Galois Theory: Past and Present

Tamás Szamuely

Rényi Institute, Budapest
Evariste Galois (1811–1832)

submitted 3 papers on algebraic equations to the French Academy:
Evariste Galois (1811–1832)

submitted 3 papers on algebraic equations to the French Academy:

- one in 1828 – lost by the referee (Cauchy)
Evariste Galois (1811–1832)

submitted 3 papers on algebraic equations to the French Academy:

- one in 1828 – lost by the referee (Cauchy)
- one in 1829 – lost by the referee (Fourier)
Evariste Galois (1811–1832)

submitted 3 papers on algebraic equations to the French Academy:

- one in 1828 – lost by the referee (Cauchy)
- one in 1829 – lost by the referee (Fourier)
- one in 1830: *Mémoire sur les conditions de résolubilité des équations par radicaux* – refused by the referee (Poisson)
Evariste Galois (1811–1832)

submitted 3 papers on algebraic equations to the French Academy:

- one in 1828 – lost by the referee (Cauchy)
- one in 1829 – lost by the referee (Fourier)
- one in 1830: *Mémoire sur les conditions de résolubilité des équations par radicaux* – refused by the referee (Poisson)
- plus posthumous fragments, and the famous letter to Auguste Chevalier, of which the last words are:

 “[...] il y aura, j'espère, des gens qui trouveront leur profit à déchiffrer tout ce gâchis.”
Solvability by radicals

The equation

\[x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

is *solvable by radicals* if the \(\alpha_i \) can be obtained from the \(a_j \) in finitely many steps by taking suitable rational functions and \(m \)-th roots.
The equation

\[x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

is solvable by radicals if the \(\alpha_i \) can be obtained from the \(a_j \) in finitely many steps by taking suitable rational functions and \(m \)-th roots.

Some highlights of the theory before Galois:

- equations of degree \(\leq 4 \) are solvable by radicals (Cardano, Ferrari)
Solvability by radicals

The equation

\[x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

is solvable by radicals if the \(\alpha_i \) can be obtained from the \(a_j \) in finitely many steps by taking suitable rational functions and \(m \)-th roots.

Some highlights of the theory before Galois:

- equations of degree \(\leq 4 \) are solvable by radicals (Cardano, Ferrari)
- cyclotomic equations

\[x^{n-1} + x^{n-2} + \cdots + x + 1 = 0 \]

are solvable by radicals (Gauss)
Solvability by radicals

The equation

\[x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

is solvable by radicals if the \(\alpha_i \) can be obtained from the \(a_j \) in finitely many steps by taking suitable rational functions and \(m \)-th roots.

Some highlights of the theory before Galois:

- equations of degree \(\leq 4 \) are solvable by radicals (Cardano, Ferrari)
- cyclotomic equations
 \[x^{n-1} + x^{n-2} + \cdots + x + 1 = 0 \]
 are solvable by radicals (Gauss)
- more generally, equations ‘with abelian Galois group’ are solvable by radicals (Abel)
Solvability by radicals

The equation

\[x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

is solvable by radicals if the \(\alpha_i \) can be obtained from the \(a_j \) in finitely many steps by taking suitable rational functions and \(m \)-th roots.

Some highlights of the theory before Galois:

- equations of degree \(\leq 4 \) are solvable by radicals (Cardano, Ferrari)
- cyclotomic equations
 \[x^{n-1} + x^{n-2} + \cdots + x + 1 = 0 \]
 are solvable by radicals (Gauss)
- more generally, equations ‘with abelian Galois group’ are solvable by radicals (Abel)
- the ‘general equations’ of degree \(\geq 5 \) are not solvable by radicals (Abel)
Consider the equation

\[f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

where \(a_i \in K \), a field of characteristic 0.
Consider the equation

\[f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

where \(a_i \in K \), a field of characteristic 0.

Assume the \(\alpha_i \) are distinct. Put

\[
K(\alpha_1, \ldots, \alpha_n) := \{ F(\alpha_1, \ldots, \alpha_n) : F \in K(x_1, \ldots, x_n) \}
\]

(This is the smallest subfield of \(\overline{K} \) containing the \(\alpha_i \).)

The equation is not assumed to be irreducible.
Consider the equation

\[f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

where \(a_i \in K \), a field of characteristic 0. Assume the \(\alpha_i \) are distinct. Put

\[K(\alpha_1, \ldots, \alpha_n) := \{ F(\alpha_1, \ldots, \alpha_n) : F \in K(x_1, \ldots, x_n) \} \]

(This is the smallest subfield of \(\overline{K} \) containing the \(\alpha_i \).

The equation is not assumed to be irreducible.

1. For every \(\alpha \in K(\alpha_1, \ldots, \alpha_n) \) there is a unique monic irreducible polynomial \(p \in K[x] \) with \(p(\alpha) = 0 \), the minimal polynomial of \(\alpha \).
Consider the equation

\[f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 = (x - \alpha_1) \cdots (x - \alpha_n) = 0 \]

where \(a_i \in K \), a field of characteristic 0. Assume the \(\alpha_i \) are distinct. Put

\[K(\alpha_1, \ldots, \alpha_n) := \{ F(\alpha_1, \ldots, \alpha_n) : F \in K(x_1, \ldots, x_n) \} \]

(This is the smallest subfield of \(\overline{K} \) containing the \(\alpha_i \).)

The equation is not assumed to be irreducible.

1. For every \(\alpha \in K(\alpha_1, \ldots, \alpha_n) \) there is a unique monic irreducible polynomial \(p \in K[x] \) with \(p(\alpha) = 0 \), the minimal polynomial of \(\alpha \).

2. There exists \(\beta \in K(\alpha_1, \ldots, \alpha_n) \) with

\[K(\alpha_1, \ldots, \alpha_n) = K(\beta) \]

(theorem of the primitive element).
So \(\alpha_i = f_i(\beta) \) with some \(f_i \in K[x] \), for all \(i \).
So \(\alpha_i = f_i(\beta) \) with some \(f_i \in K[x] \), for all \(i \).

3. Let \(\beta = \beta_1, \ldots, \beta_m \) be the roots of \(p \).
 Then for all \(j \) the sequence \(f_1(\beta_j), \ldots, f_n(\beta_j) \) is a permutation of the \(\alpha_i \).
 Denoting this permutation by \(\sigma_j \), the elements \(\sigma_1, \ldots, \sigma_m \) form the Galois group.
So $\alpha_i = f_i(\beta)$ with some $f_i \in K[x]$, for all i.

3. Let $\beta = \beta_1, \ldots, \beta_m$ be the roots of p.
Then for all j the sequence $f_1(\beta_j), \ldots, f_n(\beta_j)$ is a permutation of the α_i.
Denoting this permutation by σ_j, the elements $\sigma_1, \ldots, \sigma_m$ form the Galois group.

4. Let $L|K$ be a field extension obtained by adjoining roots of some equation $g(x) = 0$ to K.
The Galois group of f over L is a subgroup of its Galois group over K; it is a normal subgroup if and only if L is obtained by adjoining all roots of g.
Main results of the Mémoire in modern language

So $\alpha_i = f_i(\beta)$ with some $f_i \in K[x]$, for all i.

3. Let $\beta = \beta_1, \ldots, \beta_m$ be the roots of p.
Then for all j the sequence $f_1(\beta_j), \ldots, f_n(\beta_j)$ is a permutation of the α_i.
Denoting this permutation by σ_j, the elements $\sigma_1, \ldots, \sigma_m$ form the Galois group.

4. Let $L|K$ be a field extension obtained by adjoining roots of some equation $g(x) = 0$ to K.
The Galois group of f over L is a subgroup of its Galois group over K; it is a normal subgroup if and only if L is obtained by adjoining all roots of g.

5. The equation $f(x) = 0$ is solvable by radicals if and only if its Galois group is solvable, i.e. there is a chain of normal subgroups

$$G = G_0 \supset G_1 \supset \cdots \supset G_r = \{1\}$$

where G_i is of prime index in G_{i-1}.
Applications

An irreducible equation

\[f(x) = (x - \alpha_1) \cdots (x - \alpha_p) = 0 \]

of prime degree is solvable by radicals if and only if the roots \(\alpha_i \) can be expressed as rational functions of any two of them.
Applications

An irreducible equation

\[f(x) = (x - \alpha_1) \cdots (x - \alpha_p) = 0 \]

of prime degree is solvable by radicals if and only if the roots \(\alpha_i \) can be expressed as rational functions of any two of them.

[Uses the classification of solvable transitive subgroups of \(S_p \): they are conjugates of subgroups of

\[\{ x \mapsto ax + b : a, b \in \mathbb{F}_p \} \].]
An irreducible equation

\[f(x) = (x - \alpha_1) \cdots (x - \alpha_p) = 0 \]

of prime degree is solvable by radicals if and only if the roots \(\alpha_i \)
can be expressed as rational functions of any two of them.

[Uses the classification of solvable transitive subgroups of \(S_p \): they
are conjugates of subgroups of

\[\{ x \mapsto ax + b : a, b \in \mathbb{F}_p \}. \]

Another application from fragments: Let \(p \) be an odd prime. Consider the Galois cover

\[\Gamma_0(p) \backslash H \to \Gamma_0 \backslash H \cong \mathbb{C}. \]

Adding cusps we get a branched cover of modular curves

\[X_0(p) \to \mathbb{P}^1_{\mathbb{C}}. \]

The Galois group is \(\text{PSL}(2, p) \) which is simple for \(p \neq 3 \). So the
modular equation is not solvable by radicals.
Later developments

- The work of Galois was clarified by Liouville, Jordan...

- Weber (1888) recast the theory in the language of field extensions.
- Dedekind (1894) defined the Galois group as the automorphism group of a field extension.
- Steinitz (1909) constructed the algebraic closure and clarified questions of separability.
- Artin (1920's) formulated the Galois correspondence, i.e. the bijection \(\{ \text{subextensions of } L | K \} \leftrightarrow \{ \text{subgroups of } G \} \) for a finite Galois extension \(L | K \) with group \(G \).
- Artin (1942) defined a finite Galois extension as a field extension \(L | K \) where \(K \) is the fixed field of a finite group \(G \) acting on \(L \).
Later developments

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions

Dedekind (1894) defined the Galois group as the automorphism group of a field extension.

Steinitz (1909) constructed the algebraic closure and clarified questions of separability.

Artin (1920's) formulated the Galois correspondence, i.e. the bijection \(\{\text{subextensions of } L|K\} \leftrightarrow \{\text{subgroups of } G\} \) for a finite Galois extension \(L|K \) with group \(G \).

Artin (1942) defined a finite Galois extension as a field extension \(L|K \) where \(K \) is the fixed field of a finite group \(G \) acting on \(L \).
Later developments

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions
- Dedekind (1894) defined the Galois group as the automorphism group of a field extension
Later developments

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions
- Dedekind (1894) defined the Galois group as the automorphism group of a field extension
- Steinitz (1909) constructed the algebraic closure and clarified questions of separability
Later developments

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions
- Dedekind (1894) defined the Galois group as the automorphism group of a field extension
- Steinitz (1909) constructed the algebraic closure and clarified questions of separability
- Artin (1920’s) formulated the *Galois correspondence*, i.e. the bijection

\[
\{\text{subextensions of } L|K\} \leftrightarrow \{\text{subgroups of } G\}
\]

for a finite Galois extension $L|K$ with group G
Later developments

- The work of Galois was clarified by Liouville, Jordan...
- Weber (1888) recast the theory in the language of field extensions
- Dedekind (1894) defined the Galois group as the automorphism group of a field extension
- Steinitz (1909) constructed the algebraic closure and clarified questions of separability
- Artin (1920’s) formulated the Galois correspondence, i.e. the bijection

\[
\{\text{subextensions of } L|K\} \leftrightarrow \{\text{subgroups of } G\}
\]

for a finite Galois extension \(L|K \) with group \(G \)

- Artin (1942) defined a finite Galois extension as a field extension \(L|K \) where \(K \) is the fixed field of a finite group \(G \) acting on \(L \).
Dedekind’s insight: for infinite Galois extensions “die Galoissche Gruppe gewissermaßen eine stetige Mannigfaltigkeit bide”.

In modern language: Like Artin, define an algebraic extension $K|k$ to be Galois if the subfield of K fixed by the action of $\text{Aut}(K|k)$ is k. In this case $\text{Gal}(K|k) := \text{Aut}(K|k)$ is the Galois group. Given a tower of finite Galois subextensions $M|L|k$ contained in $K|k$, there is a canonical surjection $\phi_{ML}: \text{Gal}(M|k) \twoheadrightarrow \text{Gal}(L|k)$. If $K \supset N \supset M$ is yet another finite Galois extension of k, we have $\phi_{NL} = \phi_{ML} \circ \phi_{NM}$. So if we “pass to the limit in M”, then $\text{Gal}(L|k)$ will become a quotient of $\text{Gal}(K|k)$.
Dedekind’s insight: for infinite Galois extensions “die Galoissche Gruppe gewissermaßen eine stetige Mannigfaltigkeit bilde”.

Justified by Krull (1928). In modern language:

Like Artin, define an algebraic extension $K|k$ to be Galois if the subfield of K fixed by the action of $\text{Aut}(K|k)$ is k.

In this case $\text{Gal}(K|k) := \text{Aut}(K|k)$ is the Galois group.
Dedekind’s insight: for infinite Galois extensions “die Galoissche Gruppe gewissermaßen eine stetige Mannigfaltigkeit bilde”. Justified by Krull (1928). In modern language:

Like Artin, define an algebraic extension \(K \mid k \) to be Galois if the subfield of \(K \) fixed by the action of \(\text{Aut}(K \mid k) \) is \(k \). In this case \(\text{Gal}(K \mid k) := \text{Aut}(K \mid k) \) is the Galois group.

Given a tower of finite Galois subextensions \(M \mid L \mid k \) contained in \(K \mid k \), there is a canonical surjection \(\phi_{ML} : \text{Gal}(M \mid k) \twoheadrightarrow \text{Gal}(L \mid k) \).

If \(K \supset N \supset M \) is yet another finite Galois extension of \(k \), we have

\[
\phi_{NL} = \phi_{ML} \circ \phi_{NM}.
\]
Dedekind’s insight: for infinite Galois extensions “die Galoissche Gruppe gewissermaßen eine stetige Mannigfaltigkeit bilde”. Justified by Krull (1928). In modern language:

Like Artin, define an algebraic extension $K|k$ to be Galois if the subfield of K fixed by the action of $\text{Aut}(K|k)$ is k. In this case $\text{Gal}(K|k) := \text{Aut}(K|k)$ is the Galois group.

Given a tower of finite Galois subextensions $M|L|k$ contained in $K|k$, there is a canonical surjection $\phi_{ML} : \text{Gal}(M|k) \rightarrow \text{Gal}(L|k)$. If $K \supset N \supset M$ is yet another finite Galois extension of k, we have

$$\phi_{NL} = \phi_{ML} \circ \phi_{NM}.$$

So if we “pass to the limit in M”, then $\text{Gal}(L|k)$ will become a quotient of $\text{Gal}(K|k)$.
This is achieved by proving

\[\text{Gal}(K|k) \cong \lim_{\leftarrow L} \text{Gal}(L|k) \]

The RHS is a subgroup of the direct product, so inherits a topology if the \(\text{Gal}(L|k) \) are taken to be discrete. It is called the \textit{Krull topology}.

\[\text{Gal}(K|k) \text{ is compact and totally disconnected. It is either finite or uncountable. Its finite quotients are the } \text{Gal}(L|k). \]

\textbf{Theorem (Krull's Galois correspondence)}

\[\{ \text{subextensions of } K|k \} \leftrightarrow \{ \text{closed subgroups of } \text{Gal}(K|k) \} \]

This applies in particular to \(K = k_s = \text{separable closure of } k \).

\[\text{Gal}(k_s|k) \text{ is the absolute Galois group of } k. \]
This is achieved by proving

\[\text{Gal}(K|k) \cong \lim_{\leftarrow L} \text{Gal}(L|k) \]

The RHS is a subgroup of the direct product, so inherits a topology if the \(\text{Gal}(L|k) \) are taken to be discrete. It is called the \textit{Krull topology}.

\(\text{Gal}(K|k) \) is compact and totally disconnected. It is either finite or uncountable. Its finite quotients are the \(\text{Gal}(L|k) \).

\textbf{Theorem (Krull's Galois correspondence)}

\{ subextensions of \(K|k \) \} \leftrightarrow \{ \text{closed subgroups of } \text{Gal}(K|k) \}
This is achieved by proving

\[\text{Gal}(K|k) \cong \lim_{\leftarrow L} \text{Gal}(L|k) \]

The RHS is a subgroup of the direct product, so inherits a topology if the \(\text{Gal}(L|k) \) are taken to be discrete. It is called the \textit{Krull topology}.

\(\text{Gal}(K|k) \) is compact and totally disconnected. It is either finite or uncountable. Its finite quotients are the \(\text{Gal}(L|k) \).

Theorem (Krull’s Galois correspondence)

\{\text{subextensions of } K|k\} \leftrightarrow \{\text{closed subgroups of } \text{Gal}(K|k)\}

This applies in particular to \(K = k_s = \text{separable closure of } k \). \(\text{Gal}(k_s|k) \) is the \textit{absolute Galois group} of \(k \).
Inverse questions

Fact: If G is a finite group, there is a Galois extension $K|k$ with $\text{Gal}(K|k) \cong G$.
Fact: If G is a finite group, there is a Galois extension $K|k$ with $\text{Gal}(K|k) \cong G$.
[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i; then take G-invariants.]
Fact: If G is a finite group, there is a Galois extension $K|k$ with $\text{Gal}(K|k) \cong G$.

[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i; then take G-invariants.]

Leptin (1955): The above is true for any profinite group G.
Fact: If G is a finite group, there is a Galois extension $K|k$ with $\text{Gal}(K|k) \cong G$.
[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i; then take G-invariants.]
Leptin (1955): The above is true for any profinite group G.
Question: Which profinite groups are absolute Galois groups?
Inverse questions

Fact: If G is a finite group, there is a Galois extension $K|k$ with $\text{Gal}(K|k) \cong G$.

[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i; then take G-invariants.]

Leptin (1955): The above is true for any profinite group G.

Question: Which profinite groups are absolute Galois groups?

Artin, Schreier (1927): A finite group G is an absolute Galois group if and only if $|G| \leq 2$.
Fact: If G is a finite group, there is a Galois extension $K|k$ with $\text{Gal}(K|k) \cong G$.
[Embed G in S_n for some n and make it act on $k(x_1, \ldots, x_n)$ by permuting the x_i; then take G-invariants.]
Leptin (1955): The above is true for any profinite group G.
Question: Which profinite groups are absolute Galois groups?
Artin, Schreier (1927): A finite group G is an absolute Galois group if and only if $|G| \leq 2$.
For arbitrary G the question is open. A famous necessary condition is given by:
Voevodsky (2003): If G is the absolute Galois group of a field, then the cohomology ring
$$\bigoplus_{i=1}^{\infty} H^i(G, \mathbb{Z}/2\mathbb{Z})$$
is generated by $H^1(G, \mathbb{Z}/2\mathbb{Z})$.
Galois characterization of fields

Take two primes $p \neq q$, and consider

$$K_1 = \mathbb{Q}(\sqrt{p}) \quad \text{and} \quad K_2 = \mathbb{Q}(\sqrt{q}).$$

Question: can $\text{Gal}(\overline{\mathbb{Q}}|K_1)$ and $\text{Gal}(\overline{\mathbb{Q}}|K_2)$ be isomorphic?

Answer: NO, for arithmetic reasons.

[The prime p ramifies in K_1 but not in K_2; this is 'seen' by the local Euler characteristic.]

In fact, we have:

Neukirch (1969): Let K_1 and K_2 be Galois extensions of \mathbb{Q}. Then every isomorphism $\text{Gal}(K_1|K_1) \sim \to \text{Gal}(K_2|K_2)$ is induced by a unique isomorphism of fields $K_2 \sim \to K_1$.

Vast generalization (Pop, 1996): The above is true more generally for fields finitely generated over the prime field (up to a purely inseparable extension in characteristic > 0).
Galois characterization of fields

Take two primes $p \neq q$, and consider

$$K_1 = \mathbb{Q}(\sqrt{p}) \quad \text{and} \quad K_2 = \mathbb{Q}(\sqrt{q}).$$

Question: can $\text{Gal}(\overline{\mathbb{Q}}|K_1)$ and $\text{Gal}(\overline{\mathbb{Q}}|K_2)$ be isomorphic?
Answer: NO, for arithmetic reasons.

[The prime p ramifies in K_1 but not in K_2; this is ‘seen’ by the local Euler characteristic.]
Take two primes $p \neq q$, and consider

$$K_1 = \mathbb{Q}(\sqrt{p}) \quad \text{and} \quad K_2 = \mathbb{Q}(\sqrt{q}).$$

Question: can $\text{Gal}(\bar{\mathbb{Q}}|K_1)$ and $\text{Gal}(\bar{\mathbb{Q}}|K_2)$ be isomorphic?

Answer: NO, for arithmetic reasons.

[The prime p ramifies in K_1 but not in K_2; this is ‘seen’ by the local Euler characteristic.]

In fact, we have:

Neukirch (1969): Let K_1 and K_2 be Galois extensions of \mathbb{Q}. Then every isomorphism

$$\text{Gal}(ar{K}_1|K_1) \xrightarrow{\sim} \text{Gal}(ar{K}_2|K_2)$$

is induced by a unique isomorphism of fields

$$K_2 \xrightarrow{\sim} K_1.$$
Galois characterization of fields

Take two primes \(p \neq q \), and consider

\[K_1 = \mathbb{Q}(\sqrt{p}) \quad \text{and} \quad K_2 = \mathbb{Q}(\sqrt{q}). \]

Question: can \(\text{Gal}(\overline{\mathbb{Q}}|K_1) \) and \(\text{Gal}(\overline{\mathbb{Q}}|K_2) \) be isomorphic?

Answer: NO, for arithmetic reasons.

[The prime \(p \) ramifies in \(K_1 \) but not in \(K_2 \); this is ‘seen’ by the local Euler characteristic.]

In fact, we have:

Neukirch (1969): Let \(K_1 \) and \(K_2 \) be Galois extensions of \(\mathbb{Q} \). Then every isomorphism

\[\text{Gal}(\overline{K_1}|K_1) \rightarrow \text{Gal}(\overline{K_2}|K_2) \]

is induced by a unique isomorphism of fields

\[K_2 \rightarrow K_1. \]

Vast generalization (Pop, 1996): The above is true more generally for fields finitely generated over the prime field (up to a purely inseparable extension in characteristic \(> 0 \)).
The absolute Galois group of \(\mathbb{Q} \)

Conjecture (folklore)

Every finite group is a quotient of \(\text{Gal}(\bar{\mathbb{Q}}|\mathbb{Q}) \).*
Conjecture (folklore)

Every finite group is a quotient of $\text{Gal}(\bar{\mathbb{Q}}|\mathbb{Q})$.

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
Conjecture (folklore)

Every finite group is a quotient of \(\text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \).

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
- most finite simple groups, including all sporadic groups but one (Belyi, Fried, Malle, Matzat, Thompson...)
The absolute Galois group of \mathbb{Q}

Conjecture (folklore)

Every finite group is a quotient of $\text{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$.

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
- most finite simple groups, including all sporadic groups but one (Belyi, Fried, Malle, Matzat, Thompson...)

The absolute Galois group of \mathbb{Q}

Conjecture (folklore)

*Every finite group is a quotient of $\text{Gal}(\bar{\mathbb{Q}}|\mathbb{Q})$.***

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
- most finite simple groups, including all sporadic groups but one (Belyi, Fried, Malle, Matzat, Thompson...)

But even if we knew a positive answer to the conjecture, this would not describe the structure of $\text{Gal}(\bar{\mathbb{Q}}|\mathbb{Q})$. The following would yield more:
The absolute Galois group of \mathbb{Q}

Conjecture (folklore)

*Every finite group is a quotient of $\text{Gal}(\bar{\mathbb{Q}}|\mathbb{Q})$.***

Open in general, known in many cases, among which:

- solvable groups (Shafarevich; Neukirch for groups of odd order)
- most finite simple groups, including all sporadic groups but one (Belyi, Fried, Malle, Matzat, Thompson...)

But even if we knew a positive answer to the conjecture, this would not describe the structure of $\text{Gal}(\bar{\mathbb{Q}}|\mathbb{Q})$. The following would yield more:

Conjecture (Shafarevich)

The group $\text{Gal}(\bar{\mathbb{Q}}|\mathbb{Q}(\mu))$ is a free profinite group, where $\mathbb{Q}(\mu)$ is obtained by adjoining all roots of unity.
Grothendieck’s reformulation

Let k be a field, k_s a separable closure, $G := \text{Gal}(k_s|k)$.
Grothendieck’s reformulation

Let \(k \) be a field, \(k_s \) a separable closure,
\(G := \text{Gal}(k_s|k) \).
It acts on \(k_s \), hence on \(\text{Hom}_k(L, k_s) \) for all \(L|k \) (\(k \)-algebra homomorphisms).
Grothendieck’s reformulation

Let k be a field, k_s a separable closure,
$G := \text{Gal}(k_s|k)$.
It acts on k_s, hence on $\text{Hom}_k(L, k_s)$ for all $L|k$ (k-algebra homomorphisms).
If $L = k(\alpha)$ is finite separable, $\text{Hom}_k(L, k_s)$ is finite. Give it the discrete topology. The G-action is continuous and transitive.
Let k be a field, k_s a separable closure, $G := \text{Gal}(k_s|k)$.
It acts on k_s, hence on $\text{Hom}_k(L, k_s)$ for all $L|k$ (k-algebra homomorphisms).
If $L = k(\alpha)$ is finite separable, $\text{Hom}_k(L, k_s)$ is finite. Give it the discrete topology. The G-action is continuous and transitive.

Theorem

The contravariant functor

$$L \rightarrow \text{Hom}_k(L, k_s)$$

gives an anti-equivalence of categories:

\{finite separable extensions $L|k$\} \leftrightarrow \{finite sets + continuous transitive G-action\}
Let k be a field, k_s a separable closure, $G := \text{Gal}(k_s|k)$.
It acts on k_s, hence on $\text{Hom}_k(L, k_s)$ for all $L|k$ (k-algebra homomorphisms).
If $L = k(\alpha)$ is finite separable, $\text{Hom}_k(L, k_s)$ is finite. Give it the discrete topology. The G-action is continuous and transitive.

Theorem

The contravariant functor

$$L \rightarrow \text{Hom}_k(L, k_s)$$

gives an anti-equivalence of categories:

\{finite separable extensions $L|k$\} \leftrightarrow \{finite sets + continuous transitive G-action\}
Grothendieck’s reformulation

[Inverse functor: finite continuous G-set \mapsto subfield of k_s fixed by the stabilizer of a point]
[Inverse functor:
finite continuous G-set \mapsto subfield of k_s fixed by the stabilizer of a point]

Definition. A finite étale k-algebra is a finite direct product of separable extensions of k.
Grothendieck’s reformulation

[Inverse functor:
finite continuous G-set \mapsto subfield of k_s fixed by the stabilizer of a point]

Definition. A finite étale k-algebra is a finite direct product of separable extensions of k.

Theorem

The contravariant functor

$$A \rightarrow \text{Hom}_k(A, k_s)$$

gives an anti-equivalence of categories

$$\{\text{finite étale } k\text{-algebras}\} \leftrightarrow \{\text{finite sets + continuous } G\text{-action}\}$$
Topological analogue

X = ‘nice’ topological space, e.g. a topological manifold
Topological analogue

X = ‘nice’ topological space, e.g. a topological manifold
$Y \rightarrow X$: cover of X
X = ‘nice’ topological space, e.g. a topological manifold
$Y \to X$: cover of X
$\text{Fib}_x(Y) :=$ fibre of Y over $x \in X$.
Topological analogue

\(X \) = ‘nice’ topological space, e.g. a topological manifold

\(Y \to X \): cover of \(X \)

\(\text{Fib}_x(Y) := \text{fibre of } Y \text{ over } x \in X \).

It carries an action by the fundamental group \(\pi_1(X, x) \) (‘lifting paths and homotopies’).
Topological analogue

x = ‘nice’ topological space, e.g. a topological manifold
$Y \to X$: cover of X
$\text{Fib}_x(Y) :=$ fibre of Y over $x \in X$.
It carries an action by the fundamental group $\pi_1(X, x)$ (‘lifting paths and homotopies’).

Theorem

The functor

\[Y \to \text{Fib}_x(Y) \]

gives an equivalence of categories

\[\{ \text{covers of } X \} \leftrightarrow \{ \pi_1(X, x)\text{-sets} \} \]
Topological analogue

X = ‘nice’ topological space, e.g. a topological manifold
$Y \to X$: cover of X
$\text{Fib}_x(Y) :=$ fibre of Y over $x \in X$.
It carries an action by the fundamental group $\pi_1(X, x)$ (‘lifting paths and homotopies’).

Theorem

The functor

$$Y \to \text{Fib}_x(Y)$$

gives an equivalence of categories

$$\{\text{covers of } X\} \leftrightarrow \{\pi_1(X, x)\text{-sets}\}$$

Let $\Pi :=$ profinite completion of $\pi_1(X, x)$.

Topological analogue

X = ‘nice’ topological space, e.g. a topological manifold

$Y \to X$: cover of X

$\text{Fib}_x(Y) :=$ fibre of Y over $x \in X$.

It carries an action by the fundamental group $\pi_1(X, x)$ (‘lifting paths and homotopies’).

Theorem

The functor

$$Y \to \text{Fib}_x(Y)$$

gives an equivalence of categories

$$\{\text{covers of } X\} \leftrightarrow \{\pi_1(X, x)\text{-sets}\}$$

Let $\Pi :=$ profinite completion of $\pi_1(X, x)$.

We get an equivalence

$$\{\text{finite covers of } X\} \leftrightarrow \{\text{finite continuous } \Pi\text{-sets}\}$$
Grothendieck’s π_1

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \rightarrow X$.
Grothendieck’s π_1

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.

For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

$$\{\text{finite étale } Y \to X\} \leftrightarrow \leftrightarrow \{\text{finite continuous } \pi_1(X, \bar{x})\text{-sets}\}$$

This gives interesting representations of $\text{Gal}(k_s|k)$.
Grothendieck’s π_1

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \rightarrow X$.

For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

$$\{\text{finite étale } Y \rightarrow X\} \leftrightarrow \{\text{finite continuous } \pi_1(X, \bar{x})\text{-sets}\}$$

It is induced by a fibre functor $Y \rightarrow \text{Fib}_{\bar{x}}(Y)$.
Grothendieck’s π_1

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.
For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

$$\{\text{finite étale } Y \to X\} \leftrightarrow \leftrightarrow \{\text{finite continuous } \pi_1(X, \bar{x})\text{-sets}\}$$

It is induced by a fibre functor $Y \to \text{Fib}_{\bar{x}}(Y)$.

- For $X =$ point over k, $\pi_1(X, \bar{x}) = \text{Gal}(k_s|k)$.

Grothendieck’s π_1

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.
For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

$$\{\text{finite étale } Y \to X\} \leftrightarrow \leftrightarrow \{\text{finite continuous } \pi_1(X, \bar{x})\text{-sets}\}$$

It is induced by a fibre functor $Y \to \text{Fib}_{\bar{x}}(Y)$.

- For $X=$ point over k, $\pi_1(X, \bar{x}) = \text{Gal}(k_s | k)$.
- For $X=$ variety over \mathbb{C},

$$\pi_1(X, \bar{x}) = \text{profinite completion of } \pi^{\text{top}}_1(X, \bar{x})$$

(actually its opposite group).
Grothendieck’s π_1

Analogue of finite cover in algebraic geometry: surjective finite étale maps $Y \to X$.

For X equipped with a geometric point Grothendieck defined a profinite group $\pi_1(X, \bar{x})$ together with an equivalence of categories

$$\{\text{finite étale } Y \to X\} \leftrightarrow \leftrightarrow \{\text{finite continuous } \pi_1(X, \bar{x})\text{-sets}\}$$

It is induced by a fibre functor $Y \to \text{Fib}_{\bar{x}}(Y)$.

- For X = point over k, $\pi_1(X, \bar{x}) = \text{Gal}(k_s|k)$.
- For X = variety over \mathbb{C},

$$\pi_1(X, \bar{x}) = \text{profinite completion of } \pi_1^{\text{top}}(X, \bar{x})$$

(actually its opposite group).

When X is defined over a subfield $k \subset \mathbb{C}$, $\pi_1(X, \bar{x})$ carries an outer action by $\text{Gal}(k_s|k)$.
This gives interesting representations of $\text{Gal}(k_s|k)$.
Up to now we have only considered *permutation representations*. But *linear* representations are much more common ‘in nature’.
Up to now we have only considered *permutation representations*. But *linear* representations are much more common ‘in nature’.

Example

If $X \subset \mathbb{C}$ is a complex domain, $x \in X$, n-th order linear holomorphic differential equations

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_{n-1} y' + a_n y = 0$$

give rise to representations $\rho : \pi_1(X, x) \to \text{GL}_n(\mathbb{C})$.
Up to now we have only considered *permutation representations*. But *linear* representations are much more common ‘in nature’.

Example

If $X \subset \mathbb{C}$ *is a complex domain,* $x \in X$, *n-th order linear holomorphic differential equations*

$$y^{(n)} + a_1y^{(n-1)} + \cdots + a_{n-1}y' + a_n y = 0$$

give rise to representations $\rho : \pi_1(X, x) \to \text{GL}_n(\mathbb{C})$: *By Cauchy’s existence theorem, local solutions around* x *form an n-dimensional* \mathbb{C}-*vector space on which* $\pi_1(X, x)$ *acts by the monodromy action.*
Tannakian duality

Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.
Tannakian duality

Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

Consider the subcategory generated by ρ after doing all these constructions. How much of $\pi_1(X, x)$ does it determine?

The Zariski closure of $\text{Im}(\rho)$ in $\text{GL}_n(\mathbb{C})$. This is a linear algebraic group.

If we consider all monodromy representations, we get an affine group scheme.

Tannakian duality

A rigid k-linear abelian tensor category C equipped with a faithful exact tensor functor ('fibre functor') $C \to \text{finite-dimensional } k$-vector spaces is equivalent to the finite-dimensional representations of an affine k-group scheme.
Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

Consider the subcategory generated by ρ after doing all these constructions. How much of $\pi_1(X, x)$ does it determine?

Answer: The Zariski closure of $\text{Im} (\rho)$ in $GL_n(C)$. This is a *linear algebraic group*.
Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

Consider the subcategory generated by ρ after doing all these constructions. How much of $\pi_1(X, x)$ does it determine?

Answer: The Zariski closure of $\text{Im}(\rho)$ in $\text{GL}_n(\mathbb{C})$.

This is a *linear algebraic group*.

If we consider *all* monodromy representations, we get an *affine group scheme*.
Algebraically, finite-dimensional complex representations form a category stable by subrepresentations, quotients, tensor products, duals.

Consider the subcategory generated by ρ after doing all these constructions. How much of $\pi_1(X, x)$ does it determine?

Answer: The Zariski closure of $\text{Im}(\rho)$ in $\text{GL}_n(\mathbb{C})$. This is a *linear algebraic group*.

If we consider all monodromy representations, we get an *affine group scheme*.

Tannakian duality

A *rigid k-linear abelian tensor category* C equipped with a faithful exact tensor functor (‘fibre functor’)

$C \to$ finite-dimensional k-vector spaces

is equivalent to the finite-dimensional representations of an affine k-group scheme.
In examples, the tensor subcategories generated by a single object often correspond to representations of a linear algebraic group.
In examples, the tensor subcategories generated by a single object often correspond to representations of a linear algebraic group.

- holomorphic differential equations \rightarrow algebraic monodromy groups

Thus all these objects are classified by algebraic group actions. This was Galois' main idea!
In examples, the tensor subcategories generated by a single object often correspond to representations of a linear algebraic group.

- holomorphic differential equations \rightarrow algebraic monodromy groups
- differential modules \rightarrow differential Galois groups
Examples

In examples, the tensor subcategories generated by a single object often correspond to representations of a linear algebraic group.

- holomorphic differential equations \rightarrow algebraic monodromy groups
- differential modules \rightarrow differential Galois groups
- Hodge structures \rightarrow Mumford–Tate groups

Thus all these objects are classified by algebraic group actions. This was Galois' main idea!
In examples, the tensor subcategories generated by a single object often correspond to representations of a linear algebraic group.

- holomorphic differential equations \rightarrow algebraic monodromy groups
- differential modules \rightarrow differential Galois groups
- Hodge structures \rightarrow Mumford–Tate groups
- motives \rightarrow motivic Galois groups

Thus all these objects are classified by algebraic group actions. This was Galois' main idea!
In examples, the tensor subcategories generated by a single object often correspond to representations of a linear algebraic group.

- holomorphic differential equations \rightarrow algebraic monodromy groups
- differential modules \rightarrow differential Galois groups
- Hodge structures \rightarrow Mumford–Tate groups
- motives \rightarrow motivic Galois groups

Thus all these objects are classified by algebraic group actions.
In examples, the tensor subcategories generated by a single object often correspond to representations of a linear algebraic group.

- holomorphic differential equations \rightarrow algebraic monodromy groups
- differential modules \rightarrow differential Galois groups
- Hodge structures \rightarrow Mumford–Tate groups
- motives \rightarrow motivic Galois groups

Thus all these objects are classified by algebraic group actions. This was Galois’ main idea!