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Abstract

We call simple graphs with a linear order on the vertices ordered

graphs. Turán-type extremal graph theory naturally extends to or-

dered graph. This is a survey on the ongoing research in the extremal

theory of ordered graphs with an emphasis on open problems.

1 Definitions

An ordered graph is a simple graph with linear order on the vertices. Formally,
an ordered graph is triple (V,E,<), where V is the vertex set, E ⊆

(

V
2

)

is the
edge set and < is a linear order relation on V . In this survey we assume that
V is finite. We say that (V,E) is the simple graph underlying the ordered
graph (V,E,<) and that the ordered graph (V,E,<) is an ordering of the
simple graph (V,E). The notion of subgraph and isomorphism naturally
extend to ordered graphs: the ordered graphs (V,E,<) and (V ′, E ′, <′) are
isomorphic if there is an order preserving isomorphism between the graphs
(V,E) and (V ′, E ′). The ordered graph (V ′, E ′, <′) is an ordered subgraph
of (V,E,<) if V ′ ⊆ V , E ′ ⊆ E and <′ is the restriction of < to V ′.

Armed with this definition we can extend some classic areas of graph
theory to ordered graphs. Here we do this for Turán-type extremal graph
theory. It asks for the maximal number of edges in a simple graph of given
size that avoids (i.e., does not contain as a subgraph) a specified pattern or
all members of a given family of patterns. In particular, we are interested in
the maximal number, ex(P , n), of edges in an n-vertex simple graph that has
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no subgraph isomorphic to any member of the family P . Note that we must
require that P does not contain empty graphs in order for this definition
to make sense. If the forbidden pattern is a singleton we write ex(P, n) to
denote ex({P}, n). We call ex(P , n) the extremal function of the family P and
will concentrate on its asymptotic behavior. Accordingly, all the asymptotic
notations like O(·), o(·) should be interpreted for a fixed family P and, in
particular, the implied constants in O(·) may depend on this family.

For a natural extension of this theory to ordered graphs, we consider
a family P of ordered graphs and we are looking for the largest number
ex<(P , n) of edges in an n-vertex ordered graph with no ordered subgraph
isomorphic to any member of P . As before, we require that each member
of P has at least one edge and simplify the notation for singleton families
by writing ex<(P, n) to denote ex<({P}, n). Our remark on the asymptotic
notation also applies here.

Let us first observe that the extremal theory of ordered graph is strictly
richer than classical extremal graph theory in the sense that the classical
questions can be equivalently asked in this setting, but we can also ask new
questions. In particular, for any family P of simple graphs one can form the
family P< consisting all orderings of the patterns in P and then we trivially
have:

ex(P , n) = ex<(P<, n).

On the other hand, if we forbid, say, a single ordered graph P , the corre-
sponding extremal function ex<(P, n) has no direct analogue in the classical
theory. We naturally have ex<(P, n) ≥ ex(P , n), where P is the simple graph
underlying P , but this lower bound is typically very weak, since avoiding P in
a particular order is often much easier than avoiding it in all possible orders.

Extensions of Ramsey theory to ordered graph is also studied extensively,
see [1, 4].

2 Basic results

Any survey about extremal graph theory should start with the following
classical theorem of Turán from 1941 [19], of which the r = 2 special case (the
maximal number of edges in a triangle-free graph) was proved by Mantel in
1907. The result gives the exact extremal function when the forbidden graph
is a complete graph. Further, for the (r+1)-vertex complete graph Kr+1 the
theorem states that the unique (up to isomorphism) n-vertex graph with the

2



maximum number of edges avoiding Kr+1 is the Turán graph T (n, r) formed
by partitioning the vertices into r almost equal parts and letting a pair of
vertices form an edge if and only if they are from distinct parts. Note that
the number of edges of the Turán graph T (n, r) is (1 − 1/r)n2/2 − O(1),
where the O(1) error term comes from unequal parts and can go as high as
⌊r/8⌋. As a consequence, we have:

Theorem 1 (Turán [19]) For every r ≥ 1 we have

ex(Kr+1, n) = (1−
1

r
)
n2

2
−O(1).

A trivial generalization of this result to ordered graphs involves the or-
dered clique, the unique ordering of the complete graph. Let Kr+1,< stand
for the (r + 1)-vertex ordered clique and we trivially have ex<(Kr+1,<, n) =
ex(Kr+1, n). A more revealing generalization is about the ordered path Pr+1,<

obtained from the (r + 1)-vertex path Pr+1 with the natural order on the
vertices where edges connect neighboring vertices in the order. We have
ex<(Pr+1,<, n) = ex(Kr+1, n). Here the direction ≤ follows from the fact
that Pr+1,< is an ordered subgraph of Kr+1,< and ≥ follows from the fact
that if we order the vertices of T (n, r) in a way that the r parts become
intervals in the ordering, then the resulting ordered graph does not contain
Pr+1,< as an ordered subgraph. Note, however, that in the case r does not
divide n, this process may yield several non-isomorphic extremal ordered
graphs. Note also that the path Pr+1 has several non-isomorphic orderings
for r > 1, and by Theorem 3 below, all other orderings have smaller extremal
functions.

The most general result in Turán-type extremal graph theory is the fol-
lowing consequence of the Erdős-Stone theorem, [5]. It basically states that
the extremal function of any simple graph is close to the extremal function
of the complete graph with the same chromatic number.

Theorem 2 (Erdős-Stone-Simonovits [6, 5]) Let P be a family of sim-

ple graphs and r + 1 = minP∈P χ(P ) be the smallest chromatic number of a

member of this family. We have

ex(P , n) = (1−
1

r
)
n2

2
+ o(n2).
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Pach and Tardos, [15] gave a generalization of this result for ordered
graphs. It is based on finding the “correct” version of the chromatic number
for ordered graph.

The interval coloring of an ordered graph is a proper coloring of the
underlying simple graph in which each color class is an interval of the linear
order. The interval chromatic number of an ordered graph P is the smallest
number of colors in an interval coloring of P . We write χ<(P ) to denote the
interval chromatic number of P .

Note that the interval chromatic number is much simpler to compute than
the chromatic number because a greedy strategy suffices. Indeed, we can
form the first color class by taking longest initial segment of the vertices that
form an independent set and proceed similarly for subsequent color classes.
The process yields an interval coloring with the fewest possible colors. Using
this definition, the generalization of the Erdős-Stone-Simonovits theorem is
rather straightforward:

Theorem 3 (Erdős-Stone-Simonovits Theorem for ordered graphs [15])
Let P be a family of ordered graphs and r+1 = minP∈P χ<(P ) be the smallest

interval chromatic number of a member of this family. We have

ex<(P , n) = (1−
1

r
)
n2

2
+ o(n2).

Just as the classic version of this theorem, it gives exact asymptotics for
the extremal function of ordered graphs unless the ordered graph is ordered
bipartite (i.e., has interval chromatic number 2). We will therefore concen-
trate on ordered bipartite graphs. Containment between ordered bipartite
graphs can also be visualized using the language of containment in 0-1 ma-
trices. This connection is explored in the next section.

3 Connection to 0-1 matrices

A 0-1 matrix is simply a matrix with all entries being 0 or 1. The weight

of such a matrix is the number of its 1-entries. A 0-1 matrix A is said to
contain another 0-1 matrix P if P is a submatrix of A or P is obtained
from a submatrix of A by replacing some 1-entries with 0-entries. Note that
permuting rows or columns is not allowed. If A does not contain P , we
say it avoids P . The extremal problem for 0-1 matrix containment can be
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formulated as computing (or estimating) the following extremal function for
families P of 0-1 matrices: Ex(P , n) is the maximal weight of an n-by-n 0-1
matrix that avoids all matrices in P . We require that all matrices in P have
positive weights. We write Ex(P, n) to denote Ex({P}, n).

For a 0-1 matrix P , let GP stand for the ordered bipartite graph whose
vertices correspond to the rows and columns of P , the order of the vertices
agrees with the order of rows and columns in P with all row-vertices preceding
all column vertices, and with an edge between a row-vertex and a column-
vertex if and only if the corresponding entry in P is 1. This makes P the
bipartite adjacency matrix of GP and turns the weight of P into into the
number of edges in GP . The close connection between the extremal theory of
ordered bipartite graphs and 0-1 matrices follows from the trivial observation
that if a 0-1 matrix A contains another 0-1 matrix P , then the ordered graph
GA also contains GP . The converse is also true if the homomorphism of GP to
GA maps row-vertices to row-vertices and column-vertices to column-vertices.
This extra condition is automatically satisfied if both the last row and first
column of P contain at least one 1-entry, so in this case we have Ex(P, n) ≤
ex<(GP , 2n). There is no equality in general, because ex<(GP , 2n) is the
maximum number of edges among all ordered graphs on 2n vertices avoiding
GP and the extremal ones may not be ordered bipartite. Still, the two
extremal functions are really close to each other as shown by the following
observation:

Theorem 4 ([15]) For a 0-1 matrix P and the corresponding ordered bipar-

tite graph Gp we have

Ex(n, P ) ≤ ex<(2n,Gp) = O(Ex(n, P ) log n).

The logarithmic term in the bound above is needed even for some small
matrices, e.g., for the matrix

P =

(

1 1

0 1

)

.

For this matrix, we have Ex(n, P ) = 2n − 1, but for the corresponding
ordered graph GP one has ex<(n,GP ) = n log n + O(n), where log stands
for the binary logarithm. A construction showing the lower bound for this
estimate is an ordered graph whose vertices are adjacent if and only if their
distance in the ordering is a power of 2.
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The extremal theory of 0-1 matrices predates the related theory of or-
dered graphs. Zoltán Füredi [8] and established the extremal function for a
specific 2-by-3 0-1 matrix and used this result for a problem in combinatorial
geometry: he bounded the number of diagonals of equal length in a convex
n-gon. Independently, Bienstock and Győri [2] found the extremal function
of few small 0-1 matrices. Later Füredi and Hajnal [9] started a systematic
study of the extremal theory of 0-1 matrices. This latter paper not only
contained many nice results, but was also rich in conjectures and had a sig-
nificant effect on future research. As we will see, some of these conjectures
have since been proved, others disproved and some are still open.

4 Relation between ordered and unordered

extremal functions

A (too) general conjecture that appeared in [9] can be informally stated as

Conjecture 1. For all 0-1 matrix P of positive weight we have

Ex(P, n) ≈ ex(GP , n),

where GP is the simple graph underlying the ordered graph GP .

This conjecture connects ordered extremal theory to the classical un-
ordered one. We clearly have an inequality in one direction:

Ex(n, P ) ≤ ex<(2n,GP ) ≤ ex(2n,GP ) = O(ex(n,GP )).

By Theorem 4, the first inequality is almost tight for any pattern, so we
concentrate of the second inequality and ask how large the ratio between the
two sides can be:

Question 1. How high can the ratio
ex<(n,P )

ex(n,P )
be for an ordered bipartite graph

P with more than two vertices and at least one edge and its underlying simple

graph P?

The paper [15] gives an ordering Pk of the cycle C2k with ex<(n, Pk) =
Ω(n4/3). Using the Bondy-Simonovits theorem on the extremal function of
cycles [3], one obtains that the ratio in Question 1 for the pattern P = Pk is
Ω(n1/3−1/k), which disproves Conjecture 1. We do not know if any pattern
with higher ratio, say Ω(n1/3) exists. For an upper bound, we trivially have
O(n), as both the enumerator and the denominator are functions between n
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and n2. In fact, they are O(n2−ǫ) for some ǫ > 0 depending on the size of
P by the Kővári-Sós-Turán theorem [13], so the ratio is always O(n1−ǫ), but
no better upper bound is known.

5 Forests

The Füredi-Hajnal paper [9] formulated the special case of Conjecture 1 for
cycle-free patterns P separately. Here we call a 0-1 matrix P cycle-free if the
corresponding simple graph GP is cycle-free, that is a forest. In this case,
ex(n,GP ) (the extremal function of an unordered forest) is trivially linear.
Concerning the corresponding question for ordered graphs, we formulate the
following conjecture:

Conjecture 2 For an ordered bipartite forest P and any c > 1, we have

ex<(P, n) = o(nc).

Note first that if this conjecture is true, then it characterizes the ordered
graphs with almost linear extremal functions. Indeed, if P is not ordered
bipartite, then ex<(P, n) = Θ(n2) by Theorem 3, while if the underlying
graph P contains a cycle, then ex<(P, n) ≥ ex(P , n) = Ω(nc) for some c > 1.

Note that o(nc) for all c > 1 is not the only possible way to quantify the
notion that a function is “close to linear”. One could formulate a stronger
conjecture with a bound O(n logc n) for a constant c = cP depending on P ,
or even with an O(n log n) bound. Conjecture 2 and the conjecture with
the O(n logc n) bound are still open and by Theorem 4 are equivalent to
the similar conjectures about Ex(P, n) for cycle-free 0-1 matrices P . The
strongest form of the conjecture (an O(n log n) bound) was also considered
for a while and was supported by the fact that it was easy to find an extremal
function of the order Θ(n log n), but there was no known example of an
ordered bipartite forest whose extremal function grows faster. Note that here
the distinction between cycle-free 0-1 matrices and ordered bipartite forests
is meaningful. As we have seen above, there exists a three-edge ordered
bipartite path whose extremal function is Θ(n log n). Although the extremal
function of the corresponding 2-by-2 matrix is linear, there is a 3-by-2 0-1
matrix whose extremal function is Θ(n log n). This was the first 0-1 matrix
considered in the context of extremal functions in the papers [8, 2].
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Seth Pettie [17] found a cycle-free 0-1 matrix P with extremal func-
tion slightly higher than n log n: for this matrix P one has Ex(P, n) =
Ω(n log n log log n). By this, he disproved the strengthening of Conjecture 2
with the O(n log n) upper bound, but the conjecture may still hold with the
bound O(n log2 n). Pettie’s result was slightly improved and the current best
lower bound is due Park and Shi [16]. They found a cycle-free 0-1 matrix Pm

with Ex(Pm, n) = Ω(n log n log log n · · · log(m) n), where log(m) denotes the
m-times-iterated logarithm function.

On the positive side, ex<(P, n) = O(n logc n) was established in [15] for
all ordered bipartite forests with at most 6 vertices. The most general result
in this direction is due to Korándi, Tardos, Tomon and Weidert [12]. They
call a 0-1 matrix M vertically degenerate if for any submatrix M ′ = (aij) of
M consisting of l > 1 rows one can find 1 ≤ k < l such that M ′ has at most
one column j with two 1-entries aij = ai′j = 1 satisfying 1 ≤ i ≤ k < i′ ≤ l.
Note that all vertically degenerate 0-1 matrices are cycle-free. All cycle-free
0-1 matrices with at most three rows are vertically degenerate, but there
are 4-row cycle-free 0-1 matrices that are not vertically degenerate. Using a
density increment argument they prove the following theorem.

Theorem 5 ([12]) Let M be a vertically degenerate 0-1 matrix with l rows.
We have

Ex<(M,n) = n2O(log1−1/l n).

This result implies that Conjecture 2 holds for all ordered graphs GM ,
where M is a vertically degenerate 0-1 matrix. By symmetry, Conjecture 2
is also true for all GM , where M is horizontally degenerate, that is, the
transpose of M is vertically degenerate. Conjecture 2 has not been verified
for any other ordered bipartite forest. The smallest of these open cases is an
ordered path on 8 vertices.

6 Linear extremal functions

Füredi and Hajnal conjectured [9], and later Marcus and Tardos proved [14],
that Ex(P, n) = O(n) for permutation matrices P . It is not hard to see
that this result can be restated in the following equivalent form (although
Theorem 4 does not directly imply this equivalence).
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Theorem 6 ([14]) The extremal function of any ordered bipartite matching

P is linear. That is,

Ex(P, n) = O(n).

Conjecture 2, if true, characterizes all ordered graphs with almost linear
extremal functions. It would be nice to find a characterization of ordered
graphs or 0-1 matrices with linear extremal functions. One possibility is
finding all minimally nonlinear matrices. We call a 0-1 matrix P minimally
nonlinear, if its extremal function Ex(P, n) is nonlinear, but Ex(P ′, n) = O(n)
for all 0-1 matrices P ′ 6= P contained in P . It might be possible to find such
a characterization, but the following theorem indicates that this might be a
difficult task:

Theorem 7 (Geneson and Keszegh [10, 11]) There are infinitely many

minimally nonlinear matrices.

7 Interaction between ordered graphs

We finish this survey with a few remarks on interactions between extremal
functions of different forbidden patterns. Let us start with the classical
extremal theory of graphs. Clearly, we have

ex({G,H}, n) ≤ min(ex(G, n), ex(H,n)). (∗)

By Theorem 2, the two sides are asymptotically the same for non-bipartite
graphs G and H. It is easy to see that they differ by a factor of less than 2
if only one of the graphs is bipartite. For bipartite graphs, the situation is
more complicated. We say that G and H interact if the two sides differ more
than by a constant factor. It is not known if there exists any interacting pair
of graphs, but Faudree and Simonovits conjecture [7] that the cycle C4 and
the subdivision of the complete graph K4, in which each edge is subdivided
with a single new vertex, do interact.

In contrast, for 0-1 matrices it is not hard to find a lot of interactions.
Consider the 3-by-2 matrixM1 =

(

1 1 0
1 0 1

)

. Füredi [8] and Bienstock and Győri

[2] proved that Ex(M1) = Θ(n log n). By symmetry, the extremal functions

of the matrices M2 =
(

1 0 1
1 1 0

)

, M3 =
(

0 1 1
1 0 1

)

and M4 =
(

1 0 1
0 1 1

)

are same. The
following theorem implies that each of M2, M3 and M4 interacts with M1:
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Theorem 8 ([18])
Ex({M1,M2}, n) = Θ(n)

Ex({M1,M3}, n) = Θ(n log n/ log log n)

Ex({M1,M4}, n) = Θ(n log log n)

These results represent the first step toward exploring interactions be-
tween different patterns. It would be interesting to find “stronger” interac-
tions, where the ratio between the right and left sides of (*) is larger than
logarithmic.

Question 2 Are there ordered graphs G and H such that

ex<({G,H}, n) = O(min(ex<(G, n), ex<(H,n))/nǫ)

for some ǫ > 0?
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[9] Z. Füredi, P. Hajnal, Davenport-Schinzel theory of matrices, Discrete
Mathematics 103 (1992), 233–251.

[10] J. T. Geneson, Extremal functions of forbidden double permutation ma-
trices, Journal of Combinatorial Theory, Ser. A 116 (2009), 1235–1244.

[11] B. Keszegh, On linear forbidden submatrices, Journal of Combinatorial

Theory, Ser. A 116 (2009), 232–241.

[12] D. Korándi, G. Tardos, I. Tomon, C. Weidert, On the Turán number of
ordered forests, manuscript, see at arXiv:1711.07723.
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