


1. Introduction:
Beyond the Paradigm of Carbonyl Chemistry

Life on Earth requires the construction of carbon ± carbon
bonds in an aqueous environment. Carbonyl (aldol) chemistry
is nature�s primary engine of CÿC bond formation. Not only
do the requisite carbon electrophiles (carbonyls) and nucleo-
philes coexist in water, but water provides the perfect
environment for proton shuttling among reactants, which is
required for reversible carbonyl chemistry.

With CO2 as the carbon source and a few good carbonyl
chemistry based reaction themes, nature achieves astonishing
structural and functional diversity. Carbonyl chemistry is used
to make a modest collection of approximately 35 simple
building blocks, which are then assembled into biopolymers.
The enzymatic polymers serve, in concert with increments of
energy provided by adenosine triphosphate, as selective

catalysts which prevent nature�s carbonyl chemistry based
syntheses from collapsing into chaos. Since many biosynthetic
pathways require a unique enzyme for each step, the enzyme-
control strategy required a heavy investment of time and
resources for catalyst development. With a few billion years
and a planet at her disposal, nature has had both time and
resources to spare, but we, as chemists on a human timescale,
do not.

Nevertheless, carbonyl-based reactions have always been
profoundly appealing to students and practitioners of organic
chemistry. It is our contention that organic synthesis con-
ducted, as it has been, in imitation of nature�s carbonyl
chemistry is ill-suited for the rapid discovery of new molecules
with desired properties.

Many transformations that form ªnewº carbon ± carbon
bonds are endowed with only a modest thermodynamic
driving force. In particular, equilibrium ªaldolº reactions are
often energetically favorable by less than 3 kcal molÿ1.[1] For
these processes to reach completion in the laboratory, an
additional ªpushº must be provided, often by application of
Le Chatelier�s principle (for example, azeotropic removal of
water), by coupling the desired process to an exothermic co-
reaction (for example, a strong ªbaseº � a strong ªacidº), or
by virtue of favorable entropic considerations (such as
intramolecular ring closure) without enthalpic penalties (such
as formation of strained rings). Thus, due in effect to the loss
of one ªequivalentº of ester, resonance stabilization, the first
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step of the intermolecular Claisen condensation (for example,
two molecules of ethyl acetate!ethyl acetoacetate-
�ethanol), is endothermic by approximately 11 kcal molÿ1,
but the next stepÐdeprotonation of the b-ketoester to its
enolateÐis highly exothermic and drives the process to
completion when a stoichiometric amount of the alkoxide
base is provided. Approximately 30 years ago the develop-
ment of kinetically controlled enolate chemistry, enabled by
even stronger bases like lithium diisopropylamide, provided
the ultimate form of this type of reaction control. Natural
products of bewildering complexity are synthesized almost
routinely in this manner by the elite practitioners of the art, so
it is obviously a powerful strategy, and the best work in this
area is fascinating to study as a rich source of new insights into
factors which affect chemical reactivity. However, as dis-
cussed below, we believe that this approach ultimately pulls
organic synthesis in troubling directions, the most insidious
problem being the complexity engendered by the need for
global protection and deprotection of protic functional groups.

ªThe most fundamental and lasting objective of
synthesis is not production of new compounds,
but production of properties.º

George S. Hammond, Norris Award Lecture,
1968

If useful properties are our goalÐfor example, better
pharmaceuticalsÐthen the use of complicated synthetic
strategies is justified only if they provide the best way to
achieve those properties. The bioactive natural products that
have most intrigued synthetic organic chemists have frame-
works which are difficult to construct largely because there
are too many contiguous carbon ± carbon bonds. However,
these are not the only kinds of molecules that can have useful
biological effects. The long and admirable history of natural
products synthesis, culminating as it has in the protection-
laden schemes of kinetic carbonyl chemistry, perhaps blinds us
to the possibility of developing synthetic strategies that enable
much more rapid discovery and production of molecules with
a desired profile of properties.
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2. A ªProcess Chemistryº Point of View

The molecules produced by living systems have always
fascinated and inspired synthetic organic chemists. As our
skills and tools have advanced, the compounds chosen for
synthesis have become ever more challenging. So it is no
surprise that today�s favorite targets are found among the
most diabolically complex natural substances ever discov-
eredÐthe various secondary metabolites produced by plants
and microorganisms for self-defense. No expense or effort is
spared to synthesize even minute quantities of these extra-
ordinary molecules.[2, 3]

The pharmaceutical industry, a direct scion of natural
products chemistry,[4] has not been put off by difficult
syntheses and many compounds being explored today as drug
candidates represent substantial synthetic challenges.[5] While
it sharpens the skill and fraternal esteem of the research team,
implicit in the decision to pursue a complex drug target is the
acceptance of enormous constraints on the scope of the
structure space to be explored. When natural products are the
models, it usually takes so long to synthesize analogues in a
given series that even the most ambitious exploratory efforts,
viewed objectively, are often superficial. The process of
probing structure ± activity relationships (SAR) in these
situations has a perverse tendency to discover the ªbestº
candidates in difficult synthetic territory, near the outer limits
of ªaccessibility.º Difficult syntheses also tend to arise when
trying to reach patentable structural territory after original
discoveries have been made by a competitor.

The time required for SAR probing and then synthesis of
enough of the better compounds for pharmacokinetic and
toxicity profiling is staggering, and goes a long way toward
explaining why this phase of pharmaceutical research takes so
long. And yet, buoyed by the eventual success in obtaining
complex target structures, discovery chemists and top exec-
utives alike display little concern for issues of synthetic
accessibility. Ignored is the fact that any lead or development
series that has supply problems risks inadequate SAR
conclusions and development decisions. The story of the
carbapenem antibiotic thienamycin[6±8] is illustrative: it re-
quired six years of superb effort by several research groups in
both industry and academia to develop the final therapeutic
agent (meropenem,[9] a derivative of thienamycin) after the
initial synthesis of thienamycin was published.[10a] The AIDS
protease inhibitor Crixivan (indinavir) provides a more recent
exampleÐa very difficult synthesis at nearly commodity-
chemical scale.[10b]

Only at the end are issues of process development
considered, and synthesis on production scale is often
expensive. Nevertheless, the prospect of a blockbuster drug
is such a powerful motivator for a synthesis team that the job
nearly always gets done. The crucial point is that the cost
which complex synthesis adds to the final drug, while
substantial, is insignificant compared to all the ªhiddenº costs
imposed on the speed and quality of the discovery/develop-
ment phase by this same complex style of synthesis. In other
words, the way organic synthesis is done has pervasive effects
on the entire process of drug discovery, development, and
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manufacture. If a more modular, faster style of synthesis were
to prove effective, lower manufacturing costs should be the
least of its benefits. Lead structures should not be syntheti-
cally ªpreciousº, and one should be able to jump easily from
one series to another. As it is now, most discovery endeavors
suffer from being too invested in structure, when function is
what is sought.

Consider how nature synthesizes her most important
molecules, the primary metabolites. While the aforementioned
secondary metabolites have extensive networks of contiguous
carbon ± carbon bonds, and have claimed the lion�s share of
synthetic organic chemists� attention, it is reversible conden-
sation processes involving carbon ± heteroatom connections
that are used to assemble polynucleotides, polypeptides, and
polysaccharidesÐthe three families of macromolecules
that are central to life processes. By embracing the strategy
of making large oligomers from small building blocks,

nature is also a consummate combinatorial chemist[11] and
achieves astonishing diversity from less than 40 monomers.
These building blocks contain at most six contiguous CÿC
bonds, with the exception of the three aromatic amino acids.
Thus, nature is a promiscuous creator of carbon ± heteroatom
connections, choosing this method to encode and express
information.

Nature�s ability to create and control biomolecular diversity
is largely dependent on the exquisitely selective catalysts she
deploys. Our devices for managing reactivity and selectivity
are much less sophisticated, particularly with respect to CÿC
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bond formation. Therefore, the chemist who plans a synthesis
that requires the construction of CÿC bonds that are not
present or latent (for example, CHÿCX�base!C�C) in the
available starting materials is asking for trouble, particularly if
such a synthesis must be reliable for a number of substrates
(as for combinatorial searches or SAR studies) or applicable
to practical, large-scale production. Problems are less likely if
one only needs to unite, functionalize, and/or reorganize
starting materials and intermediates in ways which do not
require de novo CÿC bond construction. If such ªnewº CÿC
bonds are required, it is best to make them intramolecular-
ly,[12] but it is better still to leave the really tough CÿC bond
synthesis to nature.[13]

There is, however, still plenty of room for discovery: Guida
and co-workers have estimated the pool of ªreasonableº drug
candidates (�30 non-hydrogen atoms; �500 daltons; con-
sisting of only H, C, N, O, P, S, F, Cl, and Br; likely to be stable
at ambient temperature in the presence of water and oxygen)
at between 1062 and 1063 discrete molecules.[14] With this kind
of structure space available,[15] we contend that it makes little
sense to search in hard-to-reach places for a desired function.
Instead, we present here synthetic methods for drug discovery
that adhere to one rule: all searches must be restricted to
molecules that are easy to make. We hope to convince the
reader that a wide diversity of interesting molecules can be
easily made, and that the chances for achieving desirable
biological activity are at least as good with such compounds as
with the traditional target structures now favored by medic-
inal chemists.

2.1. ªClick Chemistryº

Following nature�s lead, we endeavor to generate substan-
ces by joining small units together with heteroatom links
(CÿXÿC). The goal is to develop an expanding set of
powerful, selective, and modular ªblocksº that work reliably
in both small- and large-scale applications. We have termed
the foundation of this approach ªclick chemistry,º and have
defined a set of stringent criteria that a process must meet to
be useful in this context. The reaction must be modular, wide
in scope, give very high yields, generate only inoffensive
byproducts that can be removed by nonchromatographic
methods, and be stereospecific (but not necessarily enantio-
selective). The required process characteristics include simple
reaction conditions (ideally, the process should be insensitive
to oxygen and water), readily available starting materials and
reagents, the use of no solvent or a solvent that is benign (such
as water) or easily removed, and simple product isolation.
PurificationÐif requiredÐmust be by nonchromatographic
methods, such as crystallization or distillation, and the
product must be stable under physiological conditions.

It is important to recognize that click reactions achieve
their required characteristics by having a high thermodynamic
driving force, usually greater than 20 kcal molÿ1. Such pro-
cesses proceed rapidly to completion and also tend to be
highly selective for a single product: we think of these
reactions as being ªspring-loadedº for a single trajectory.
Carbon ± heteroatom bond forming reactions comprise the

most common examples, including the following classes of
chemical transformations:
* cycloadditions of unsaturated species, especially 1,3-dipo-

lar cycloaddition reactions, but also the Diels ± Alder
family of transformations;

* nucleophilic substitution chemistry, particularly ring-open-
ing reactions of strained heterocyclic electrophiles such as
epoxides, aziridines, aziridinium ions, and episulfonium ions;

* carbonyl chemistry of the ªnon-aldolº type, such as
formation of ureas, thioureas, aromatic heterocycles, oxime
ethers, hydrazones, and amides; and

* additions to carbon ± carbon multiple bonds, especially
oxidative cases such as epoxidation, dihydroxylation,
aziridination, and sulfenyl halide addition, but also Michael
additions of NuÿH reactants.

2.2. Olefin-Based Organic Synthesis

Consider, as a counterpoint to the pharmaceutical industry,
the world of petrochemicals and the materials it has spawned
(textiles, resins, plastics, etc.). The petrochemist�s starting
materials are ªgiftsº prepared by the carbonyl-based synthe-
ses of ancient organisms; in fossil oils are stored the energy of
CO2-based photosynthesis, and, more importantly, countless
carbon ± carbon bonds. However, natural petroleum, being
almost completely saturated, is useless for most organic
synthesis needs. The petroleum industry is therefore based
upon the manipulation of CÿC bond ªcurrencyº, which entails
exchanging CÿC s bonds for new CÿC p bonds by ªcrackingº,
and creating new CÿC p bonds at the expense of CÿH bonds
by ªreformingº. The products of these processes are a small
number of reactive monomers, which are then assembled,
with a battery of selective catalysts, into myriad useful
materials. Thus, the manufacture of petrochemical products,
based as it is on a modular, and supremely efficient, synthetic
strategy, makes the energy expended on ªupgradingº satu-
rated hydrocarbons to olefins seem insignificant.

In a general sense, life chemistry and petrochemistry have
evolved identical strategies for the synthesis of substances
with diverse functions/properties: modular assembly of spe-
cially synthesized monomers under the control of selective
catalysts. That one depends on reversible carbonyl chemistry
and the other on irreversible olefin chemistry should not
obscure the striking similarity at the heart of the two
approaches. We are denied the ability to realistically imitate
nature�s modular carbonyl-based synthesis style (see above),
so the modular olefin-based style given to us by the petroleum
chemist is the model we choose to follow.[16]

The concept of the CÿC bond as a unit of ªcurrencyº is
central to an appreciation of the value of click chemistry in
organic synthesis. Scheme 1 depicts examples of how the
currency can be exchanged. The bookkeeping device to keep
track of the ªtotal CÿC bond countº is often, but not
necessarily, connected to demonstrable interconversions.
Starting with n-octane, the total CÿC bond count remains
constant at seven regardless of the number of transformations
of a saturated CÿC bond into a C�C p bond, for example,
C1ÿC2ÿC3ÿH!C1ÿH�C2�C3. Such a transformation is of
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Scheme 1. The CÿC bond as a unit of ªcurrencyº (DH0 in kcal molÿ1; the
value given for hydroformylation compares olefin and aldehyde only). No
new CÿC bonds are formed in these processes.

course endothermic, but becomes favorable at high temper-
atures, thanks to a substantial positive entropy term. The
petrochemical industry practices ªsteam crackingº (a gas-
phase process at approximately 850 8C) on enormous scales, to
make available a family of inexpensive olefins. The newly
created C�C p bonds are highly reactive, having about 22 ±
25 kcal molÿ1 greater free energy content[17] than a CÿC s

bond; in effect, the energy expended in ªcrackingº is partly
captured/stored in the C�C linkage. This becomes apparent in
processes such as the Diels ± Alder reaction and hydroform-
ylation, which gain s links by reorganizing p C�C links, again
without altering the total CÿC bond count. Olefin metathesis
provides an extraordinarily facile way to redistribute C�C
links for further manipulation. (Acetylene links (counting as
3 CÿC bonds), with two unstable p bonds, are even better than
olefins for driving a host of useful p!s carbon ± carbon bond
reorganizations.) Many such processes are highly reliable
precisely because no ªnewº CÿC bonds are created; all are
nascent in the reactant�s p bonds.

Olefins are the most attractive starting materials available
to the synthetic chemist, readily accessible in large quantities
and in many varieties, especially if one includes the naturally
abundant terpenes. The simplest are the handful of C1 ± C8

blocks shown in Scheme 2. Produced by the petrochemical
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Scheme 2. Small carbon building blocks from petroleum.

industry on a massive scale, they are the ultimate starting
materials for 90 % by weight of all useful man-made organic
compounds.[18] The Wilke cyclooligomerizations of butadiene

to cyclooctadiene and cyclododecatriene are perfect examples
of processes that further expand the core olefin structures
available to us at modest cost.[19] The p bonds of butadiene are
reorganized effortlessly by the catalyst, to regio- and stereo-
selectively create sophisticated new carbon skeletons while
leaving behind one olefinic linkage per butadiene monomer
for the ªdecorationº steps to follow. Thus, between natural
olefin sources (terpenes, fatty acids,[20] etc.) and ªreworkedº
natural hydrocarbons (olefins derived from petroleum) we
have been richly endowed by living systems with a diverse
olefinic starting material platform. It would be fitting if we
could devise short sequences for assembling these ªgiftº
olefins into new substances with beneficial biological functions.

The importance of olefins is dramatically enhanced by their
role as progenitors of still higher energy intermediates, such as
epoxides, aziridines, episulfonium ions, and aziridinium ionsÐ
all nearly perfect for click chemistry transformations
(Scheme 3). This sequence of oxidative creation/nucleophilic

Scheme 3. Examples of the genesis and relative energetics of click
chemistry components. New bonds made with click reactions are in bold.
Nu� nucleophile.

quenching of reactive electrophiles is what most enables the
crucial block ligation steps at the heart of click chemistry.
Thus, the chemistry of olefins provides for the creation of
diverse scaffolds and the attachment and display of myriad
functionality through oxidative addition of heteroatoms to
specifically placed olefinic sites.[21] The robust nature of these
reactions is predicated on the irreversible progression from
systems of high energy to systems of lower energy in a stepwise
fashion. Each step has a high driving force, the sine qua non
condition of click chemistry, which enables reliable intermo-
lecular connections to be established.

Carbonyl compounds, by contrast, are quite stable thermo-
dynamically relative to olefins and even relative to their
hydrocarbon progenitors. Hence, their repertoire of click
chemistry transformations is limited. Among the few general
and highly reliable reactions starting from aldehydes and
ketones are their imine-forming condensations to give oximes
and hydrazones, and particularly to generate aromatic hetero-
cycles (see below). Also noteworthy, are the few intermolec-
ular carbonyl-based new CÿC bond forming reactions which
approach perfection (Scheme 4): 1) hydroxymethylation and
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Scheme 4. Strongly driven intermolecular CÿC bond forming reactions.

aminomethylation reactions using formaldehyde, the least
stable carbonyl representative, and 2) HCN additions to
carbonyl compounds, driven by the great stability of the
resulting cyanohydrin unit (primarily due to the nitrile group�s
attachment through an sp-hybridized bond, made even
stronger by a substantial dipolar contribution). Another
excellent carbonyl-based process for intermolecular CÿC
bond formation is the Michael reaction, an exception which
proves the rule, since no new CÿC bond is created. Its
>20 kcal molÿ1 driving force is provided by the C�C bond
which is consumed in the HÿNu addition step.

Since click chemistry is intended to provide a foundation
for the rapid assembly of new and pure molecular entities,
stereochemistry is important. The ideal click reactions are
based on stereospecific processes, but absolute stereochemis-
try need not be so stringently controlled. In any case, when
only one stereogenic element is involved, generation of the
racemate for initial biological screening will be preferred.
Even when two stereogenic elements are united or created in
a ligation step, it should be advantageous to test the racemic
mixtures of two or three diastereomers in the first pass at a
biological target.[22] With the accelerating development of
improved analytical and separation techniques for deconvo-
lution of complicated mixtures,[23] even greater relaxation of
stereochemical restrictions on assembly reactions will be
feasible in the near future.

Nature achieves highly specific syntheses of complex
substances by the uniquely selective action of enzyme
catalysts. However, the success of a desired click chemistry
sequence requires that virtually all of the control elements
and the enabling ªenergy packetsº be present in the reactive
components. At first, this plan may sound fancifulÐhow could
any but the most trivial set of reactive components be ªself-
containedº regarding the instructions and potential energy
needed to direct a reaction cascade to a unique synthetic
endpoint? Happily, we are finding that this goal is not so
difficult, provided one plans carefully and, above all, uses only
the handful of ªperfectº reactions for the crucial intermolec-
ular block ligation steps.

2.3. Click Chemistry in Water

Over the past two years, we have found that many of the
reactions that meet click chemistry standards often proceed
better in water than in an organic solvent. This is a natural
outcome of one or more of the following five factors.

1) Click reactions often proceed readily in hot water, to give a
single product, even when one or more of the reactants, as
well as the product, appear to be insoluble in this medium.
The fact that reactions between organic species in aqueous
solution can have higher apparent rate constants than the
same processes in organic media has been observed and
exploited by a number of laboratories.[24] Among the many
explanations offered for such phenomena, we call partic-
ular attention to the notion that the free energies of
organic molecules are substantially greater when poorly
solvated in water, and often impart increased reactivity,
which compensates for the low concentration of the
participants.[25]

2) Nucleophile additions to epoxide[26] (ªhomocarbonylº)
and aziridine (ªhomoimineº) electrophiles (as well as
aziridinium and episulfonium ions) are favored by solvents
best able to respond continuously to the demanding range
of hydrogen-bonding situations that arise during these
processes. In this respect, water is unique, and for the same
reasons, it is the perfect milieu for reversible carbonyl
chemistry.

3) Two important subsets of olefin and acetylene click
reactions are oxidations by electrophilic reagents and
cycloaddition reactions. These processes are either con-
certed or involve polarizable nucleophiles/electrophiles, so
that water is not an interfering medium.[27] More generally,
it should be appreciated that the use of water offers the
greatest leverage for differentiating the reactivities of
competing ªhardº (nonpolarizable) and ªsoftº (polariz-
able) species.

4) A highly favorable reaction of two solutes (say at 0.1m
concentration) is usually much faster than a low driving
force side-reaction of one of the solutes with solvent water
(55m).[28] The Schotten ± Baumann method for making
amides from acyl or sulfonyl halides in water is a well-
known example [Eq. (1)].[29]

R1 Cl

O

R2 N
R3

H H2O

NaOH R1 N

O
R3

R2

+ (1)

5) Water is a superb heat sink, due to its high heat capacity,
and has a convenient boiling temperature; both are useful
for large-scale processes.

Water is usually regarded as an ideal solvent in terms of its
environmental impact and low cost. A benefit which is little
appreciated but has enormous consequences is that most
hydroxy OÿH and amide NÿH groups will not interfere with
click reactions performed in water. As a consequence, the
installation and removal of protecting groups is avoidedÐ
probably the best single reason for adopting this style of
synthesis. Indeed, we view many of the best reactions for
installing ªprotecting groupsº as good click reactions in their
own right (see Section 3.3).

These considerations highlight the fact that, although click
reaction components are necessarily highly reactive, their
chemoselectivity profiles are quite narrowly defined, that is,
ªorthogonalº to an unusually broad range of reagents,
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solvents, and other functional groups. This attribute allows for
reliable and clean sequential transformations of broad
scope.[30] For example, opening epoxide or aziridine rings by
ªHN3º installs a highly reactive ªsticky spotº for [3�2]
cycloaddition with alkynes, but one that is ªinvisibleº to most
other functional groups.

The types of reactions, and especially reaction conditions,
that fall into the click chemistry category were more common
in the organic literature of 50 to 100 years ago.[31] Few solvents
were used then, and heat was the preferred way to speed up
reactions. The dearth of available purification techniques
meant that processes were chosen for their reliability in giving
a single isolable product. Without seeking to collect an
exhaustive list of click or click-like reactions,[31] an attempt is
made here to illustrate the scope of this approach with a
number of representative examples taken both from the
literature and from our own work. We focus on nucleophilic
openings of the reactive small-ring species readily made by
oxidative addition of heteroatoms to olefins, and on concerted
cycloadditions and carbonyl/imine condensation reactions to
aromatic heterocycles.

2.4. Comments on ªSolid-Phaseº Synthesis

We are proposing here the use of click reactions in
combinatorial style to generate molecules of highly diverse
structure and function. Much of the enormous effort in library
synthesis currently pursued in academic and industrial
laboratories makes use of polymeric supports for the stepwise
construction of products.[32] In our view, solid-phase organic
synthesis is popular precisely because it allows reactions that
fall short of ªclickº status to be employed as click reactionsÐ
that is, in situations where extremely high yields and simple
purification procedures are required. These attributes are
achieved by using a large excess of the reactants in the mobile
phase. While this approach has been very effective for the
synthesis of large libraries, the final products tend to be too
lipophilic to probe the full range of biological interactions.
The hydrophobic character of these collections may, in part,
be due to the absence of ªbystanderº protic functional groups,
which tend to be omitted, intentionally or otherwise, to avoid
extra protection/deprotection steps.

Most importantly, the solid-phase approach is ill-suited to
ªprocess-drivenº discovery: it is very expensive and highly
wasteful of reagents and sol-
vents; it is difficult to make
large amounts of products, and
when such large-scale syntheses
are attempted, the yield per
unit volume is poor; intermedi-
ates bound to polymeric sup-
ports are difficult to analyze
directly by standard spectro-
metric methods; and another
layer of chemical technologyÐ
the installation and cleavage of
a ªlinkerºÐis required. In oth-
er words, since solid-phase

combinatorial approaches to the discovery of biologically
active compounds ignore most of the issues that constrain
practical organic syntheses, the most likely outcome is a trend
toward drugs that are even harder to manufacture.

2.5. Creation of Modules by Oxidative Addition of
Heteroatoms to Olefins

The potential of olefins for generating diversity is unlocked
by their oxidative functionalization. Much of our effort for the
past three decades has centered on this goal, and a useful set
of reliable transformations has emerged from a number of
laboratories including our own. The broad scope and high
yields of many olefin oxidation processes, and the fact that
olefins are the primary organic starting materials, render these
reactions the most fundamental enablers of click chemistry.
The oxidation step generates highly reactive, yet stable
intermediates such as epoxides and aziridines. Both the
oxidations to the intermediates and their subsequent fusion
with nucleophiles are stereospecific, and thus very predict-
able; Table 1[33±39] shows the processes we use most often.
Most of the oxidation steps depend on transition metal
catalysis for which efficient enantioselective versions are well
established.

A nearly ideal case is our recent discovery of a class of
olefins that exhibits unique reactivity in osmium-catalyzed
aminohydroxylation and dihydroxylation reactions per-
formed in water or water/organic mixtures. Unlike most
olefins, these special substrate classes undergo rapid and
nearly quantitative aminohydroxylation, with very low cata-
lyst loading, in the absence of cinchona alkaloid ligands, and
with only one equivalent of the haloamine salt. Moreover, the
reactions can be conducted at molar concentrations in
substrate, whereas the standard asymmetric aminohydroxy-
lation process is best performed at �0.1 molar concentration.
Among the substrates that exhibit this type of enhanced
reactivity are a,b-unsaturated acids and amides; Scheme 5
gives five examples.[40]

3. Click Chemistry Reaction Types

Below appears a description of the three most useful click
reactions presently in use in our laboratory. The best are pure

Table 1. Processes used to create oxidized electrophiles or their precursors from olefins.[33±39]

racemic TsNNaCl,[a] cat. MeReO3, cat. OsO4, RN(Cl)Na,
PhNMe3

�Br3
ÿ H2O2, pyridine cooxidant cat. OsO4

asymmetric allylic alcohols: cat. OsO4, RN(Cl)Na,
Ti(OiPr)4, Me3COOH, cooxidant, cat. OsO4,
dialkyl tartrate; cinchona alkaloid cinchona alkaloid
unfunctionalized olefins:
[(salen)MnIII],[b]

oxidant

[a] Ts� tosyl� toluene-4-sulfonyl. [b] H2salen�N,N'-bis(salicylidene)ethylenediamine.
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fusion processes, which means that the combined formulae of
the reactants equals the formula of the product.[41] They can
be divided into two classes: those in which protons must be
shuffled about (epoxide ring opening, for example) and those
in which no s-bond connections are severed (cycloaddition
reactions, the most useful and reliable being the Huisgen
dipolar cycloadditions). The former tend to benefit dramat-
ically from an aqueous environment, while the latter reveal
little solvent dependence and are better overall in their
adherence to click chemistry ideals. Indeed, the azide� acet-
ylene! triazole version of Huisgen�s [2� 3] cycloaddition
family of processes is about as good as a reaction can get. Never-
theless, it is the ªless idealº epoxide and aziridine opening pro-
cesses which are the workhorses for installing, often in the pen-
ultimate step of a block synthesis, the azide or alkyne moieties.

3.1. Nucleophilic Opening of Spring-Loaded Rings

The four types of primary olefin oxidation products shown
in Table 1 are themselves high-energy species or may be
readily converted into such intermediates. The SN2 ring-
opening reactions of these moleculesÐepoxides, aziridines,
cyclic sulfates, cyclic sulfamidates, aziridinium ions, and
episulfonium ionsÐare reliable, stereospecific, often highly
regioselective, and nearly quantitativeÐall in all, surpassingly

useful (Scheme 6). We focus here on the chemistry of three-
membered ring heterocyclic electrophiles.

The paramount advantage of nucleophilic openings of
three-membered rings is that competing elimination processes
are stereoelectronically disfavored,[42] which results in high
yields and easy product isolation. All of the ring opening
reactions shown in Scheme 6 are fusion events, and most can
be performed in the absence of solvents[43] or in water,
alcohol, or water/alcohol mixtures. In a number of cases, the
regioselectivity can be controlled by the choice of solvent, a
perfect example being the reaction of cis-cyclohexadiene
diepoxide 1[44] with amines[45] (Scheme 7). In the absence of
solvents, the bis-epoxide reacts with amines to give the amino
alcohol 2, in which the entering nucleophiles are 1,3-related.
When protic solvents are added, the same reactants give
regioisomer 3, with the entering nucleophiles in the 1,4-
relationship.[46, 47] In both cases, the diamino diol products are
isolated in pure form by direct crystallization from the crude
reaction solution, which enables reactions at any scale.
Regioselectivity is similarly well-controlled for the ring
opening of the trans diepoxide 4 ; the example in Scheme 7
shows the one-pot stitching of three diepoxide units with two
equivalents of ammonia to give 5 (85 % yield) as a mixture of
its three possible racemic diastereomers.

Aziridines, the aza analogues of epoxides, are readily
prepared by direct aziridination of olefins,[48] by manipulation

Scheme 5. Examples of unusually efficient osmium-catalyzed aminohydroxylation and dihydroxylation of olefins. Bn� benzyl.
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of epoxides[49] or amino alcohols,[50] and by haloazidation of
olefins followed by reductive cyclization.[51] Through variation
of the substituent on the ring nitrogen, aziridines enable much
greater product diversity than epoxides. Their ring-opening
reactivities can be modulated over an enormous range,[52] and,
most importantly, the nitrogen substituent and the nature of
the solvent can be used to control the regioselectivity of ring
opening in unsymmetrical cases.[53] The example in Scheme 8
from Stamm and co-workers reveals just how dramatic the
effect of the nitrogen substituent can be.[54] Effects deriving
from the tendency of sulfonamides to be pyramidal at
nitrogen and amides to be planar cause N-sulfonyl aziridines
usually to furnish the regioisomer derived from attack of the
nucleophile at the sterically least hindered center, while N-
acyl aziridines favor the opposite regioisomer.[53] Thus,

aziridines have even more potential
than epoxides from the standpoint of
click chemistry applications.[55]

While NÿH and Nÿalkyl aziridines
are perfectly stable under basic con-
ditions, we and others have found that
they can be readily opened, particu-
larly by heteroatom nucleophiles, un-
der buffered conditions in various
solvents including water.[56, 57] The
examples in Scheme 9 illustrate the
practicality of aziridine-based click
chemistry.[58a] A solvent is often not
required,[58b] so that the ring-opened
compounds 7 and 8 are obtained in
pure form by neat fusion of 6 with the
appropriate secondary amine at ap-

Scheme 6. Generation and opening of spring-loaded cyclic electrophiles (shown in red) from olefins or their oxidation products (blue).

Scheme 7. Amine reactivity with cyclohexadiene diepoxides.

Scheme 8. Influence of the nitrogen substituent (sulfonyl, acyl) on the
regioselectivity of aziridine opening.[54] Tol� tolyl.
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proximately 120 8C. Neat thermal fission then removes the N-
Boc group in 7 to provide the secondary amine 9, while the
primary amine in 10 is unmasked in excellent yield by heating
compound 8 at 170 8C with two equivalents of p-TsOH ´ H2O,
again in the absence of solvent. The high temperatures of
these solvent-free processes are presented to highlight the
reliability of the bond-forming events under any conditions.
Each of these reactions can also be done in standard solvents
at �70 8C.

The opening of even unactivated aziridines proceeds read-
ily in water with buffered azide (to give 11 at 50 8C) and with

hydrazine (to give 12 at 25 8C). The
resulting intermediates are highly useful;
their cycloadditions and condensations
with alkynes and b-diketones, respective-
ly, are reliable click reactions in their own
right (see Section 3.2). Water is often the
solvent of choice, as illustrated by the
opening of a simple aziridine with 5-phe-
nyltetrazole to give heterocycle 13. Such a
modular approach allows for the forma-
tion of a large variety of useful organic
intermediates.

Highly activated aziridinium systems
are easily generated in situ in the course
of neighboring group assisted nucleophil-
ic substitution starting from amino alco-
hols,[59] or b-halo amines[60] and related
compounds[61] (Scheme 6). The reactions
of the analogous episulfonium systems[62]

are even more facile.[63] All these substi-
tutions are stereospecific and proceed
with double inversion, and hence net
retention of configuration in cases where
the nucleophilic attack on the aziridinium
or episulfonium ion occurs at the center
bearing the leaving group, or with inver-
sion of both centers in cases where the
amino or thioether group undergoes a 1,2-
shift. The broad scope of these reactions

and the easy access to the starting materials from the
corresponding epoxides makes them perfectly suited for the
rapid generation of building blocks and combinatorial libra-
ries (Scheme 10).[64] An example of the swift access provided
by aziridinium chemistry to ªdruglikeº molecules is shown by
the preparation of a 1,5-benzodiazepine derivative
(Scheme 11).

Aziridinium and episulfonium chemistry is particularly
well-suited to the aqueous phase because the spring-loaded
three-membered ring intermediates bear a positive charge,
balanced by the anionic counterion which served as the

Scheme 9. Use of activated and nonactivated aziridines as building blocks. Boc� tert-butoxycar-
bonyl.

Scheme 10. Aziridinium intermediates in combinatorial assembly. Ms�mesyl�methane sulfonyl.
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Scheme 11. Efficient assembly of a benzodiazepine via an aziridinium
intermediate.

leaving group. We have noted that, when this leaving group is
chloride or, particularly, sulfonate, the beneficial effects of
water are most apparent, whereas little or no improvement is
noted on changing the solvent from acetonitrile to water when
the leaving group is iodide or bromide.[65] The greater
stabilization offered by strong protic solvation of the harder
anions in water is probably the dominant factor. Furthermore,
these ªhomocarbonylº electrophiles, like the acyl halides that
participate in Schotten ± Baumann reactions, are much more
reactive toward a range of heteroatom nucleophiles in water
than toward the solvent. An example of the beneficial effects
of performing these types of reactions in water is given in
Scheme 12, in which both yield and selectivity are shown to be

Scheme 12. Solvent dependence of aziridinium ring opening by azide.

improved as the water content of the reaction medium is
increased. For the last two sets of conditions shown, which
lead to the highest selectivities, neither the starting material
nor the products are soluble in the reaction solvent.

In this context, it should also be noted that the mustard-
type sulfur compounds are directly accessible from olefins in
very high yields by addition of sulfenyl halides (RSX)[66] or the
inorganic parent SCl2

[67] (Scheme 13, top). The addition often
proceeds under thermodynamic control, allowing reliable
prediction of the products. The exceptional reactivity of the
resulting compounds such as 14 enables many additional click
chemistry transformations through neighboring-group partic-
ipation, which provides episulfonium intermediates such as
15.[68] These pathways, and especially the required ejection of
anionic leaving groups (for example, the chloride in 14), are
uniquely assisted by an aqueous environment. In the cases
shown at the bottom of Scheme 13,[69] the reactions proceed
cleanly and rapidly from solid-to-solid in aqueous suspension;
presumably, the episulfonium ion intermediates are the only
water-soluble species on the path from starting materials to

Scheme 13. Generation and reactions of activated sulfonium (thiiranium)
electrophile 14.

products. The dramatically different outcomes for reaction of
14 with saturated solutions of NH3 in CH3OH or H2O
underscore the crucial role played by solvation in these
substitutions and the unique properties of water as a solvent,
especially when solvent separation of ion pairs and/or
efficient proton shuttling through solvent hydrogen-bonding
networks are important.

3.2. Cycloaddition Reactions

Click chemistry ideals are beautifully represented among
cycloaddition reactions involving heteroatoms, such as het-
ero-Diels ± Alder[70, 71] and, especially, 1,3-dipolar[72±74] cyclo-
additions. These modular fusion reactions unite two unsatu-
rated reactants and provide fast access to an enormous variety
of interesting five- and six-membered heterocycles.[75]

As already mentioned, in this powerful class of concerted
click reactions we have come to regard the Huisgen dipolar
cycloaddition of azides and alkynes[76] as the ªcream of the
cropº. However, probably because of concerns about the
safety of the azide moiety,[77] medicinal chemists have not
given these transformations the special attention they de-
serve.[78] The actual cycloaddition step may be as reliable for
other types of [2�3] reactions, but the azide group is by far the
most convenient of the 1,3-dipolar components to introduce
and to ªcarryº until needed. Indeed, it may be the only one
which is stable toward dimerization and/or hydrolysis. While
azides are widely valued for their ease of introduction and
reduction to primary amino groups, the remarkable stability
(orthogonality) of aliphatic azides to a wide variety of other
standard organic synthesis conditions seems largely unappre-
ciated. With a few interesting exceptions, they remain
ªinvisibleº unless a good dipolarophile is present.
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Two typical examples of azide cycloadditions are shown in
Scheme 14.[79] Bis(azide) 16 readily adds two molecules of
alkyne to give bis(triazole) 17. A wide variety of alkynes

Scheme 14. Examples of azide cycloaddition reactions.

engage in such reactions, with electron-deficient cases usually
being the most reactive. Azide 18 reacts with the cyanoacet-
ylene equivalent, 2-chloroacrylonitrile, to give only one
regioisomer of triazole 19, which retains its isolated olefins
for further decoration.

Other (that is, non-azide) 1,3-dipolar cycloaddition pro-
cesses provide interesting five-membered heterocycles, such
as the examples shown in Scheme 15, in good yields.[80] The

Scheme 15. Cycloaddition reactions based on the hydrazine-derived [2�3]
dipole 22.[80a]

sequence starts with addition of hydrazine to the aziridinium
intermediate generated from 20. The resulting cyclic hydra-
zide 21 then undergoes condensation with aromatic aldehydes
to give azomethine ylides 22, which react with a variety of
unsaturated components to give [3�2] cycloadducts. The rich
array of functionality displayed by these products provides
opportunities for the creation of unique combinatorial
libraries.

3.3. ªProtecting Groupº Reactions

While hydroxy groups are nearly ªinvisibleº in aqueous
solution, in the absence of water a pair of neighboring hydroxy
groups often exhibit unique reactivity. Thus, acid-catalyzed
reactions with aldehydes and ketones provide cyclic 1,3-
dioxolane rings in high yields. Instead of their ubiquitous role
as diol protecting groups, should not acetals, ketals, and some
of their aza-analogues be better viewed as an attractive class
of heterocycles for medicinal chemistry applications? They
are generally stable at physiological pH,[81a] have already
appeared as components in orally available drugs,[81b] contrib-
ute several hydrogen bond acceptor sites and interesting
dipole effects, provide constrained scaffolds with well-defined
projections and spatial orientations of their substituents, are
assembled from modular and abundant components, and
represent one of the rare click chemistry modules based on
reversible carbonyl chemistry.

The five acetal-like derivatives (23 ± 26 and ent-26) were
easily prepared on multigram scales from the appropriate
diols or hydroxysulfonamides.[82] As a consequence of their

heteroatom substituent inductive effects, they are resistant to
standard acidic hydrolysis conditions, all the more so if the
azide group is reduced to the amine. The saturated dioxolane
cores can be regarded as permanent elements of the block�s
structure under most physiological and chemical conditions,
and if further transformations are desired the pendant azide
substituents offer many diverse and reliable options.

4. Examples of Click Chemistry SequencesÐ
Diversity with Ease

Complex structures can be rapidly assembled using short
sequences of simple click chemistry transformations. An
example is the formation of the tricyclic molecule 29 in just
three steps, conducted sequentially in one pot and starting
from bis-epoxide 4[34, 44] (Scheme 16).[83] The nucleophilic
opening of 4 with buffered azide is highly regioselective,
resulting in the formation of the crystalline azido alcohol 27 in
excellent yield. The bis-triazole 28, formed by 1,3-dipolar
addition of the bis-azide with diethylacetylene dicarboxylate,
can be collected from the reaction mixture by filtration. The
C2-symmetry of the system is then broken during base-
catalyzed lactonization to furnish lactone 29, the three
rings of which resemble the B, C, and D rings found in
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Scheme 16. Steroid-like skeletons assembled from cyclohexadiene diep-
oxides.

steroids. The analogous cis-diepoxide 1, through the same
three-step sequence, gives the related lactone 30, which is
identical to 29 except that the two ªBº-ring substituents have
switched positions. All steps for both sequences proceed in
excellent yield. (See the frontispiece for large-scale sequences
in this series.)

The capabilities of such reaction sequences for library
synthesis are illustrated in Scheme 17. Epoxide ring opening
with hydrazine and subsequent condensation with a variety of
b-dicarbonyls or other bis-electrophiles provide entry to an
enormous range of heterocyclic structures. Library synthesis
using these protocols is highly efficient, and achieves excellent
diversity from the large, available pool of epoxides.[84]

The facile osmium-catalyzed aminohydroxylation of a,b-
unsaturated amides is also an attractive starting point for the
synthesis of diverse molecules based on the previously rare
a,b-diamino acid motif (Scheme 18). In this sequence, the
hydroxysulfonamide regioisomers 31 a and 31 b produced in
the aminohydroxylation step conveniently provide the same
cis-N-sulfonylaziridine intermediates 32 upon cyclization.[85]

Scheme 18. A click chemistry library sequence from olefinic acids.[88]

Regioselective aziridine ring opening by a diverse set of
primary and secondary amines then yields the threo-3-amino-
2-sulfonamides 33. The aminohydroxylation was also per-
formed with the chloramine salt of p-nosyl sulfonamide (see
above), and the b-aminosulfonamide products 33 (R4� p-
NO2C6H4 (p-nosyl)) were freed of their sulfonamide group
through the Fukuyama deprotection method,[86] to give 34.
The resulting primary 2-amino group of compounds 34 have
been capped with more than sixty electrophiles to date,
including acid chlorides, sulfonyl chlorides, anhydrides, iso-
cyanates, and isothiocyanates, to give structures of the general
form 35.[87] The biological activities discovered in various
screens of this library will be reported elsewhere.

5. Summary and Outlook

We have described here the basic elements of a new style of
organic synthesis, or, perhaps more accurately, the reinvigo-
ration of an old style of organic synthesis. Its purpose is to
accelerate the discovery of substances with useful properties,
new medicines being the example emphasized. The approach
derives from a keen awareness of nature�s preferred methods
of synthesis, but does not seek to emulate them too closely.

Nature is a matchless creator of CÿC linkages and
we propose leaving the tough job of CÿC bond
synthesis as much as possible to her. Instead, it is
sensible for us to specialize in quick and easy
chemistry that nature uses only sparely, by focusing
on the high driving force reactions that emanate
from the olefins that she has provided either directly
(for example, terpenes) or that are produced by the
petroleum industry.

It is no accident, given the high energy content of
the olefinic p bond, that the most reliable and most
useful organic reactions all involve olefins, their
unsaturated cousins, or their uniquely accessible
heteroatom oxidative addition products. The latter
compounds either are, or can easily be transformed
into, the reactive building blocks that are ideal for
the fast, irreversible assembly (for example, throughScheme 17. Click chemistry sequences from epoxides and hydrazine.[84]
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click chemistry) of diverse molecules with druglike structural
features. Three-dimensional space is efficiently accessed by
the stereospecific nucleophilic openings of such spring-loaded
rings, and when these spring-loaded units are embedded in
cyclohexane frameworks, the level of regio- and stereochem-
ical control available for core creation/decoration sequences
reaches a zenith. Nature certainly uses heteroatom connec-
tions, but not in this fashion. Therefore, the structures
assembled by opening aziridines and epoxides are usually
novel, and almost invariably so when the assembly sequence
involves two or more such ligations.

Nature�s giant molecules are constructed from a small set of
building blocks using a few types of reactions for stitching
them together. If we are to build small molecules which
interact specifically with these large and diverse structures, we
will need more components than nature has developed. While
new building blocks will always be welcome, we expect that a
good set of 500 or so will prove effective for many targets.

Our thinking about CÿC bonds as gifts of nature has been a
constant source of inspiration during the framing and the
ongoing refinement of this minimalist synthetic strategy. In
any event, endeavoring to transform these matchless building
blocks into substances with diverse and useful functions seems
an appropriate way to honor the bestowal of such an
embarrassment of riches.
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Vaino, Koenraad P. M. VanHessche, Martin A. Winter, An-
drei K. Yudin, and Zhi-Min Wang. We also thank Dr. Thomas
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