
SAT, it is solvable in polynomial time for k = 2, and is NP-complete for every k ≥ 3
as shown by Cook [6].

Papadimitriou and Yannakakis [27] have shown that MAX-k-SAT (finding the
maximum number of simultaneously satisfiable clauses in an input k-CNF formula)
is even MAX-SNP-complete for every k ≥ 2.

The first level of difficulty in satisfying a CNF formula arises when two clauses
share variables. For a finer view into the transition to NP-hardness, a grading of the
class of k-CNF formulas can be introduced, that limits how much clauses interact
locally. A k-CNF formula is called a (k, s)-CNF formula if every variable appears
in at most s clauses. The problem of deciding satisfiability of a (k, s)-CNF formula
is denoted by (k, s)-SAT, while finding the maximum number of simultaneously
satisfiable clauses in such a formula is called MAX-(k, s)-SAT.

Tovey [35] proved that while every (3, 3)-CNF formula is satisfiable (due to
Hall’s theorem), the problem of deciding whether a (3, 4)-CNF formula is satisfiable
is already NP-hard. Dubois [10] showed that (4, 6)-SAT and (5, 11)-SAT are also
NP-complete.

Kratochv́ıl, Savický, and Tuza [22] defined the value f(k) to be the largest integer
s such that every (k, s)-CNF is satisfiable. They also generalized Tovey’s result by
showing that for every k ≥ 3 (k, f(k) + 1)-SAT is already NP-complete. In other
words, for every k ≥ 3 the (k, s)-SAT problem goes through a kind of “complexity
phase transition” at the value s = f(k). On the one hand the (k, f(k))-SAT problem
is trivial by definition in the sense that every instance of the problem is a “YES”-
instance. On the other hand the (k, f(k) + 1)-SAT problem is already NP-hard, so
the problem becomes hard from being trivial just by allowing one more occurrence
of each variable. For large values of k this might seem astonishing, as the value of
the transition is exponential in k: one might think that the change of just one in
the parameter should have hardly any effect.

The complexity hardness jump is even greater: MAX-(k, s)-SAT is also MAX-
SNP-complete for every s > f(k), k ≥ 2 as was shown by Berman, Karpinski, and
Scott [4, 5] (generalizing a result of Feige [13] who showed that MAX-(3, 5)-SAT is
hard to approximate within a certain constant factor).

The determination of where this complexity hardness jump occurs is the topic
of the current paper.

For a lower bound the best tool available is the Lovász Local Lemma. The lemma
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does not deal directly with number of occurrences of variables, but rather with pairs
of clauses that share at least one variable. We call such a pair an intersecting pair
of clauses. A straightforward consequence of the lemma states that if every clause
of a k-CNF formula intersects at most 2k/e − 1 other clauses, then the formula is
satisfiable. It is natural to ask how tight this bound is and for that Gebauer et al.
[15] define l(k) to be the largest integer number satisfying that whenever all clauses
of a k-CNF formula intersect at most l(k) other clauses the formula is satisfiable.
With this notation the Lovász Local Lemma implies that

l(k) ≥
⌊
2k

e

⌋

− 1. (1.1)

The order of magnitude of this bound is trivially optimal: l(k) < 2k − 1 follows
from the unsatisfiable k-CNF formula consisting of all possible k-clauses on only k
variables.

In [15] a hardness jump is proved for the function l: for k ≥ 3, deciding the
satisfiability of k-CNF formulas with maximum neighborhood size at most l(k) + 2
is NP-complete.1

As observed by Kratochv́ıl, Savický and Tuza [22] the bound (1.1) immediately
implies

f(k) ≥
⌊
l(k)

k

⌋

+ 1 ≥
⌊
2k

ek

⌋

. (1.2)

From the other side Savický and Sgall [30] showed that f(k) = O
(

k0.74 · 2k

k

)

.

This was improved by Hoory and Szeider [18] who came within a logarithmic factor:

f(k) = O
(

log k · 2k

k

)

. Recently, Gebauer [16] showed that the order of magnitude

of the lower bound is correct and f(k) = Θ(2
k

k ).

More precisely, the construction of [16] gave f(k) ≤ 63
64 · 2k

k for infinitely many
k. The constant factor 63

64 was clearly not the optimum rather the technical limit
of the approach of [16]. Determining f(k) asymptotically remained an outstanding
open problem and there was no clear consensus about where the correct asymptotics
should fall between the constants 1/e of [22] and 63/64 of [16]. In fact several of
the open problems of the survey of Gebauer, Moser, Scheder, and Welzl [15] are
centered around the understanding of this question.

In our main theorem we settle these questions from [15] and determine the
asymptotics of f(k). We show that the lower bound (1.2) can be strengthened by a
factor of 2 and that this bound is tight.

1In [15] the slightly more complicated formula max{l(k) + 2, k+ 3} appeared for the maximum
neighborhood size but this can be simplified to just its first term. For k ≥ 5 this was already
observed in [15] to follow from Equation 1.1. The statement follows from a slightly stronger form
of the Local Lemma for k = 4 and from a case analysis for k = 3.
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Theorem 1.1. ⌊
2k+1

e(k + 1)

⌋

≤ f(k) =

(
2

e
+O

(
1√
k

))
2k

k
.

For the upper bound we use the fundamental binary tree approach of [16]. We
define a suitable continuous setting for the construction of the appropriate binary
trees, which allows us to study the problem via a differential equation. The solution
of this differential equation corresponds to our construction of the binary trees,
which then can be given completely discretely.

The lower bound is achieved via the lopsided version of the Lovász Local Lemma.
The key of the proof is to assign the random values of the variables counterintu-
itively: each variable is more probable to satisfy those clauses where it appears as
a literal with its less frequent sign. The lower bound can also be derived from a
theorem of Berman, Karpinski and Scott [5] tailored to give good lower bounds on
f(k) for small values of k. In [5] the asymptotic behavior of the bound is not calcu-
lated, since the authors did not believe in its optimality. In Section 6 we reproduce
a simple argument giving the asymptotics, because the proof of [5] contains a couple
of inaccuracies obscuring the required unusual choice of the probabilities.

Here we only give the intuition of where the factor two improvement is coming
from and how to achieve it. The lopsided version of the Local Lemma [11] allows
for a more restricted definition of “intersecting” clauses in a CNF formula. Namely,
one can consider two clauses intersect only if they contain a common variable with
different sign and this still allows the same conclusion as in the original Local
Lemma. If all variables in a (k, s)-CNF are balanced, that is they appear an equal
number of times with either sign, then each clause intersects only at most ks/2
other clauses in this restricted sense, instead of the at most k(s − 1) other clauses
it may intersect in the original sense and the factor two improvement is immediate.
To handle the unbalanced case we consider a distribution on assignments where the
variables are assigned true or false values with some bias. It would be natural to
favor the assignment that satisfies more clauses, but the opposite turns out to be the
distribution that works. This is because the clauses with many variables receiving
the less frequent sign are those that intersect more than the average number of
other clauses, so for the use of the Lopsided Local Lemma those are the ones whose
satisfiability should be boosted with the bias put on the assignments.

Since the (Lopsided) Lovász Local Lemma was fully algorithmized by Moser and

Tardos [24] we now have that not only every (k, s)-CNF formula for s =
⌊

2k+1

e(k+1)

⌋

has

a satisfying assignment but there is also an algorithm that finds such an assignment
in probabilistic polynomial time. Moreover, for just a little bit larger value of the
parameter s one is not likely to be able to find a satisfying assignment efficiently,
simply because already the decision problem is NP-hard.

Our construction also shows that the lower bound (1.1) on l(k) is asymptotically
tight.
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Theorem 1.2.

l(k) =

(
1

e
+O

(
1√
k

))

2k.

Theorem 1.1 and Theorem 1.2 are another instances which show the tightness
of the Lovász Local Lemma. The first such example was given by Shearer [32].

1.1 (k, d)-trees

The substantial part of the proofs of Theorems 1.1 and 1.2—the upper bounds—as
well as all our further results depend on the construction of certain binary trees.

Throughout the paper, whenever mentioning binary trees we always mean proper
binary trees, that is, rooted trees where every non-leaf node has exactly two children.
We say that a leaf w of a tree T is k-close from a vertex v ∈ V (T ) if v is an ancestor
of w and w has distance at most k from v. When k is clear from the context we say
w is visible from v or v sees w.

The concept of (k, d)-trees, introduced by Gebauer [16], will be our main tool
in this paper. We call a (proper) binary tree T a (k, d)-tree2 if

(i) every leaf has depth at least k and

(ii) for every node u of T the number of k-close leaves from u is at most d.

For a fixed k, we are interested in how low one can make d in a (k, d)-tree. Essentially
all our main results will be consequences of the construction of (k, d)-trees with
relatively small d. We introduce ftree(k) to stand for the smallest integer such that
a (k, ftree(k))-tree exists and determine ftree(k) asymptotically.3

Theorem 1.3.

⌊
2k+1

e(k + 1)

⌋

≤ ftree(k) =

(
2

e
+O

(
1√
k

))
2k

k
.

The construction of the trees providing the upper bound constitutes a large por-
tion of our paper. We devote quite a bit of effort (the entire Section 4) to describe
the key informal ideas of the proof. That is, we formulate the construction process
in a continuous setting and study its progress with the help of a continuous two-
variable function F (t, x) defined by a certain differential equation. It can be shown

2To simplify our statements we shifted the parameter k in the definition compared to [16]: what
is called a (k, d)-tree there is a (k − 1, d)-tree in our new terminology.

3Note that in [15] the function ftree is defined to be one less than our definition (the maximum
d such that no (k, d)-tree exist). This might be more appropriate if ftree is only considered for its
implications to SAT, but in view of the many other applications we feel that our definition is more
natural.
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that the integral
∫
F (t, x)dx being large for some t corresponds to the construc-

tion process terminating with the desired (k, d)-tree. Even though our treatment
in Section 4 will be highly informal (with simplifying assumptions and approxima-
tions), we find it important for a couple of reasons. On the one hand, it provides the
true motivation behind our formal discrete construction and illustrates convincingly
why this construction (treated formally in Section 5) should work. Furthermore the
continuous function F (t, x), defined via the differential equation, is also helpful in
studying the size of the constructed formulas. This connection will be indicated in
Section 7.

1.2 Formulas and the class MU(1)

The function f(k) is not known to be computable. In order to still be able to upper
bound its value, one tries to restrict to a smaller/simpler class of formulas. When
looking for unsatisfiable (k, s)-CNF formulas it is naturally enough to consider min-
imal unsatisfiable formulas, i.e., unsatisfiable CNF formulas that become satisfiable
if we delete any one of their clauses. The set of minimal unsatisfiable CNF for-
mulas is denoted by MU. As observed by Tarsi (cf. [1]), all formulas in MU have
more clauses than variables, but some have only one more. The class of these MU
formulas, having one more clauses than variables, is denoted by MU(1). This class
has been widely studied (see, e.g., [1], [7], [19], [23], [34]). Hoory and Szeider [17]
considered the function f1(k), denoting the largest integer such that no (k, f1(k))-
CNF formula is in MU(1), and showed that f1(k) is computable. Their computer
search determined the values of f1(k) for small k: f1(5) = 7, f1(6) = 11, f1(7) = 17,
f1(8) = 29, f1(9) = 51. Via the trivial inequality f(k) ≤ f1(k), these are the best
known upper bounds on f(k) in this range. In contrast, even the value of f(5) is
not known. (For k ≤ 4 it is a doable exercise to see that f(k) = f1(k) = k.)

In [16] (k, d)-trees were introduced to construct unsatisfiable CNF formulas and
upper bound the functions f and l. Since these formulas also reside in the class
MU(1), we can also use them to upper bound f1. Most of the content of the following
statement appears already in Lemma 1.6 of [16].

Theorem 1.4 ([16]). (a) f(k) ≤ f1(k) < ftree(k)

(b) l(k) < kftree(k − 1)

For completeness and since part (a) is stated in a slightly weaker form in [16],
we include the short proof in Section 2.1.

It is an interesting open problem whether f(k) = f1(k) for every k. Theo-
rems 1.1, 1.3, and 1.4 imply that f(k) and f1(k) are equal asymptotically: f(k) =
(1 + o(1))f1(k). More precisely, we have the following.

Corollary 1.5. f1(k) =
(
2
e +O

(
1√
k

))
2k

k .
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Scheder [31] showed that for almost disjoint k-CNF formulas (i.e., CNF-formulas
where any two clauses have at most one variable in common) the two functions
are not the same. That is, if f̃(k) denotes the maximum s such that every almost
disjoint (k, s)-CNF formula is satisfiable, for k large enough every unsatisfiable
almost disjoint (k, f̃ (k) + 1)-CNF formula is outside of MU(1).

1.3 The Neighborhood Conjecture

A hypergraph is a pair (V,F), where V is a finite set whose elements are called
vertices and F is a family of subsets of V , called hyperedges. A hypergraph is
k-uniform if every hyperedge contains exactly k vertices.

A hypergraph is 2-colorable if there is a coloring of the vertices with red and
blue such that no edge is monochromatic.

A standard application of the first moment method says that for any k-uniform
hypergraph F , we have

|F| < 2k−1 ⇒ F is 2-colorable.

An important generalization of this implication was given by Erdős and Selfridge
[12], which also initiated the derandomization method of conditional expectations.
Erdős and Selfridge formulated their result in the context of positional games. Given
a k-uniform hypergraph F on vertex set V , players Maker and Breaker take turns
in claiming one previously unclaimed element of V , with Maker going first. Maker
wins if he claims all vertices of some hyperedge of F , otherwise Breaker wins.

Since this is a finite perfect information game and the players have complemen-
tary goals, either Maker has a winning strategy (that is, the description of the vertex
to be claimed next by Maker in any imaginable game scenario, such that at the end
he wins, no matter how Breaker plays) or Breaker has a winning strategy. Which
of this is the case depends solely on F , hence it makes sense to call the hypergraph
F Maker’s win or Breaker’s win, respectively.

The crucial connection between Maker/Breaker games to 2-colorability is the
following:

F is Breaker’s win ⇒ F is 2-colorable.

Indeed, if both players use Breaker’s winning strategy,4 by the end of the game they
both win as Breakers and hence create a 2-colored vertex set V , where both colors
are represented in each hyperedge — a proper 2-coloring of F . Hence, the following
theorem of Erdős and Selfridge [12] is a generalization of the first moment result

4The second player can use this strategy directly, but for the player going first one has to
slightly modify it: start with an arbitrary move and then use the strategy, always maintaining to
own one extra element of the board. It is easy to see that owning an extra element cannot be
disadvantageous, so there exists a Breaker-win strategy for the first player, too.
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above.
|F| < 2k−1 ⇒ F is a Breaker’s win.

As the Erdős-Selfridge Theorem can be considered the game-theoretic first mo-
ment method, the Neighborhood Conjecture of József Beck (to be stated below)
would be the game-theoretic Local Lemma. Unlike the first moment method, the
Local Lemma guarantees the 2-colorability of hypergraphs based one some local
condition like the maximum degree of a vertex or an edge of the hypergraph. The
degree d(v) of a vertex v ∈ V (F) is the number of hyperedges of F containing v
and the maximum degree ∆(F) of F is the maximum degree of its vertices. The
neighborhood N(e) of a hyperedge e is the set of hyperedges of F which intersect e,
excluding e itself, and the maximum neighborhood size ∆(L(F)) of F is the maxi-
mum of |N(e)| where e runs over all hyperedges of F . (L(F) denotes the line-graph
of F). Simple applications of the Local Lemma show that,

∆(L(F)) ≤ 2k−1

e
− 1 ⇒ F is 2-colorable, (1.3)

∆(F) ≤ 2k−1

ek
⇒ F is 2-colorable. (1.4)

The Neighborhood Conjecture in its strongest form [3, Open Problem 9.1] was
suggesting the far-reaching generalization that already when ∆(L(F)) < 2k−1 − 1,
F should be a Breaker’s win. This was motivated by the construction of Erdős and
Selfridge of a k-uniform Maker’s win hypergraph G with |G| = 2k−1, showing the
tightness of their theorem. The maximum neighborhood size of G is 2k−1−1 (every
pair of edges intersect) and no better construction was known until Gebauer [16]
disproved the conjecture using her (k, d)-tree approach. She constructed Maker’s

win hypergraphs F and H with ∆(L(F)) = 0.75 · 2k−1 and ∆(H) ≤ 63
128

2k

k , re-
spectively. Our (k, d)-trees from Theorem 1.1 will imply the following somewhat
improved bounds.

Theorem 1.6. For every integer k ≥ 3 there exists a Maker’s win k-uniform hy-
pergraph H such that

(i) ∆(H) ≤ 2ftree(k − 2) =
(

1 +O
(

1√
k

))
2k

ek and

(ii) ∆(L(H)) = (k − 1)ftree(k − 2) =
(

1 +O
(

1√
k

))
2k−1

e .

Note that the bound in part (ii) asymptotically coincides with the one given
by the Local Lemma in (1.3) for 2-colorability, while part (i) is still a factor 2
away from (1.4). Note furthermore that the bounds in (1.3) and (1.4) are not
optimal. More elaborate methods of Radhakrishnan and Srinivasan [28] show that
for a small enough constant c > 0 any k-uniform hypergraph F with ∆(L(F)) ≤
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c2k
√

k/ log k) is, in fact, 2-colorable. Part (ii) of Theorem 1.6 establishes that no
game-theoretic generalization of such a stronger 2-coloring condition exists (beyond
the Local Lemma bound).

Determining whether the bounds in (1.3) and (1.4) have game-theoretic general-
izations is still open. In [3] various weaker versions of the Neighborhood Conjecture
are stated, maybe the most fundamental one is whether there exists a constant
ǫ > 0, such that every k-uniform hypergraph with ∆(F) < (1 + ǫ)k is a Breaker’s
win. However, the futility to give lower bounds makes even the following question
interesting.

Problem 1.7. Is every k-uniform hypergraph F with ∆(F) = ⌊k2⌋+ 1 a Breaker’s
win for large enough k?

It is known that Hall’s Theorem does give Breaker a winning pairing strategy
when the bound on the maximum degree is just ⌊k2⌋. The hypergraph dual of the
Petersen graph is a Maker’s win 3-uniform hypergraph of maximum degree 2 and
Knox [20] constructed 4-uniform Maker’s win hypergraphs with maximum degree
3. However Problem 1.7 is open for k > 4. It seems likely that solving it for general
k will require a new idea and hence might lead to a more significant progress on the
Neighborhood Conjecture itself.

1.4 European Tenure Game

The (usual) Tenure Game (introduced by Joel Spencer [33]) is a perfect information
game between two players: the (good) chairman of the department, and the (vicious)
dean of the school. The department has d non-tenured faculty and the goal of the
chairman is to promote (at least) one of them to tenure, the dean tries to prevent
this. Each non-tenured faculty is at one of k pre-tenured rungs, denoted by the
integers 1, . . . , k. A non-tenured faculty becomes tenured if she has rung k and is
promoted. The procedure of the game is the following. Once each year, the chairman
proposes to the dean a subset S of the non-tenured faculty to be promoted by one
rung. The dean has two choices: either he accepts the suggestion of the chairman,
promotes everybody in S by one rung and fires everybody else, or he does the
complete opposite of the chairman’s proposal (also typical dean-behavior): fires
everybody in S and promotes everybody else by one rung. This game obviously
ends after at most k years. The game analysis is very simple, see [33].

In the European Tenure Game (introduced by Benjamin Doerr [9]) the rules are
modified, so the non-promoted part of the non-tenured faculty is not fired, rather
demoted back to rung 1. An equivalent, but perhaps more realistic scenario is that
the non-promoted faculty is fired but the department hires new people at the lowest
rung to fill the tenure-track positions vacated by those fired. For simplicity we
assume that all non-tenured faculty are at the lowest rung in the beginning of the
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game and would like to know what combinations of k and d allow for the chairman to
eventually give tenure for somebody when playing against any (vicious and clever)
dean. For fixed d let vd stand for the largest number k of rungs such that this is
possible.

Doerr [9] showed that

⌊log d+ log log d+ o(1)⌋ ≤ vd ≤ ⌊log d+ log log d+ 1.73 + o(1)⌋.

It turns out that the game is equivalent to (k, d)-trees, hence using Theorem 1.3
we can give a precise answer, even in the additive constant, which turns out be
log2 e− 1 ≈ 0.442695.

Theorem 1.8. The chairman wins the European Tenure Game with d faculty and k
rungs if and only if there exists a (k, d)-tree. In particular, vd = max{k | ftree(k) ≤
d} and we have

vd = ⌊log d+ log log d+ log e− 1 + o(1)⌋.

1.5 Searching with lies

In a liar game Player A thinks of a member x of an agreed upon N element set
H and Player B tries to figure it out by Yes/No questions of the sort “Is x ∈ S?”,
where S is a subset of H picked by B. This is not difficult if A is always required
to tell the truth, but usually A is allowed to lie. However for B to have a chance
to be successful, the lies of A have to come in some controlled fashion. The most
prominent of these restrictions allows A to lie at most k times and asks for the
smallest number q(N, k) of questions that allows B to figure out the answer. This
is also called Ulam’s problem for binary search with k lies. For an exhaustive
description of various other lie-controls, see the survey of Pelc [25].

One of the problems in the 2012 International Mathematics Olympiad was a
variant of the liar game. Instead of limiting the total number of lies, in the IMO
problem the number of consecutive lies was limited. This fits into the framework of
Section 5.1.3 in Pelc’s survey [25]. This restriction on the lies is not enough for B to
find the value x with certainty, but he is able to narrow down the set of possibilities.
The IMO problem asks for certain estimates on how small B can eventually make
this set. This problem was also the topic of the Minipolymath4 project research
thread [26].

It turns out that this question can also be expressed in terms of existence of
(k, d)-trees.

Theorem 1.9. Let N > d and k be positive integers. Assume A and B play the
guessing game in which A thinks of an element x of an agreed upon set H of size
N and then answers an arbitrary number of B’s questions of the form “Is x ∈ S?”.
Assume further that A is allowed to lie, but never to k consecutive questions. Then
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B can guarantee to narrow the number of possibilities for x with his questions to at
most d distinct values if and only if a (k, d+ 1)-tree exists, that is, if d < ftree(k).

1.6 Notation

Throughout this paper, log denotes the binary logarithm. We use N to denote the
set of natural numbers including 0.

As we have mentioned, by a binary tree we always mean a rooted tree where
every node has either two or no children. The height of a binary tree is defined as
the largest root-leaf distance. The depth of a vertex is its distance from the root.

1.7 Organization of this paper

In Section 2 we derive all applications of the upper bound in Theorem 1.3. This
includes the upper bounds of Theorems 1.1 and 1.2 through proving Theorem 1.4,
as well as the proofs of Theorems 1.6, 1.8 and 1.9. In Section 3 we give the basic
definitions and simple propositions required for the proof of Theorem 1.3. In Section
4 we sketch the main informal ideas behind our tree-construction including a rough
description of our approach, and how it translates to solving a differential equation.
This is in the background of our actual formal constructions for the proof of The-
orems 1.3, which then can be given completely discretely. The formal construction
is the subject of Section 5. The lower bound of Theorem 1.1 (implying the lower
bound for Theorem 1.3) is shown in Section 6. In Section 7 we give an outlook and
pose some open problems.

2 Applying (k, d)-trees

In this section we apply (k, d)-trees and the upper bound in Theorem 1.3 to prove
the upper bounds of Theorem 1.1 and 1.2, as well as Theorems 1.4, 1.6, 1.8, and
1.9. Some of these connections, sometimes in disguise, were already pointed out in
[16].

2.1 Formulas

In this subsection we give a proof of Theorem 1.4, which, together with the upper
bound in Theorem 1.3, readily implies the upper bounds in Theorems 1.1 and 1.2.

For every binary tree T (recall that we only consider proper binary trees) which
has all of its leaves at depth at least k, one can construct a k-CNF formula Fk(T )
as follows. For every non-leaf node v ∈ V (T ) we create a variable xv and label one
of its children with the literal xv and the other with x̄v. We do not label the root.
With every leaf w ∈ V (T ) we associate a clause Cw, which is the conjunction of
the first k labels encountered when walking along the path from w towards the root

11



(including the one at w). The disjunction of the clauses Cw for all leaves w of T
constitutes the formula Fk(T ).

Observation 2.1. Fk(T ) is unsatisfiable.

Proof. Any assignment α of the variables defines a path from the root to some leaf
w by always proceeding to the unique child whose label is mapped to false by α.
Then Cw is violated by α.

Proof of Theorem 1.4. Consider a (k, ftree(k))-tree T and the corresponding k-CNF
formula F = Fk(T ). F is unsatisfiable by Observation 2.1. The variables of this
formula are the vertex-labels of T . The variable xv corresponding to a vertex v
appears in the clause Cw if and only if w is k-close from v. Thus each variable
appears at most ftree(k) times. This makes F an unsatisfiable (k, ftree(k))-CNF,
proving f(k) < ftree(k). If F is in MU(1), then we further have f1(k) < ftree(k).
The number of clauses in F is the number of leaves in T , the number of variables in
F is the number of non-leaf vertices in T , so we have exactly one more clauses than
variables. But F is not a minimal unsatisfiable formula in general. Fortunately it
is one, if each variable appears in F both in negated and in non-negated forms, see
[7]. This will be the case if we pick T to be a (k, ftree(k))-tree which is minimal
with respect to containment. Indeed, if a literal associated to a vertex v does not
appear in any of the clauses, then the subtree of T rooted at v is a (k, ftree(k))-tree.
This finishes the proof of part (a) of the theorem.

Clearly, the neighborhood of any clause in a (k, d)-CNF formula is of size at most
k(d − 1), but this bound is too rough to prove part (b) with. We start by picking
a (k − 1, ftree(k − 1))-tree T ′ with each leaf having depth at least k. Such a tree
can be constructed by taking two copies of an arbitrary (k−1, ftree(k−1))-tree and
connecting their roots to a new root vertex. Now F ′ = Fk(T

′) is an unsatisfiable
k-CNF by Observation 2.1. The advantage of this construction is that now each
literal appears at most ftree(k − 1) times (as opposed to only having a bound on
the multiplicity of each variable in T ). Note that if two distinct clauses in F ′ share
a common variable, then there is a variable that appears negated in one of them
and non-negated in the other. This implies that every clause intersects at most
kftree(k − 1) other clauses as needed.

Note that F ′ in the proof above can also be chosen to be in MU(1). This is the
case if T ′ is obtained from a minimal (k − 1, ftree(k − 1))-tree by doubling it.

Now Theorem 1.3 together with part (a) of Theorem 1.4 implies the upper
bound in Theorem 1.1, while together with part (b) of Theorem 1.4 it implies the
upper bound in Theorem 1.2. We also have an implication in the reverse direction:
the lower bound of Theorem 1.1 implies the lower bound of Theorem 1.3 using
Theorem 1.4(a).
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2.2 The Neighborhood Conjecture

In this subsection we prove Theorem 1.6.
We start with a few simple observations. One can associate a hypergraph H(F )

to any CNF formula F by taking all the literals in F as vertices, and considering
the clauses of F (or rather the set of literals which the clause is the disjunction of)
as the hyperedges.

Observation 2.2. If F is unsatisfiable, then H(F ) is Maker’s win.

Proof. The pairing strategy where Maker picks one of the two literals corresponding
to any variable guarantees a victory for Maker. Maker can even let Breaker start the
game (as we have previously argued, going second cannot help a player) and then
pick the pair of any literal picked by Breaker. At the end, consider the evaluation of
the variables setting all the literals that Breaker has to true. As F is unsatisfiable
this evaluation falsifies F and therefore it violates one of the clauses, giving Maker
his win at the hyperedge corresponding to this clause.

As we have seen in the proof of Theorem 1.4 there exist a (k − 1, ftree(k − 1))-
tree T ′ with all leaves at depth at least k and Fk(T

′) is an unsatisfiable k-CNF
where all literals appear in at most ftree(k − 1) clauses. By Observation 2.2 this
makes H(Fk(T

′)) a Maker’s win k-uniform hypergraph with maximum degree at
most ftree(k − 1). It is easy to see that ftree(k − 1) ≤ 2ftree(k − 2), so this bound
is better than the one claimed in part (i) of Corollary 1.6. But in order to get part
(ii) as well we have to take a slightly different approach.

Proof of Theorem 1.6. Let T be a (k−2, ftree(k−2))-tree, with all leaves in depth at
least k. One can build such a tree from four copies of an arbitrary (k−2, ftree(k−2))-
tree. In each clause of F = Fk(T ) the literals are associated to vertices in T . We
distinguish the leading literal in each clause to be the one associated to the vertex
closest to the root. A clause Cw contains the literal associated to a vertex v in non-
leading position exactly when the leaf w is (k − 2)-close from v. Thus any literal
appears in at most ftree(k − 2) clauses in non-leading position. A literal associated
to a leaf of T appears in a single clause of F . Any other literal ℓ appears in at
most 2ftree(k − 2) clauses as any clause containing ℓ must also contain the literal
associated to one of the two children of the vertex of ℓ and these are not in leading
position. This makes H = H(F ) a k-uniform hypergraph with maximum degree
∆(H) ≤ 2ftree(k − 2). Observations 2.1 and 2.2 ensure that H is a Maker’s win
hypergraph and this concludes the proof of part (i).

As we have observed earlier each pair of distinct intersecting clauses of F share
a variable that appears negated in one of them and in non-negated form in the
other. Observe further that when two distinct clauses share a literal they also share
a variable that appears in opposite form as non-leading literals in the two clauses.
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A clause C has k− 1 non-leading literals and the opposite form of each is contained
in non-leading position in at most ftree(k − 2) clauses. This gives us the bound
stated in part (ii) on the number of clauses sharing a literal with C.

2.3 The European Tenure Game

In this subsection we prove Theorem 1.8, namely the connection to (k, d)-trees. The
formula estimating vd will then follow from Theorem 1.3. We start with a special
labeling of (k, d)-trees.

Proposition 2.3. Let T be a (k, d)-tree and let L be its set of leaves. There exists
a labeling i : L → {1, . . . , d} such that for every vertex v ∈ V (T ) all the k-close
leaves from v have distinct labels.

Proof. We define the labels of the leaves one by one. We process the vertices of
T according to a Breadth First Search, starting at the root. When processing a
vertex v we label the still unlabeled leaves that are k-close from v making sure
they all receive different labels. This is possible, because the ones already labeled
are all k-close from the parent of v, so must have received different labels. We
have enough labels left because the total number of leaves visible from v is at
most d. After processing all vertices of T our labeling is complete and satisfies the
requirement.

Proof of Theorem 1.8. Suppose first that there is a (k, d)-tree T and let us give a
winning strategy to the chairman. We start by labeling the leaves of T with the d
non-tenured faculty, according to Proposition 2.3. The chairman is placed on the
root of T and during the game he will move along a path from the root to one of
the leaves, in each round proceeding to one of the children of its current position.
To which leaf he arrives at depends on the answers of the dean. When standing
at a non-leaf vertex v with left-child v1 and right-child v2, the chairman proposes
to promote the subset S of the faculty containing the labels of the leaves that are
(k− 1)-close from v1. If the dean accepts his proposal he moves to v1, otherwise he
moves to v2. The game stops when a leaf is reached. We claim that the label P of
this leaf is promoted to tenure, hence the chairman has won.

Note that by part (i) of the definition of a (k, d)-tree the game lasts for at least
k rounds. We will show that in each of the last k rounds P was promoted. Indeed,
if the chairman moved to the left in one of these rounds then P was proposed for
promotion and the dean accepted it. However, if the chairman moved to the right,
then P could not be proposed for promotion by the condition of the labeling of
Proposition 2.3, but the dean reversed the proposal and hence P was promoted in
these rounds as well.

For the other direction, we are given a winning strategy for the chairman. This
strategy specifies at any point of the game which subset of the faculty the chairman
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should propose for promotion unless a member of the faculty is already tenured, at
which time the game stops. In building the game tree we disregard the subsets but
pay close attention to when the game stops. In particular, each vertex corresponds
to a position of the game with the root corresponding to the initial position. If a
vertex v corresponds to a position where the game stops we make v a leaf and label
it with one of the faculty members that has just been tenured. Otherwise v has two
children, one corresponding to each of the two possible answers of the dean.

Clearly, this is a (proper) binary tree. We claim that it is a (k, d)-tree. Note
that in order for somebody get tenured she has to be promoted in k consecutive
rounds, so all leaves are at depth at least k, as required.

To prove that no vertex sees more than d leaves we prove that all leaves k-close
from the same vertex have distinct labels. Indeed, if a leaf w is k-close from a vertex
v and w is labeled by faculty Frank, then Frank had to be promoted in all rounds
in the game from the position corresponding to v till the position corresponding to
w. But Frank is promoted in exactly one of the two cases depending on the dean’s
answer, so this condition determines a unique path in our tree from v making w the
unique leaf labeled Frank that is k-close from v.

2.4 Searching with lies

Proof of Theorem 1.9. The first observation is that the game with parameters N >
d and k is won by B if and only if B wins with parameters N ′ = d+ 1, d and k.

One direction is trivial, if N is decreased it cannot hurt B’s chances. For the
other direction assume B has a winning strategy for the N ′ = d + 1 case. This
means that given d + 1 possible values for x he can eliminate one of them. Now
if he has more possibilities for the value of x he can concentrate on d + 1 of them
and ask questions till he eliminates one of these possibilities. He can repeat this
process, always reducing the number of possible values to x till this number goes
below d+ 1 — but by then he has won.

We can therefore concentrate to the case N = d + 1. We claim that this is
equivalent to the European tenure game with k non-tenured rungs and d + 1 non-
tenured faculty, thus Theorem 1.9 follows from Theorem 1.8. Indeed, A corresponds
to the dean, B corresponds to the chairman, the d+1 possible values of x correspond
to the non-tenured faculty members. B asking if x ∈ S holds corresponds to the
chairman proposing the set S for promotion, a “no” answer corresponds to the dean
accepting the proposal, while a “yes” answer corresponds to the dean reversing it.
At any given time the rung of the faculty member corresponding to value v ∈ [d+1]
in the liar game is i + 1, where i is the largest value such that the last i questions
of B were answered by A in a way that would be false if x = v. Thus a win for
the chairman (tenuring a faculty member, i.e. promoting him k consecutive times)
exactly corresponds to A answering k consecutive times in such a way that would
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be false if x = v. This makes x = v impossible according to the rules of the liar
game, so B can eliminate v and win.

3 Formal Definitions and Basic Statements

3.1 Vectors and constructibility

Given a node w in a tree T , it is important to count the leaf-descendants of w in
distance i for i ≤ d. We say that a non-negative integer vector (x0, x1, . . . , xk) is a
leaf-vector for w if w has at most xi leaf-descendants in distance i for each 0 ≤ i ≤ k.
E.g., the vector (1, 0, . . . , 0) is a leaf-vector for any leaf, while for the root w of a
full binary tree of height l ≤ k we have (0, 0, . . . , 0, 2l, 0, . . . , 0) as its smallest leaf-
vector. We set |~x| :=

∑k
i=0 xi. By definition, every node w of a (k, d)-tree has a

leaf-vector ~x with |~x| ≤ d.
For some vector ~x ∈ N

k+1 we define a (k, d, ~x)-tree to be a tree where

(i) ~x is a leaf-vector for the root, and

(ii) each vertex has at most d leaves that are k-close.

For example, a tree consisting of a parent with two children is a (k, d, (0, 2, 0 . . . , 0))-
tree for any k ≥ 1 and d ≥ 2.

We say that a vector ~x ∈ N
k+1 is (k, d)-constructible (or constructible if k and

d are clear from the context), if a (k, d, ~x)-tree exists. E.g., (1, 0, . . . , 0), or more
generally (0, 0, . . . , 0

︸ ︷︷ ︸

l

, 2l, 0, . . . , 0) are (k, d)-constructible as long as 2l ≤ d.

Observation 3.1. There exists a (k, d)-tree if and only if the vector (0, . . . , 0, d) is
(k, d)-constructible.

Proof. The vector (0, . . . , 0, d) is (k, d)-constructible if and only if a (k, d, (0, . . . , 0, d))-
tree exists. It is easy to see that the definitions of (k, d)-tree and (k, d, (0, . . . , 0, d))-
tree are equivalent. Indeed, condition (ii) is literally the same for both, while
condition (i) states in both cases that there is no leaf k − 1-close to the root. The
only difference is that condition (i) for a (k, d, (0, . . . , 0, d)-tree also states that there
are at most d leaves k-close to the root, but this also follows from (ii).

The next observation will be our main tool to capture how leaf-vectors change
as we pass from a parent to its children.

Observation 3.2. If x′ = (x′0, x
′
1, . . . , x

′
k) and x′′ = (x′′0 , x

′′
1 , . . . , x

′′
k) are (k, d)-

constructible and |x| ≤ d for x = (0, x′0 + x′′0 , x
′
1 + x′′1, . . . , x

′
k−1 + x′′k−1), then x is

also (k, d)-constructible.
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Proof. Let T ′ be a (k, d, x′)-tree with root r′ and T ′′ a (k, d, x′′)-tree with root r′′.
We create the tree T by taking a new root vertex r and attach it to r′ and r′′. This
tree is a (k, d, x)-tree. Indeed, the leaf-descendants of r at distance i are exactly
leaf-descendants of either r′ or r′′ at distance i − 1, hence x is a leaf-vector for r.
We also have to check that no vertex has more than d leaves k-close. This holds
for the vertices of T ′ and T ′′ and is ensured by our assumption |x| ≤ d for the root
r.

For a vector ~x = (x0, . . . , xk) we define its weight w(~x) to be
∑k

i=0 xi/2
i. The

next lemma gives a useful sufficient condition for the constructibility of a vector.

Lemma 3.3. Let ~x ∈ N
k+1 with |~x| ≤ d. If w(~x) ≥ 1 then ~x is (k, d)-constructible.

We note that Lemma 3.3 is a reformulation of Kraft’s inequality. For completeness
we give a direct proof here.

Proof of Lemma 3.3: We build a binary tree starting with the root and adding
the levels one by one. As long as

∑i
j=0

xj

2j
< 1, we select a set of xi vertices from the

vertices on level i and let them be leaves. We construct the (i+1)th level by adding
two children to the remaining 2i(1−∑i

j=0
xj

2j
) vertices on level i. At the first level

ℓ ≤ k where
∑ℓ

j=0
xj

2j
≥ 1 we mark all vertices as leaves and stop the construction of

the tree. The total number of leaves is at most
∑ℓ

j=0 xj ≤ |~x| ≤ d and the number
of leaves at distance j from the root is at most xj, so the constructed tree is a
(k, d, ~x)-tree.

The main result of [16] is the construction of (k, d)-trees with d = Θ(2
k

k ). This
argument is now streamlined via Lemma 3.3. Indeed, the (k, d)-constructibility of
the vector ~v = (0, . . . , 0, 1, 2, 4, . . . , 2s) is an immediate consequence of Lemma 3.3,
provided 1 ≤ w(~v) =

∑k
i=k−s 2

i−k+s/2i = (s + 1)2s−k and d ≥ |~v| = ∑k
i=0 vi =

2s+1 − 1. Setting s = k − ⌊log(k − log k)⌋ and d = 2s+1 allows both inequalities
to hold. Then by repeated application of Observation 3.2 with x′ = x′′ we obtain
the constructibility of (0, . . . , 0, 2, 4 . . . , 2s), (0, . . . , 0, 4, . . . , 2s), etc., and finally the
constructibility of (0, . . . , 0, 2s). This directly implies the existence of a (k, d)-tree

by Observation 3.1, where d = 2s+1. Note that d = (2+ o(1))2
k

k for infinitely many
k including k = 2t + t+ 1 for any t. Figure 1 shows an illustration.

Proof strategy. In Section 5 we will construct our (k, d)-tree starting with the
root, from top to bottom. When considering some vertex w it will be assigned a
leaf-vector ~ℓw. At this moment w itself is a leaf in the partly constructed tree,
so one should consider ~ℓw just as a promise: for each i = 0, 1 . . . , k the vertex w
promises to have at most (~ℓw)i leaf-descendants at distance i when the (k, d)-tree
is fully constructed.

We start with the root with a leaf-vector (0, . . . , 0, d). At each step we have to
consider the vertices v that are currently leaves but promise not to be leaves: i.e.,
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(0, . . . , 0, 1, 2, . . . , 2s)
(0, . . . , 0, 1, 2, . . . , 2s)

s

(0, . . . , 0, 2s)

Figure 1: Construction in [16]: attaching a (k, d, (0, . . . , 0, 1, 2, . . . , 2s))-tree to every
leaf of a full binary tree of height s gives a (k, d)-tree.

having a leaf-vector ~x with (~x)0 = 0. For such a vertex v we add two children and
associate leaf-vectors ~x′ and ~x′′ to them. According to Observation 3.2 we have to
split the coordinates of ~x observing x′i−1 + x′′i−1 = xi for 1 ≤ i ≤ k and then we can
decide about the last coordinates x′k and x′′k almost freely, though we must respect
the bounds |~x′| ≤ d and |~x′′| ≤ d.

We do not have to worry about nodes v with a leaf-vector ~x satisfying w(~x) ≥ 1:
Lemma 3.3 ensures that ~x is constructible. Making v the root of a (k, d, ~x)-tree we
ensure that v keeps its promise.

The proof of Theorem 1.3 contains several technically involved arguments. In
the next section we sketch the main informal ideas behind the construction. Even
though the final construction can be formulated without mentioning the underlying
continuous context, we feel that an informal description greatly helps in motivating
it. A reader in a hurry for a formal argument is encouraged to skip right ahead to
Section 5.

4 Informal Continuous Construction

4.1 Operations on leaf-vectors

By the argument at the end of the last section all we care about from now on are
leaf-vectors and how we split them up between the two children, such that eventually
all leaf-vectors have weight at least 1.

We will consider two fundamentally different ways a parent vertex v with leaf-
vector (x0, x1, . . . , xk) can split up its leaf-vector (in effect: its allotted number of
k-close leaves) between its children. In the fair split both children get the same
vector. In this case the children can even get a last coordinate of at most d/2
and their coordinate sum would still be at most d. In the simplest case of the
piecewise split the left child gets all the leaves that are t-close and the right child
gets the k-close leaves whose distance is more than t. In other words all the non-
zero coordinates in the leaf-vector of the left child will be on the left of the non-zero
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coordinates of the leaf-vector of the right child. For simplicity we keep the last
coordinate of the leaf-vectors of the children 0. In the general case of the piecewise
split we split a leaf-vector to many vectors, one inheriting all t-close leaves, while
the others split the farther leaf-descendants evenly.

In the following informal description we will split leaf-vectors and divide their
coordinates freely, not caring about divisibility. Dealing with rounding is one of the
issues we leave to the formal argument.

Fair Split. The leaf-vector x of the parent node v is split evenly between its
children v′ and v′′. Furthermore their last coordinate is d/2. That is,

x′ = x′′ = E(x) := (x1/2, x2/2, . . . , xk/2, d/2).

By m repeated applications of the fair split we obtain the leaf-vector

Em(x) :=

(
xm
2m

,
xm+1

2m
, . . . ,

xk
2m

,
d

2m
,

d

2m−1
, . . . ,

d

2

)

.

After the m-times iterated fair split the leaf-vectors of all 2m leaves of the full
binary tree so obtained are equal. After this operation it is sufficient to ensure the
constructibility of this single leaf-vector.

In the previous section the iterated fair split was used on the leaf-vector (0, . . . , 2s)
to obtain the leaf-vector (0, . . . , 0, 1, 2, 4, . . . , 2s). The constructibility of the latter
vector was ensured by Lemma 3.3. The result obtained there is the best one can
do using only fair splits and Lemma 3.3 and is a factor 1

e away from our goal. In
order to improve we will also use the piecewise splitting of the leaf-vectors, where
the l = 1 case of the piecewise split can be thought of as a sort of complete opposite
of the fair split.

Piecewise Split This split has two parameters, r and l with 1 ≤ l ≤ r ≤ k.
Piecewise split of a node v with leaf-vector ~x = (x0, . . . , xk) is similar to the l-times
iterated fair split in that we insert a depth l full binary tree under v. But instead of
assigning the same leaf-vector to all 2l leaves of this binary tree we assign a different
leaf-vector ~x′ to one leaf and the same leaf-vector ~x′′ to the remaining 2l − 1 leaves
of this full binary tree. We call the node with leaf-vector x′ the left-descendant and
the ones with leaf-vector ~x′′ the right-descendants of v. In particular, we make the
left-descendant of v inherit all the r-close leaves by setting

~x′ = (xl, . . . , xr, 0, . . . , 0
︸ ︷︷ ︸

k−r+l

)

and let the right-descendants evenly split the remaining ones by setting

~x′′ = (0, . . . , 0,
︸ ︷︷ ︸

r−l+1

xr+1

2l − 1
, . . . ,

xk
2l − 1

, 0, . . . , 0
︸ ︷︷ ︸

l

).
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To make a piecewise split useful we have to show that whenever ~x′ and ~x′′ are
constructible, so is ~x. This follows from iterated application of Observation 3.2 if
the intermediate vectors ~x∗ (the leaf-vectors assigned to the intermediate vertices
in the binary tree of depth l) satisfy the requirement |~x∗| ≤ d. This condition will
be satisfied in the cases where we apply piecewise split.

The advantage of a piecewise split is that since the coordinates with a small
index are fully given to the left-descendant, their weight is multiplied by 2l. We
will set the parameters such that this makes the weight of ~x′ reach 1, ensuring its
constructibility by Lemma 3.3. For the right-descendants the weight-gain on the
non-zero coordinates of the assigned leaf-vector is uniformly distributed, but tiny:
only a factor 1 + 1

2l−1
. Furthermore the leaf-vector starts with many zeros, so we

can perform a large number of fair splits and hope that the resulting leaf-vector is
“better” in some way than ~x, for example its weight increases. This will not always
be the case in reality, because the behaviour of the weight in the optimal process is
more subtle and can oscillate. This represents yet another, more serious technicality
to handle in Section 5.

The cut subroutine in the next paragraph describes more formally the above
combination of the piecewise split and the fair splits on the right-descendants.

The Cut Subroutine. The cut subroutine has a single parameter l ∈ {1, . . . , k}.
It can be applied to a leaf-vector ~x with xi = 0 for i < l and of weight w(x) ≥ 2−l.
It consists of a piecewise split with parameters l and r = r(l, ~x), where r, l ≤ r ≤ k,
is the smallest index such that

∑r
i=l xi/2

i ≥ 2−l. The choice of r ensures that the
leaf-vector ~x′ of the left-descendant is constructible by Lemma 3.3. Then we apply
an (r − l)-times iterated fair split to the leaf-vector ~x′′ of the right-descendants to
obtain a leaf-vector

C l(~x) =



0,
xr+1

2r−l(2l − 1)
, . . . ,

xk
2r−l(2l − 1)

, 0, . . . , 0
︸ ︷︷ ︸

l

,
d

2r−l
. . . ,

d

2



 .

As we ensured the constructibility of ~x′ and because we observed similar implica-
tions for the piecewise split and fair split operations we have that the constructibility
of C l(~x) implies the constructibility of ~x.

In the rest of this subsection we give an illustration of how the cut subroutine
works by considering the simplest case l = 1. This already gives a factor 2 improve-
ment over the bound on d which we obtained in Section 3 using only the fair split.
For the understanding of the general case of the cut subroutine, treated in the next
subsection, this discussion is not crucial.

We saw earlier using repeated applications of the fair split and Observation 3.1
that in order to prove the existence of (k, d)-trees it is enough to see that the
vector ~x0 = (0, . . . , 0, 1, 2, . . . d/2) is constructible. Our plan is to establish this
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through the repeated application of cuts with parameter l = 1: we recursively
define ~xi = C1(~xi−1) and hope that we eventually obtain a vector with w(~xi) ≥ 1.
By Lemma 3.3 this would establish the constructibility of ~xi, and through that, also
the constructibility of ~x0 and the existence of (k, d)-trees.

In order to just get started with the first cut we need w(~x0) = log d · d
2k+1 ≥

2−l = 1/2 and thus d > 2k/k. It turns out that if d is chosen slightly larger at
d = (1 + ǫ)2k/k and k is large enough for ǫ, our plan of repeated cut subroutines
with parameter l = 1 can indeed be carried through. Note that this bound on d is a
factor of 2 smaller than the bound obtained from fair split and Lemma 3.3 alone in
the previous section, but it is still larger by a factor of e/2 than the bound we need
to prove Theorem 1.3. For the stronger bound we will need cuts with parameter
l > 1, but as an illustration we give a very rough sketch here why l = 1 is enough
if d = (1 + ǫ)2k/k.

Let us start with examining the first cut producing ~x1. Except the first ≈ log k
coordinates, each coordinate contributes the same d

2k+1 = (1+ ǫ)/(2k) to the weight
of ~x0. Thus the first piecewise split will have parameter r1 ≈ k/(1 + ǫ) ≈ (1 − ǫ)k.
After the piecewise split the leaf-vector of the right descendant will have only ≈ ǫk
non-zero entries, but the contribution to the weight of each of these entries is doubled
to ≈ (1 + ǫ)/k. This contribution is not changing during the repeated fair splits,
but r1 − 1 new non-zero entries show up, each with the “standard” ≈ (1 + ǫ)/(2k)
contribution to the weight. In total we will have w(~x1) ≈ (1+ 2ǫ)/2, a noticeable ǫ

2
improvement over w(~x0).

This improvement in the weight of the coordinates towards the beginning of the
leaf-vector makes the parameter of the second cut slightly smaller at r2 ≈ (1−2ǫ)k,
further improving the weight of ~x2. In general we will have ri ≈ (1 − iǫ)k and
w(~xi) ≈ (1 + (i+ 1)ǫ)/2. This works till ri > k/2. After that threshold (at around
i = 1/(2ǫ)) the rate by which the weight increases slows a little, but we will still
have an index i < 2/ǫ with w(~xi) > 1 as needed to finish this argument.

4.2 Passing to continuous

The goal of this subsection is to give the continous motivation behind the formal
discrete proof of the next section as well as to elucidate why the discrete construction
should work. The continuous function F , defined in this subsection via a differen-
tial equation, is also helpful in studying the size of the constructed formulas (see
Section 7).

Recall that our goal is to obtain a (k, d)-tree for

d =
1

T

2k+1

k
(4.1)

where T should be as large as possible and k suitably large for a given T . To
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establish the upper bound of Theorem 1.3 we need this for any T < e. A similar
result for a value T > e would contradict to the lower bound in the same theorem.

After fixing a target constant T , it will be helpful to consider the leaf-vectors
in a normalized form, which then will enable us to interpret them as continuous
functions on the [0, 1] interval.

First we normalize the leaf-vector ~z = (z0, . . . , zk) to get (y0, . . . , yk) with
yi = 2k+1−izi/d. Note that we have w(~z) =

∑

i yi/(kT ), so, in particular, ~z is
constructible whenever

∑

i yi ≥ kT . We associate a real function f : [0, 1] → R to
the leaf-vector ~z by the formula f(x) = y⌊kx⌋. Although this is a step function we
will treat it as a continuous function. Clearly, as k increases, this is more and more
justified.

Our Lemma 3.3 translates to our new setting as follows.

Lemma 4.1. If the real function f associated to the leaf-vector ~z satisfies

∫ 1

x=0
f(x)dx ≥ T

then ~z is constructible.

We now illustrate how the cut subroutine (with sufficiently high parameter l
chosen for ǫ > 0) can be applied to achieve the target T = e− ǫ. This is an informal
analysis (as everything in this section) and hence we will allow ourselves to ignore
what happens to the function f(x) on o(1)-long subintervals of [0, 1].

Our first job is to see how a single application of the cut subroutine with param-
eter l transforms the real function f associated to a leaf-vector. The cut starts with
a piecewise split with parameters l and r where r is chosen minimal with respect to
the condition that the leaf-vector of the left-descendant has weight at least 1. Let
us set v = r/k and consider the function

fleft(x) =

{
2lf(x) x ∈ [0, v)
0 x ∈ [v, 1]

Notice that the true transformation of the leaf-vectors involves a left shift of l
places for the entries up to xr followed by zeros. This left shift explains why the
normalized vector and thus the values of the associated real function are multiplied
by 2l. By the same left shift the values of the real function should also be shifted
to the left by l/k, but as l/k = o(1) this small effect is ignored here.

Notice that by Lemma 4.1 the choice of r translates to a choice of v that makes

T =

∫ 1

0
fleft(x) dx = 2l

∫ v

0
f(x) dx. (4.2)

The real function fright associated to the leaf-vector of the right-descendants of
the piecewise split with parameters l and r can similarly be approximated by
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fright(x) =

{

0 x ∈ [0, v)
2l

2l−1
f(x) x ∈ [v, 1]

Recall that the cut subroutine further applies the (r− l)-times iterated fair split
to the leaf-vector. Because of our normalization fair splits do not change the values
of the associated real function, but they move these values to the left in the domain
of the function. In our case the amount of this translation is (r − l)/k ≈ v. The
fair splits also introduce constant 1 values in the right end of the [0, 1] interval freed
up by the shift. This explains why the following function approximates well the
resulting real function:

C l
f (x) =

{
2l

2l−1
f(x+ v) x ∈ [0, 1 − v)

1 x ∈ [1− v, 1]
(4.3)

In the following we analyze how the repeated application of these cut subroutines
changes the associated real function. For this analysis we define a two-variable
function F (t, x) that approximates well how the function develops. Here t ≥ 0
represents the “time” that has elapsed since we started our process, that is the
cumulative length of the shifts v we made. The value x ∈ [0, 1] stands for the single
variable of our current real function. In other words, for each fixed t, F (t, x) should
be a good approximation of the real function associated to the leaf-vector after t/vavg
infinitesimally small cuts were made (where vavg is the length of the average cut).
We have the initial condition F (0, x) = 1 as the constant 1 function approximates
the real function associated to our original leaf-vector of (0, . . . , 0, 1, 2, . . . , d/2) (in
fact, the two functions coincide except for the o(1) length subinterval of their domain
where the latter function is 0). We also have F (t, 1) = 1 for every t ≥ 0 by (4.3).

We make yet another simplification: we assume that l is chosen large enough
making v so small, that we can treat it as infinitesimal. We will denote the cut
parameter v at time t by vt. Recall that by (4.2) vt can be defined by the formula
∫ vt
0 F (t, x) dx = T/2l, which simplifies to vt ≈ T/(2lF (t, 0)) after approximating
the integral.

For the ”right-descendant” we have by (4.3) that

F (t+ vt, x) = C l
F (t,·)(x) =

2l

2l − 1
F (t, x+ vt)

if x < 1− vt and F (t+ vt, x) = 1 for every 1− vt ≤ x ≤ 1. Using the approximation
2l

2l−1
≈ 1+ 1

2l
(justified as l is considered “large”) we approximate the above equation

with

F (t+ vt, x) ≈
(

1 +
1

2l

)

F (t, x+ vt) ≈
(

1 +
vtF (t, 0)

T

)

F (t, x+ vt).
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This gives us an equation on the derivative of F (t, x) in direction (1,−1). For any
s > 1, define the function Fs(t) : [s−1, s] → R by Fs(t) = F (t, s−t). Then rewriting
the above with s = x+ t+ vt, we have

Fs(t+ vt) ≈
(

1 +
vtF (t, 0)

T

)

Fs(t).

F ′
s(t)

Fs(t)
≈ Fs(t+ vt)− Fs(t)

vtFs(t)
≈ F (t, 0)

T
. (4.4)

Integrating we obtain

∫ s

s−1
(lnFs(t))

′dt ≈ 1

T

∫ s

s−1
F (t, 0)dt.

The left hand side evaluates to lnFs(s) = lnF (s, 0) by the boundary condition
Fs(s− 1) = 1.

As our last simplifying assumption we assume that the function F (t, 0) increases
monotonically. Therefore the right hand side is at least F (s−1, 0)/T , which implies
that

F (s, 0) ≥ e
F (s−1,0)

T . (4.5)

Now the increasing function F (t, 0) either goes to infinity or tends to a finite
limit a. If the latter happens we have a ≥ ea/T . But classic calculus shows that
a ≤ ea/e for all real a, so this implies T ≥ e. In the case T < e, that we study here,
F (t, 0) must then tend to infinity. From the assumed monotonicity of F (t, 0) and
(4.4) we obtain F (t, x) >

√

F (t, 0) if 1/2 ≤ x ≤ 1. Since F (t, 0) tends to infinity, so

does
∫ 1
0 F (t, x) dx. Whenever this integral grows above T , the current leaf-vector

is constructible by Lemma 4.1 finishing our highly informal proof of the existence
of (k, d)-trees.

The above continuous heuristic is the underlying idea of the construction de-
scribed in the next subsection. It provides a good approximation to what happens
in the discrete case. Instead of dealing with all the introduced approximation errors
in a precise manner, we give a direct discretized proof where we explicitely make
sure that our many simplifying assumptions are satisfied and the approximations
are correct.

5 Formal Construction of (k, d)-Trees

In this section we complete the proof of Theorem 1.3. To simplify notation we will
omit vector arrows throughout.

Before proving Theorem 1.3 we first set up two of the main ingredients of our
construction. Let us fix the positive integers k, d and l. To simplify the notation, we
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will not show the dependence on these parameters in the next definitions, although
d′, E, Cr and C∗

r all depend on them. We let

d′ = d

(

1− 1

2l − 1

)

.

For a vector x = (x0, . . . , xk) we define

E(x) =
(
⌊x1/2⌋, ⌊x2/2⌋, . . . , ⌊xk/2⌋, ⌊d′/2⌋

)
.

We denote by Em(x) the vector obtained from x by m applications of the operation
E. Using the simple observation that ⌊⌊a⌋/j⌋ = ⌊a/j⌋ if a is real and j is a positive
integer we can ignore all roundings but the last.

Em(x) =

(⌊xm
2m

⌋

,
⌊xm+1

2m

⌋

, . . . ,
⌊ xk
2m

⌋

,

⌊
d′

2m

⌋

,

⌊
d′

2m−1

⌋

, . . . ,

⌊
d′

2

⌋)

.

For l ≤ r ≤ k and the vector x as above we define the (k + 1)-tuples Cr(x) and
C∗
r (x) by the following formulas:

Cr(x) =
(

0, . . . , 0,
︸ ︷︷ ︸

r+1−l

⌊
xr+1

2l − 1

⌋

, . . . ,

⌊
xk

2l − 1

⌋

,

︸ ︷︷ ︸

k−r

⌊
d′

2l

⌋

, . . . ,

⌊
d′

2

⌋

︸ ︷︷ ︸

l

)

C∗
r (x) = (xl, xl+1, . . . , xr,

︸ ︷︷ ︸

r+1−l

0, 0, . . . , 0
︸ ︷︷ ︸

k−r+l

).

Note that for the following lemma to hold we could use d instead of d′ in the
definition of E, and we could also raise most of the constant terms in the definition
of Cr. The one term we cannot raise is the entry ⌊d′/2l⌋ of Cr(x) right after
⌊xk/(2l − 1)⌋. If we used a higher value there, then one of the children of the root
of the tree constructed in the proof below would have more than d leaves k-close.
We use d′ everywhere to be consistent and provide for the monotonicity necessary
in the proof of Theorem 1.3.

The first part of the next lemma states the properties of our fair split procedure
(which is somewhat modified compared to the informal treatment of Section 4), the
second part does the same for the cut subroutine.

Lemma 5.1. Let k, d and l be positive integers and x ∈ N
k+1 with |x| ≤ d.

(a) |E(x)| ≤ d. If E(x) is (k, d)-constructible, then so is x.

(b) For l ≤ r ≤ k we have |Cr(x)| ≤ d and |C∗
r (x)| ≤ d. If both of Cr(x) and C∗

r (x)
are (k, d)-constructible and |C∗

r (x)| ≤ d/2l, then x is also (k, d)-constructible.
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Proof. (a) We have |E(x)| ≤ |x|/2 + d′/2 < d. If there exists a (k, d,E(x))-tree,
take two disjoint copies of such a tree and connect them with a new root vertex,
whose children are the roots of these trees. The new binary tree so obtained is a
(k, d, x)-tree.

(b) The sum of the first k+1−l entries of Cr(x) is at most |x|/(2l−1) ≤ d/(2l−1),
the remaining fixed terms sum to less than d′ = d(1 − 1/(2l − 1)), so |Cr(x)| ≤ d.
We trivially have |C∗

r (x)| ≤ |x| ≤ d.
Let T be a (k, d, Cr(x))-tree and T ∗ a (k, d, C∗

r (x))-tree. Consider a full binary
tree of height l and attach T ∗ to one of the 2l leaves of this tree and attach a separate
copy of T to all remaining 2l − 1 leaves. This way we obtain a finite binary tree T ′.
We claim that T ′ is a (k, d, x)-tree showing the constructibility of x and finishing
the proof of the lemma. To check condition (i) of the definition of a (k, d, x)-tree
notice that no leaf of T ′ is in distance less than l from the root, leaves in distance
l ≤ j ≤ r are all in T ∗ and leaves in distance r < j ≤ k are all in the 2l − 1 copies
of T . Hence

(

0, . . . , 0, xl, . . . , xr, (2
l − 1)

⌊
xr+1

2l − 1

⌋

, . . . , (2l − 1)

⌊
xk

2l − 1

⌋)

is a leaf-vector of the root of T ′, thus x is also a leaf-vector.
Condition (ii) is satisfied for the root, because it has at most |x| ≤ d leaves that

are k-close. Notice that the nodes of T ′ of distance at least l from the root are also
nodes of T ∗ or a copy of T , so they satisfy condition (ii). There are two types of
vertices in distance 0 < j < l from the root. One of them has 2l−j copies of T below
it, the other has one less and also T ∗. In the first case we can bound the number of
k-close leaves by

2l−j

(
xr+1 + . . .+ xk

2l − 1
+

d′

2l
+ . . .+

d′

2l−j+1

)

≤ 2l−j

2l − 1
· d+ d′

(

1− 1

2j

)

=
d

2l − 1

(

2l−j + (2l − 2)

(

1− 1

2j

))

≤ d

2l − 1
(2l − 1)

= d, (5.1)

where the last inequality holds since j ≥ 1. We also point out that here it is crucial
that we use the specific value of d′ < d.

In the second case, the number of k-close leaves is bounded by

(2l−j − 1)

(
xr+1 + . . .+ xk

2l − 1
+

d′

2l
+ . . . +

d′

2l−j+1

)

+ |C∗
r (x)|

≤ (2l−j − 1)
d

2l−j
+

d

2l
≤ d,

where we used the result of the calculation in (5.1).
Armed with the last lemma we are ready to prove Theorem 1.3.
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Proof of Theorem 1.3. . We will show that (k, d)-trees exist for large enough k and
d = ⌊2k+1/(ek) + 100 · 2k+1/k3/2⌋.

We set l = ⌊log k/2⌋, so 2l ∼
√
k. We introduce the notation s = 2l. We define

the vectors x(t) = (x
(t)
0 , . . . , x

(t)
k ) ∈ N

k+1 recursively. We start with x(0) = Ek−s(z),
where z denotes the vector consisting of k + 1 zeros. For t ≥ 0 we define x(t+1) =
Ert−s−l(Crt(x

(t))), where rt is the is the smallest index in the range s+ l ≤ rt ≤ k

with
∑rt

j=0 x
(t)
j /2j ≥ 2−l. At this point we may consider the sequence of the vectors

x(t) end whenever the weight of one of them falls below 2−l and thus the definition
of rt does not make sense. But we will establish below that this never happens and
the sequence is infinite.

Notice first, that we have x
(t)
j = 0 for all t and 0 ≤ j ≤ s, while the entries x

(t)
j

for s < j ≤ k are all obtained from d′ by repeated application of dividing by an
integer (namely by 2l − 1 or by a power of 2) and taking lower integer part. As
we have observed earlier in this section, we can ignore all roundings but the last.

This way we can write each of these entries in the form
⌊

d′

2i(2l−1)j

⌋

=
⌊

d′

2i+ljα
j
⌋

for

some non-negative integers i and j and with α = 1 + 1/(2l − 1). Using the values
qt = rt − s (this is the amount of “left shift” between x(t) and x(t+1)) we can give
the exponents explicitly.

x
(t)
j =

⌊
d′

2k+1−j
αc(t,j)

⌋

(5.2)

for all s < j ≤ k and all t, where c(t, j) is the largest integer 0 ≤ c ≤ t satisfying
∑t−1

i=t−c qi ≤ k − j. We define c(0, j) = 0 for all j and c(t, j) = 0 if qt−1 > k − j.
The formal inductive proof of this formula is a straightforward calculation. We

imagine each entry entering at the right end of the vector as d′/2 and divided by 2
every time it moves one place to the left — this explains the exponent k+1−j of the
2 in the formula. This is accurate when the left-shift is the result of an application
of E. However when some Cri is applied to an already existing entry, the entry
moves l places to the left and the actual division is by 2l − 1 instead of 2l, so the
entry gains a factor of α. The exponent c(t, j) counts how many such factors are

accumulated. If the “ancestor” of the entry x
(t)
j was first introduced in x(t

′), then
c(t, j) = t − t′. This is exactly the number c of left shifts of length qt−1, . . . , qt−c

that were needed to push the entry from its position in x(t
′) to its position j in x(t).

We claim next that c(t, j) and x
(t)
j increase monotonously in t for each fixed

s < j ≤ k, while qt decreases monotonously in t. We prove these statements by
induction on t. We have c(0, j) = 0 for all j, so c(1, j) ≥ c(0, j). If c(t+1, j) ≥ c(t, j)
for all j, then all entries of x(t+1) dominate the corresponding entries of x(t) by (5.2).

If x
(t+1)
j ≥ x

(t)
j for all j, then we have rt+1 ≤ rt by the definition of these numbers,

so we also have qt+1 ≤ qt. Finally, if q0 ≥ q1 ≥ · · · ≥ qt+1, then by the definition of
c(i, j) we have c(t+ 2, j) ≥ c(t+ 1, j).

The monotonicity just established also implies that the weight of x(t) is also
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increasing, so if the weight of x(0) is at least 2−l, then so is the weight of all the
other x(t), and thus the sequence is infinite. The weight of x(0) is

k∑

j=s+1

⌊
d′

2k+1−j

⌋

2j
>

k∑

j=s+1

d′

2k+1−j − 1

2j

> (k − s)
d′

2k+1
− 2−s

> (k − log k)
1 − 1

2l−1

ek
− 2− log k+2 −→ 1

e
,

where the last inequality follows from d > 2k+1/(ek) and the last term tends to e−1

as k tends to infinity, so it is larger than 2−l for large enough k.
We have just established that the sequence x(t) is infinite and coordinate-wise

increasing. Notice also that these vectors were obtained through the operations E
and Cr from the all-zero vector, so by Lemma 5.1 we must have |x(t)| ≤ d for all
t. Therefore the sequence x(t) must stabilize eventually. In fact, as the sequence
stabilizes as soon as two consecutive vectors agree it must stabilize in at most d
steps. So for some fixed vector x = (x0, . . . , xk) we have x(t) = x for all t ≥ d. This
implies that qt also stabilizes with qt = q for t ≥ d. (5.2) as applied to t > d + k
simplifies to

xj =

⌊
d′

2k+1−j
α⌊(k−j)/q⌋

⌋

. (5.3)

Recall that q = qt = rt − s (take t ≥ d), and rt is defined as the smallest index
in the range s+ l ≤ r ≤ k with

∑r
j=0 xj/2

j ≥ 2−l. Thus we have q ≥ l.

Proposition 5.2. We have q = l.

Proof: Assume for contradiction that q > l. Then by the minimality of rt we
must have

2−l >

s+q−1
∑

j=0

xj
2j

=

s+q−1
∑

j=s+1

⌊
d′

2k+1−jα
⌊(k−j)/q⌋

⌋

2j

>

s+q−1
∑

j=s+1

d′

2k+1−jα
(k−j)/q−1 − 1

2j

> (q − 1)
d′

2k+1
αk/q−4 − 2−2l.
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In the last inequality we used s = 2l and j
q ≤ s+q

q = 1 + s
q ≤ 1 + 2l

l = 3. This
inequality simplifies to

2−l(1 + 2−l)α4 2
k+1

d′
> (q − 1)αk/q. (5.4)

Simple calculus gives that the right hand side takes its minimum for q ≥ 2 between
q∗ − 1 and q∗ − 2, where q∗ = q∗(k) = k lnα ∼

√
k, and this minimum is more than

(q∗ − 3)e. Using α = 1 + 1/(2l − 1) > e2
−l

we have q∗ ≥ k/2l. So (5.4) yields

2−l(1 + 2−l)α4 2
k+1

d′
>

ke

2l
− 3e.

Thus,

(1 + 2−l)α4 2
k+1

d′
− ke+ 3e2l > 0.

Substituting our choice for d, d′, α and l (as functions of k) and assuming that k is
large enough we get that the left hand side is at most

(

1 +
2√
k

)(

1 +
4√
k

)4 2k+1

d
(

1− 4√
k

) − ek + 3e
√
k

≤
(

1 +
19√
k

)
ek

(

1− 4√
k

)(

1 + 99e√
k

) − ek + 3e
√
k

≤
(

1− 200√
k

)

ek − ek + 3e
√
k = −200e

√
k + 3e

√
k < 0,

which is a contradiction. Hence q = l as claimed.
Next we establish by downward induction that the vectors x(t) are constructible.

We start with t = d. Using (5.3) and the fact that q = l (Proposition 5.2) we get
that for large k

w(x(d)) ≥ x
(d)
s+1

2s+1
≥ d′

2k+1
α

k−s−1
l

−1 − 1

≥ d′

2k+1
α

k
2l − 1

≥ d/2

2k+1

(

1 +
1√
k

) k
log k

− 1

≥ 1

2ek
e

k

2
√

k log k − 1 > 1.

So by Lemma 3.3, x(d) is constructible.
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Now assume that x(t+1) is constructible for some t ≤ d− 1. Recall that x(t+1) =
Ert−s−l(Crt(x

(t))), so by (the repeated use of) part (a) of Lemma 5.1, Crt(x
(t)) is

constructible. By part (b) of the same lemma, x(t) is also constructible (and thus the
inductive step is complete) if we can (i) show that C∗

rt(x
(t)) is constructible and (ii)

establish that |C∗
rt(x

(t))| ≤ d/2l. For (i) we use the definition of rt:
∑rt

j=0 x
(t)
j /2j ≥

2−l. But the weight of C∗
rt(x

(t)) is
∑rt

j=l x
(t)
j /2j−l, so the contribution of each term

with j ≥ l is multiplied by 2l, while the missing terms j < l contributed zero anyway
as the first s+ 1 > l coordinates of x(t) are 0. This shows that the weight of C∗

rt is
at least 1 and therefore Lemma 3.3 proves (i).

For (ii) we use monotonicity to see |C∗
rt(x

(t))| =
∑rt

j=s+1 x
(t)
j ≤

∑rt
j=s+1 xj . Here

rt ≤ r0 ≤ k/2 for large enough k. Using the fact that q = l (Proposition 5.2) and
(5.3) we further have for large k that

|C∗
rt(x

(t))| ≤ d′
rt∑

j=s+1

1

2k+1−j
· α k−j

l

≤ d

rt∑

j=s+1

(α

2

)k−j

≤ d

(
3

4

)k−r0

· 4
(

since
α

2
≤ 3

4

)

≤ d

(
3

4

) k
2

· 4
(

since rt ≤
k

2

)

<
d√
k
≤ d

2l
.

This finishes the proof of (ii) and hence the inductive proof that x(t) is constructible
for every t.

As x(0) = Ek−s(z) is constructible, Lemma 5.1 (a) implies that the all-zero
vector z is also constructible. Thus the larger vector (0, . . . , 0, d) is constructible
too, and by Observation 3.1 there exists a (k, d)-tree.

6 Proof of the Lower Bound of Theorem 1.1

For our proof we use the Lopsided Local Lemma of Erdős and Spencer:

Lemma 6.1. (Lopsided Local Lemma [11]) Let {AC}C∈I be a finite set of events
in some probability space. Let Γ(C) be a subset of I for each C ∈ I such that for
every subset J ⊆ I \ (Γ(C) ∪ {C}) we have

Pr(AC | ∧D∈J ĀD) ≤ Pr(AC).
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Suppose there are real numbers 0 < xC < 1 for C ∈ I such that for every C ∈ I we
have

Pr(AC) ≤ xC
∏

D∈Γ(C)

(1− xD).

Then
Pr(∧C∈IĀC) > 0.

Let F be a (k, s)-CNF formula with s =
⌊

2k+1

e(k+1)

⌋

.

We set the values of the variables randomly and independently, but not accord-
ing to the uniform distribution. This seems reasonable to do as the number of
appearances of a variable xi in F as a non-negated literal could be significantly dif-
ferent from the number of clauses where xi appears negated. It is even possible that
a variable xi appears negated in only a few, maybe even in a single clause, in which
case one tends to think that it is reasonable to set this variable to true with much
larger probability than setting it to false. In fact it is exactly the opposite we will
do. The more a variable appears in the clauses of F as non-negated, the less likely
we will set it to true. The intuition behind this is explained in the introduction.

For a literal v we denote by dv the number of occurrences of v in F . We set a
variable x to true with probability Px = 1

2 +
2dx̄−s
2sk . This makes the negated version

x̄ satisfied with probability Px̄ = 1
2 − 2dx̄−s

2sk ≥ 1
2 +

2dx−s
2sk as we have dx + dx̄ ≤ s. So

any literal v is satisfied with probability at least 1
2 + 2dv̄−s

2sk .
For each clause C in F , we define the “bad event” AC to be that C is not

satisfied. Moreover, for every C in F we define Γ(C) to be the family of clauses D
in F that have at least one such variable in common with C whose sign is different
in C and D. Finally, we set the value of each xC to be x = e

2k
.

We need to check that for every subset J ⊆ I \ (Γ(C) ∪ {C}) we have

Pr(AC | ∧D∈J ĀD) ≤ Pr(AC).

This is equivalent to Pr(∧D∈J ĀD|AC) ≤ Pr(∧D∈JĀD). The right hand side is
simply the probability of a random assignment satisfying all clauses in J . The left
hand side can be interpreted as the same probability after a random assignment is
modified by setting all literals in C to false. The random assignment does not
satisfy any clauses in J after the modification that it did not satisfy before, since no
clause from J contains a variable of C in the opposite form. Hence the probability
of satisfying all of them does not grow by the modification proving the inequality.
(The probability might, in fact, decrease if some of the clauses in J contain a literal
also present in C.)

We need to check also the other condition of the lemma. Let C be an arbitrary
clause and let us denote the literals it contains by v1, . . . , vk. For C not to be
satisfied we must not set any of the independent literals in C to true, and therefore
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we have

Pr(AC) =
k∏

i=1

(1− Pvi)

≤
k∏

i=1

(
1

2
− 2dv̄i − s

2sk

)

≤ 1

2k

k∏

i=1

((

1 +
1

k

)(

1− edv̄i
2k

))

≤
(
1 + 1

k

)k

2k

k∏

i=1

(1− x)dv̄i

<
e

2k
(1− x)|Γ(C)|

= x
∏

D∈Γ(C)

(1− x).

The inequality in the fourth line holds due to the well-known inequality that 1−ax ≤
(1− x)a for every 0 < x < 1 and a ≥ 1.

As the conditions of the Lopsided Local Lemma are satisfied, its conclusion must
also hold. It states that the random evaluation of the variables we consider satisfies
the (k, s)-CNF F with positive probability. Thus F must be satisfiable and we have

f(k) ≥ s =
⌊

2k+1

e(k+1)

⌋

.

7 More About the Class MU(1) and Outlook

7.1 Constructing binary trees and MU(1) formulas

The structure of MU(1) formulas is well understood and it is closely related to
binary trees. (Recall that by a binary tree we always mean a rooted tree where
every non-leaf node has exactly two children.) In particular, given any binary
tree T , we associate with it certain CNF formulas. Similarly to Section 2.1 we
start with assigning distinct literals to the vertices, assigning the negated and non-
negated form of the same variable to the two children of any non-leaf vertex. We
do not assign any literal to the root. For each leaf of T select a clause that is the
disjunction of some literals along the path from the root to that leaf and consider
the CNF formula F that is the conjunction of one clause for each leaf. Clearly, F
is unsatisfiable and it has one more clause than the number of variables associated
with T . Note that for proving the upper bound in Theorem 1.1 we used (k, d)-trees
T and the associated unsatisfiable (cf. Observation 2.1) (k, d)-CNF Fk(T ) that was
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constructed similarly, but selecting the k vertices farthest from the root on every
root-leaf path.

As proved in [7], F is a MU(1) formula if and only if all literals associated to
vertices of T do appear in F , furthermore every formula in MU(1) can be obtained
from a suitable binary tree this way.

Recall that ftree(k) denotes the smallest integer d such that a (k, d)-tree exists.
Clearly, f(k) ≤ f1(k) < ftree(k), and we showed that f(k) = (1 + o(1))ftree(k).

7.2 On the size of unsatisfiable formulas

By the size of a rooted tree we mean the number of its leaves and by the size of
a CNF formula we mean the number of its clauses. With this notation the size of
a containment-minimal (k, d)-tree T and the size of the corresponding (k, d)-CNF
Fk(T ) in MU(1) are the same.

When proving the upper bound of Theorem 1.1 we constructed (k, d)-trees for

d ≈ 2k+1

ek . Their size and therefore the size of the corresponding (k, d)-CNF in
MU(1) is at most 2h, where h is the height of the tree. In fact, the sizes of the trees
we constructed are very close to this upper bound. Therefore it makes sense to take
a closer look at the height.

Recall that we associated with a vertex v of a (k, d)-tree the vector (x0, . . . , xk),
where xj is the number of leaf-descendants of v of distance j from v. If a (k, d)-
tree has minimal size it has no two vertices along the same branch with identical
vectors. In fact, this statement is also true even if one forgets about the last entry
in the vector. So the minimal height of a (k, d)-tree is limited by the number of
vectors in N

k with L1 norm at most d, which is
(
d+k
k

)
≤ dk. For d = ftree(k) this

is 2O(k2). For the minimal size of a (k, d)-tree this implies a 22
O(k2)

bound that
applies whenever such a tree exists. The same bound for minimal size (k, d)-CNF
formulas in MU(1) is implicit in [17]. There is numerical evidence that the sizes of
the minimal (k, ftree(k))-tree and the minimal (k, f1(k) + 1)-CNF in MU(1) might
indeed be doubly exponential in k (consider the size of the minimal (7, 18)-tree and
the minimal (7, 18)-CNF in MU(1) mentioned below).

A closer analysis of the proof of the upper bound in Theorem 1.3 shows that the
height of the (k, d)-tree constructed there is at most d log k. While this is better
than the general upper bound above it still allows for trees with sizes that are doubly
exponential in k.

This height can, however, be substantially decreased if we allow the error term
in d to slightly grow. If we allow d = (1 + ǫ)2

k+1

ek for a fixed ǫ > 0, then a more
careful analysis shows that the height of the tree created becomes O(k). This bounds
the size of the tree and the corresponding formula by a polynomial in d. Here we
just sketch the argument for this statement and do not give a formal proof. By
following the approach of Section 4 (and neglecting the small error terms neglected
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there) we obtain the recurrence (4.5) on F (s, 0). As discussed there this recursion
for parameters considered here diverges, so we get F (s, 0) arbitrarily large for a
suitable (constant) value of s. Note that F (s, 0) is obtained as the approximate
value of 2k+1−jxj/d for most j small compared to k, where (x0, . . . , xk) is the leaf-
vector associated to a certain vertex in the (k, d) to be constructed. The distance
of this vertex from the root is approximately ks. Note that when this value reaches
a high constant Lemma 3.3 becomes applicable to this vertex and the construction
of the (k, d)-tree ends within k more levels. This makes the height of the (k, d)-tree
obtained O(k). Note that a height of O(k) makes the size of this tree polynomial
in d.

Let us define f1(k, d) for d > f1(k) to be the minimal size of a (k, d)-CNF
in MU(1), and let ftree(k, d) stand for the minimal size of a (k, d)-tree, assuming
d ≥ ftree(k). While f1(k, f1(k) + 1) and similarly ftree(k, ftree(k))) are probably
doubly exponential in k, the above argument shows that for slightly larger values
of d = (1 + ǫ)f(k) the values f1(k, d) and ftree(k, d) are polynomial in d (and thus
simply exponential in k).

7.3 Extremal Values and Algorithms

Finally, we mention the question whether ftree(k) = f1(k) + 1 for all k. (The
+1 term comes from us defining these functions inconsistently. While f(k) and
f1(k) is traditionally defined as the largest value d with all (k, d)-CNF satisfiable or
no (k, d)-CNF in MU(1) exist, respectively, it was more convenient for us to define
ftree(k) as the smallest value d for which (k, d)-trees exist.) This question asks if one
necessarily loses (in the maximal number of appearances of a variable) by selecting
the k vertices farthest from the root when making an MU(1) k-CNF formula from a
binary tree. As mentioned above, f(k) = f1(k) is also open, but ftree(k) = f1(k) +
1 seems to be a simpler question as both functions are computable. Computing
their values up to k = 8 we found these values agreed. To gain more insight we
computed the corresponding size functions too and found that ftree(k, d) = f1(k, d)
for k ≤ 7 and all d > f1(k) with just a single exception. We have f1(7) = 17
and f1(7, 18) = 10, 197, 246, 480, 846 < ftree(7, 18) = 10, 262, 519, 933, 858. We also
found f1(8, d) = ftree(8, d) for f1(8) = 29 < d ≤ 33. Is f1(7, 18) < ftree(7, 18) the
exception or will it turn into the rule for larger values? Does it indicate that ftree(k)
and f1(k) + 1 will eventually diverge?

A related algorithmic question is whether the somewhat simpler structure of
(k, d)-trees can be used to find an algorithm computing ftree(k) substantially faster
than the algorithm of Hoory and Szeider [17] for computing f1(k). Such an algorithm
would give useful estimates for f1(k) and also f(k). At present we use a similar
(and similarly slow) algorithm for either function.
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[22] J. Kratochv́ıl, P. Savický and Z. Tuza, One more occurrence of variables makes
satisfiability jump from trivial to NP-complete, SIAM J. Comput. 22 (1),
(1993), 203–210.

[23] O. Kullmann, An application of matroid theory to the SAT problem, Fifteenth
Annual IEEE Conference on Computational Complexity (2000), 116-124

[24] R.A. Moser, G. Tardos, A Constructive Proof of the General Lovász Local
Lemma, J. ACM 57(2), (2010)

[25] A. Pelc, Searching games with errors—fifty years of coping with liars Theoretical
Computer Science 270 (1–2) (2002), 71–109.

[26] http://polymathprojects.org/2012/07/12/minipolymath4-project-imo-2012-q3/

[27] C.H. Papadimitriou and M. Yannakakis, Optimization, approximation, and
complexity classes, J. Comput. System Sci. 43 (3), (1991), 425–440

[28] J. Radhakrishnan, A. Srinivasan, Improved bounds and algorithms for hyper-
graph 2-coloring, Random Structures Algorithms 16 (3), (2000), 4–32

[29] S. Roman, Coding and Information Theory, Springer, New York (1992).
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