Publication list of Lajos Soukup
  1. A. Hajnal; I. Juhász; L. Soukup: On saturated almost disjoint families, Comment. Math. Univ. Carolin., 28(1987) , 629--633.

  2. A. Hajnal; P. Komjáth; L. Soukup; I. Szalkai: Decompositions of edge colored infinite complete graphs, Combinatorics (Eger, 1987), 277--280, Colloq. Math. Soc. János Bolyai, 52, North-Holland, 1988.

  3. I. Juhász; S. Shelah; L. Soukup: More on countably compact, locally countable spaces, Israel J. Math., 62(1988) , 302--310.

  4. L. Soukup: On chromatic number of product of graphs, Comment. Math. Univ. Carolin., 29(1988) , 1--12.

  5. A. Hajnal; Z. Nagy; L. S. : On the number of certain subgraphs of graphs without large cliques and independent subsets?, A tribute to Paul Erdős, 223--248, Cambridge Univ. Press, 1990.

  6. L. Soukup: On c+-chromatic graphs with small bounded subgraphs, Period. Math. Hungar., 21(1990) , 1--7.

  7. L. Soukup: A nonspecial ω2-tree with special ω1-subtrees , Comment. Math. Univ. Carolin., 31(1990) , 607--612.

  8. L. Soukup: On ω2-saturated families, Comment. Math. Univ. Carolin., 32(1991) , 355--359.

  9. I. Juhász; Z. Nagy; L. Soukup; Z. Szentmiklóssy: The long club ♣, Sets, graphs and numbers (Budapest, 1991), 411--419, Colloq. Math. Soc. János Bolyai, 60, North-Holland, 1992.

  10. L. Soukup: Certain L-spaces under CH, Topology Appl., 47(1992) , 1--7.

  11. S. Shelah; L. Soukup: The existence of large ω1-homogeneous but not ω-homogeneous permutation groups is consistent with ZFC+GCH, J. London Math. Soc. (2), 48(1993) , 193--203.

  12. L. Soukup: Martin Axiómával konzisztens tulajdonságokról, 1993, kandidátusi értekezés.

  13. S. Fuchino; S. Shelah; L. Soukup: On a theorem of Shapiro, Math. Japon., 40(1994) , 199--206.

  14. I. Juhász; L. Soukup; Z. Szentmiklóssy: What makes a space have large weight?, Topology Appl., 57(1994) , 271--285.

  15. S. Shelah; L. Soukup: On the number of nonisomorphic subgraphs, Israel J. Math., 86(1994) , 349--371.

  16. P. Nyikos; L. Soukup; B. Veličković: Hereditary normality of γℕ-spaces, Topology Appl., 65(1995) , 9--19.

  17. S. Shelah; L. Soukup: Some remarks on a problem of J. D. Monk, Period. Math. Hungar., 30(1995) , 155--163.

  18. A. Dow; I. Juhász; L. Soukup; Z. Szentmiklóssy: More on sequentially compact implying pseudoradial, Topology Appl., 73(1996) , 191--195.

  19. I. Juhász; Z. Nagy; L. Soukup; Z. Szentmiklóssy: Intersection properties of open sets. II, Papers on general topology and applications ({A}msterdam, 1994), 147--159, Ann. New York Acad. Sci., 788, New York Acad. Sci., 1996.

  20. I. Juhász; L. Soukup: How to force a countably tight, initially ω1-compact and noncompact space?, Topology Appl., 69(1996) , 227--250.

  21. I. Juhász; L. Soukup; Z. Szentmiklóssy: Forcing countable networks for spaces satisfying R(Xω)=ω, Comment. Math. Univ. Carolin., 37(1996) , 159--170.

  22. S. Fuchino; S. Shelah; L. Soukup: Sticks and clubs, Ann. Pure Appl. Logic, 90(1997) , 57--77.

  23. S. Fuchino; L. Soukup: More set-theory around the weak Freese-Nation property, Fund. Math., 154(1997) , 159--176, European Summer Meeting of the Association for Symbolic Logic (Haifa, 1995).

  24. I. Juhász; L. Soukup; Z. Szentmiklóssy: What is left of CH after you add Cohen reals?, Topology Appl., 85(1998) , 165--174, 8th Prague Topological Symposium on General Topology and Its Relations to Modern Analysis and Algebra (1996).

  25. I. Juhász; L. Soukup; Z. Szentmiklóssy: Combinatorial principles from adding Cohen reals, Logic Colloquium '95 (Haifa), 79--103, Lecture Notes Logic, 11, Springer, 1998.

  26. J. Roitman; L. Soukup: Luzin and anti-Luzin almost disjoint families, Fund. Math., 158(1998) , 51--67.

  27. L. Soukup: Smooth graphs, Comment. Math. Univ. Carolin., 40(1999) , 187--199.

  28. S. Fuchino; S. Geschke; S. Shelah; L. Soukup: On the weak Freese-Nation property of complete Boolean algebras, Ann. Pure Appl. Logic, 110(2001) , 89--105.

  29. S. Fuchino; S. Geschke; L. Soukup: On the weak Freese-Nation property of P(ω), Arch. Math. Logic, 40(2001) , 425--435.

  30. L. Soukup: Indestructible properties of S- and L-spaces, Topology Appl., 112(2001) , 245--257.

  31. I. Juhász; L. Soukup; Z. Szentmiklóssy: A consistent example of a hereditarily c-Lindelöf first countable space of size >c, Set theory (Piscataway, NJ, 1999), 95--98, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 58, Amer. Math. Soc., 2002.

  32. I. Juhász; S. Shelah; L. Soukup; Z. Szentmiklóssy: A tall space with a small bottom, Proc. Amer. Math. Soc., 131(2003) , 1907--1916 (electronic).

  33. J. Gerlits; I. Juhász; L. Soukup; Z. Szentmiklóssy: Characterizing continuity by preserving compactness and connectedness, Topology Appl., 138(2004) , 21--44.

  34. I. Juhász; S. Shelah; L. Soukup; Z. Szentmiklóssy: Cardinal sequences and Cohen real extensions, Fund. Math., 181(2004) , 75--88.

  35. L. Soukup: A piecewise Toronto space, Studia Sci. Math. Hungar., 41(2004) , 325--337.

  36. I. Juhász; L. Soukup; Z. Szentmiklóssy: D-forced spaces: a new approach to resolvability, Topology Appl., 153(2006) , 1800--1824.

  37. I. Juhász; L. Soukup; W. Weiss: Cardinal sequences of length <ω2 under GCH, Fund. Math., 189(2006) , 35--52.

  38. L. Soukup: A lifting theorem on forcing LCS spaces, More sets, graphs and numbers, 341--358, Bolyai Soc. Math. Stud., 15, Springer, 2006.

  39. D. Duffus; P. L. Erdős; J. Nešetril; L. Soukup: Antichains in the homomorphism order of graphs, Comment. Math. Univ. Carolin., 48(2007) , 571--583.

  40. M. Elekes; T. Mátrai; L. Soukup: Partitioning kappa-fold covers into kappa many subcovers, Real Anal. Exchange, (2007) , 121--125.

  41. P. L. Erdős; L. Soukup: How to split antichains in infinite posets, Combinatorica, 27(2007) , 147--161.

  42. I. Juhász; L. Soukup; Z. Szentmiklóssy: First countable spaces without point-countable π-bases, Fund. Math., 196(2007) , 139--149.

  43. I. Juhász; L. Soukup; Z. Szentmiklóssy: Resolvability of spaces having small spread or extent, Topology Appl., 154(2007) , 144--154.

  44. L. Soukup: Cardinal sequences and universal spaces, Open Problems in Topology II, 737, Elsevier, 2007.

  45. I. Juhász; L. Soukup; Z. Szentmiklóssy: Resolvability and monotone normality, Israel J. Math., 166(2008) , 1--16.

  46. L. Soukup: Infinite combinatorics: from finite to infinite, Horizons of combinatorics, 189--213, Bolyai Soc. Math. Stud., 17, Springer, 2008.

  47. L. Soukup: Nagata's conjecture and countably compact hulls in generic extensions, Topology Appl., 155(2008) , 347--353.

  48. P. L. Erdős; L. Soukup: Quasi-kernels and quasi-sinks in infinite graphs, Discrete Math., 309(2009) , 3040--3048.

  49. B. Farkas; L. Soukup: More on cardinal invariants of analytic P-ideals, Comment. Math. Univ. Carolin., 50(2009) , 281--295.

  50. I. Juhász; P. Koszmider; L. Soukup: A first countable, initially ω1-compact but non-compact space, Topology Appl., 156(2009) , 1863--1879.

  51. I. Juhász; S. Shelah; L. Soukup: Resolvability vs. almost resolvability, Topology Appl., 156(2009) , 1966--1969.

  52. J. C. Martinez; L. Soukup: The D-property in unions of scattered spaces, Topology Appl., 156(2009) , 3086--3090.

  53. L. Soukup: Indestructible colourings and rainbow Ramsey theorems, Fund. Math., 202(2009) , 161--180.

  54. P. L. Erdős; L. Soukup: No Finite--Infinite Antichain Duality in the Homomorphism Poset of Directed Graphs, Order, (2010) , 1--9.

  55. S. Fuchino; I. Juhász; L. Soukup; Z. Szentmiklóssy; T. Usuba: Fodor-type Reflection Principle, metrizability and meta-Lindelöfness, Topology Appl., 157(2010) , 1415--1429.

  56. J. C. Martinez; L. Soukup: Cardinal sequences of LCS spaces under GCH, Ann. Pure Appl. Logic, 161(2010) , 1180--1193.

  57. J. C. Martinez; L. Soukup: Universal locally compact scattered spaces, Topology Proc., 35(2010) , 19--36.

  58. L. Soukup: Cardinal Sequences and Combinatorial Principles, 2010, D. Sc. Thesis.

  59. M. Elekes; T. Mátrai; L. Soukup: On splitting infinite-fold covers, Fund. Math., 212(2011) , 95-127.

  60. P. L. Erdős; J. Stoyle; L. Soukup: Balanced Vertices in Trees and a Simpler Algorithm to Compute the Genomic Distance, Appl. Math. Letters, (2011) , 82-86.

  61. S. Fuchino; S. Geschke; L. Soukup: How to drive our family mad?, Archive for Mathematical Logic, (2011) .

  62. A. Hajnal; I. Juhász; L. Soukup; Z. Szentmiklóssy: Conflict free colorings of (strongly) almost disjoint set-systems, Acta Mathematica Hungarica, 131(2011) , 230-274.

  63. J. C. Martinez; L. Soukup: Superatomic Boolean algebras constructed from strongly unbounded functions, Mathematical Logic Quarterly, 57(2011) , 456-469.

  64. L. Soukup: Pcf theory and cardinal invariants of the reals, Comment. Math. Univ. Carolin., 52(2011) , 153-162 .

  65. L. Soukup: Wide scattered spaces and morasses, Topology Appl., 158(2011) , 697-707.

  66. L. Soukup: Elementary submodels in infinite combinatorics, Discrete Math., 311(2012) , 1585-1598 .

  67. S. Fuchino; H. Sakai; L. Soukup; T. Usuba: More about the Fodor-type Reflection Principle , 2012, submitted.

  68. P. L. Erdős; I. Miklosi; L. Soukup: Towards random uniform sampling of bipartite graphs with given degree sequence, The Electronic Journal of Combinatorics, 20(2013) .

  69. L. Soukup: Essentially disjoint families, conflict free colorings and Shelah's Revised GCH, Acta Mathematica Hungarica, (2013) .

  70. D. T. Soukup; L. Soukup; S. Spadaro: Comparing weak versions of separability, Top. Appl., 160(2013) , 2538-2566.

  71. P. L. Erdős; S. Z. Kiss; I. Miklós; L. Soukup: Constructing, sampling and counting graphical realizations of restricted degree sequences , 2013, submitted.

  72. D. T. Soukup; L. Soukup: Partitioning bases of topological spaces , CMUC, (2013) , to appear.

  73. I. Juhász; . L. Soukup; Z. Szentmiklóssy: Regular spaces of small extent are omega-resolvable, 2013, submitted.

Notes
  1. L. Soukup: Boolean algebras with prescribed topological densities , 1999, Arxiv note.

  2. M. Džamonja; L. Soukup: Some note on Banach spaces, 2010, manuscript.

  3. L. Soukup: A note on Noetherian type of spaces, 2010, arXiv:1003.3189v1.

  4. D. Soukup; L. Soukup: Club guessing for dummies, 2010, Arxiv note.

  5. L. Soukup: Dense families of countable sets below $c$, 2012, arxiv note.