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Abstract. Following [5], a T3 space X is called good (splendid) if it is count-
ably compact, locally countable (and ω-fair). G(κ) (resp. S(κ)) denotes the

statement that a good (resp. splendid) space X with |X| = κ exists. We

prove here that (i) Con(ZF) → Con(ZFC + MA + 2ω is big + S(κ) holds
unless ω = cf(κ) < κ; (ii) a supercompact cardinal implies Con(ZFC + MA +

2ω > ωω+1 + ¬G(ωω+1); (iii) the ”Chang conjecture” (ωω+1, ωω)→ (ω+1, ω)

implies ¬S(κ) for all κ ≥ ωω ; (iv) if P adds ω1 dominating reals to V iteratively
then, in V P , we have G(λω) for all λ.

0. Introduction

In this paper we continue the investigations started in [5] concerning the follow-
ing problem first raised by E. van Douwen [3]: What can be the cardinality of a
countably compact, locally countable T3 space?

Let us recall some notation and terminology from [5]: A T3 space X called good
if it is both countably compact and locally countable, and it is called splendid if
in addition it is also ω-fair. (A space X is called κ-fair if for every Y ∈

[
X
]κ

we have |Y | = κ as well.) G(κ) (resp. S(κ)) denotes the statement that a good
(resp. splendid) space of cardinality κ exists. The main results of [5] may now be
summarized as follows:

0.1 For κ > ω, G(κ) implies cf(κ) 6= ω, moreover if κ > 2ω then even κω = κ.
0.2 For all n ∈ ωn we have S(ωn).
0.3 . Martin’s axiom implies G((2ω))+n) for each n ∈ ω.
0.4 If V = L then S(κ) is valid unless cf(κ) = ω < κ.

Recently, P. Nyikos has observed that the proof of 0.4 in [5], with practically
no alternations, actually yields the same conclusion if one only uses the following
consequence of V = L: if cf(κ) = ω < κ then

(a) the cofinality of
[
κ
]ω under inclusion is κ+, i.e. there is A ⊂

[
κ
]ω with |A| = κ+

such that every member of
[
κ
]ω is contained in some member of A (of course,

if κ > 2ω this implies κω = κ+);
(b) �κ holds.

Since (a) and (b) are also valid if one only assumes that the covering lemma holds
over the core model, cf. [1] or [2], it is clear that large (in particular, many measur-
able) cardinals are needed if one intends to build a model in which the conclusion
of 0.4 fails.
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1. Good spaces of size less than 2ω

The results in [5] left the following problem open: Can G(κ) be valid for some κ
with ωω < κ < 2ω? In this section we are going to give a complete answer to this
question. The first half of this answer is based on the following simple lemma.

Lemma 1.1. For any κ, S(κ) is preserved under CCC forcing.

Proof. Let X be a splendid space (of cardinality κ) in V and Q be any CCC notion
of forcing; we claim that X remains splendid in V Q. Since local countability and
the T3 property are obviously preserved in any extension of V , it remains only to
show that X will remain countably compact and ω-fair in V Q.

To see this, let A be any countable subset of X in V Q. Since Q is CCC, there is
a countable B ⊂ X in V with A ⊂ B. Now B is a countable compact T3 space in V ,
hence it is homeomorphic to a countable successor ordinal with its order topology.
Consequently, B will trivially remain compact hence closed in V Q, showing both
that A has a limit point and that A ⊂ B is countable. �

Now, from 0.4 and 1.1 we immediately obtain the following corollary that gives
an affirmative answer to the problem explicitly formulated on p. 206 of [5]

Corollary 1.2. If ZF is consistent, so is ”ZFC + MA + 2ω is as large as you
wish + S(κ) is valid unless κ is singular of cofinality ω. In particular, we see that
MA plus ωω+1 < 2ω is consistent with S(ωω+1).

Now, in order to get consistency results going in the opposite direction we intro-
duce the following definition.

Definition 1.3. For κ ≥ ωω let P (κ) denote the following statement: for any
collection A ⊂

[
ωω
]ω with |A| = κ there is some B ∈

[
ωω
]ω such that |A ∩B| < ω

for all A ∈ A.

The reason for giving this definition is the following trivial observation: if P (κ)
holds then G(κ) fails. Indeed, assume X is a locally countable T1 space with |X|κ.
Since, by the definition, P (κ) implies κ ≥ ωω, we may assume that ωω ⊂ X. For
every point p ∈ X let us pick a countable neighbourhood Up and apply P (κ) to
the collection {U∩ωωna > w : p ∈ X}. This gives us a set B ∈

[
ωω
]ω ⊂ [X]ω for

which B ∩ Up is finite for every p ∈ X, hence B has no limit point in X, i.e. X is
not countably compact.

Comparing this observation with our remark made at the end of Section 0, it is
clear that if we want to show the consistency of P (κ) for some κ > ωω then large
cardinals have to be used. Fortunately, this has been done for us by Magidor in
[8], where, for κ = ωω+1, the assumption of our next implication was shown to be
consistent from a supercompact cardinal.

Lemma 1.4. Assume that

2ω < ωω < κ < (ωω)ω.

Then P (κ) is valid.

Proof. Let A ⊂
[
ωω
]ω with |A| = κ. By an old result of Sierpinski [9] there is an

almost disjoint collection B ⊂
[
ωω
]ω with

|B| = (ωω)ω > |A| = κ.

For each A ∈ A let us put

BA = {B ∈ B : |B ∩A| = ω}.
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Since B is almost disjoint, we clearly have

|BA| ≤ 2ω < ωω,

consequently
|
⋃
{BA : A ∈ A}| ≤ κ.

But then for any B ∈ B \ {BA : A ∈ A} we have |B ∩ A| < ω for all A ∈ A, hence
the proof is completed. �

Of course, 0.1 immediately implies that G(κ) is false if 2ω < ωω < κ < (ωω)ω.
In order to put 1.4 to use we still need the following lemma.

Lemma 1.5. P (κ) preserved under any CCC forcing.

Proof. Let Q be any CCC notion of forcing and let, in V Q f : κ →
[
ωω
]ω be a

function enumerating an A ⊂
[
ωω
]ω with |A| = κ.. Now by a theorem of [6, p.

206] there is a function F : κ →
[
ωω
]ω in V such that f(α) ⊂ F (α) for all α < κ.

Then we have a B ∈
[
ωω
]ω such that |B ∩ F (a)| < ω for all α < κ. Then we have

|A ∩B < ω for all A ∈ A. �

As an immediate corollary of this, Magidor’s above-mentioned result, and 1.4 we
get the following result.

Corollary 1.6. If there is a supercompact cardinal then it is consistent to have
Martin’s axiom plus ωω+1 < 2ω plus the failure of G(ωω+1).

2. When all splendid spaces are small

In view of our remark made at the end of §0, large cardinals are needed if one
wants to establish e.g. the consistency of the statement that the cardinalities of
splendid spaces are bounded. Of course, by 0.2, the least possible such bound is
ωω.

In this section our aim is to show that there is a reasonable assumption, first
considered in [7] by Levinsky, Magidor and Shelah, which indeed implies that this
is the case. This assumption is actually a model-theoretic statement, a case of
Chang’s conjecture, usually denoted by the symbol

(ωω+1, ωω)→ (ω1, ω).

The meaning of this is as follows: if A = 〈A,U,Rn : n ∈ ω〉 is any structure such
that |A| = ωω+1, U ⊂ A is unary with |U | = ωω then A has an elementary
substructure A′ = 〈A′, U ′, R′n : n ∈ ω〉 for which |A′| = ω1 and |U ′| = ω (of course,
here U ′ = U ∩A′ and R′n = Rn ∩ (A′)in , where in is the arity of Rn )

In [7] Levinsky, Magidor and Shelah proved that the existence of a 2-huge cardi-
nal implies the consistency of GCH plus (ωω+1, ωω)→ (ω1, ω). For our purposes it
will be convenient to first give the following topological consequence of this propo-
sition. (Note that, as is easily seen by a simple induction, any first countable ω-fair
space is also ωn-fair for each n ∈ ω)

Theorem 2.1. If (ωω+1, ωω)→ (ω1, ω) holds then any first countable space that is
ω-fair is also ωω-fair.

Proof. Assume, on the contrary, that there is an ω-fair first countable space X with
|X| = ωω+1 and a dense subset S ⊂ X with |S| = ωω. Let us fix for each p ∈ X a
neighbourhood base 〈Vn(p) : n ∈ ω〉 in X and then for each n ∈ ωwe define a binary
relation Rn on X as follows:

Rn(x, y)←→ y ∈ V n(x).
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Now, applying (ωω+1, ωω)→ (ω1, ω) to the structure X = 〈X,S,Rn : n ∈ ω〉 we
get a set Y ∈

[
X
]ω1 such that |S ∩ Y | = ω and Y =

〈
Y, Sn ∩ Y,Rn ∩ Y 2 : n ∈ ω

〉
is an elementary substructure of X . We claim that S ∩ Y is dense in Y , which
contradicts the assumption that X is ω-fair. Indeed, since S is dense in X, for each
n ∈ ω we have that the sentence

∀x ∃y[Rn(x, y) ∧ y ∈ S]

is satisfied in X , consequently the same sentence is also satisfied in Y. Now, it is
obvious that this actually means that Y ∩ S is dense in Y . �

Since, by 0. 1 , no good space of size ≥ ωω is ωω-fair we immediately get the
following corollary.

Corollary 2.2. If (ωω+1, ωω)→ (ω1, ω) holds then S(κ) implies κ < ωω.

P. Nyikos, after having heard of this result, gave the following strengthening of
it: (ωω+1, ωω) → (ω1, ω) implies that every first countable, ω-bounded and locally
hereditarily Lindelöf space has Lindelöf degree < ωω. Below we show that already
the assumption ”every ωω-fair first countable space is ωω-fair” yields the same
conclusion. Moreover, our proof is completely different from and much simpler
than his.

Theorem 2.3. Assume that every ωω-fair first countable space is ωω-fair. Then
for every first countable, ω-bounded and locally hereditarily Lindelöf space X we
have L(X) < ωω.

Proof. The countable compactness of X clearly implies that L(X) 6= ωω (as well
as L(F ) 6= ωω for every closed subspace F of X). Moreover, since X is locally
hereditarily Lindelöf we have L(Y ) = hL(Y ) for every Y ⊂ X.

Now, if we had L(X) > ωω then X would contain a right-separated subspace
S with |S| = ωω. Then L(S) = hL(S) ≥ ωω and L(S) 6= ωωimply that in fact
L(S) > ωω hence we may choose a right-separated set Z ⊂ S with |Z| = ωω+1.

Let us now consider the subspace Y = S ∪ Z of X. We claim that Y is ω-fair,
which will yield a contradiction since, of course, Y is not ωω-fair.

Indeed, since X is ω-bounded, for every countable set A ⊂ X have that A is
compact, hence being covered by finitely many hereditarily Lindelöf sets it is also
hereditarily Lindelöf. Consequently, for every A ∈

[
Y
]ω we have both A ∩ S ≤ ω

and A ∩ Z| ≤ ω, hence |A ∩ Y | ≤ ω, which was to be shown. �

We mention here, without proof, that the relation (ωω+1, ωω) → (ω1, ω) is pre-
served under CCC forcing. Consequently, from a model satisfying it we may get
one in which it remains true and MA + 2ω > ωω+1 are also satisfied. This yields
us a model in which S(κ), hence by [5] also G(κ), fails non-trivially whenever
ωω ≤ κ < 2omega. But the existence of a 2-huge cardinal is a much stronger
requirement than that of a supercompact cardinal, hence 1.6 is a better result.

3. Another model with arbitrarily large good spaces

Our aim here is to show that a very simple forcing yields a model as described
in the title.

Theorem 3.1. If P the partial order that adds iteratively ω1 dominating reals to
V then in V P , G(λω) holds for each cardinal λ.

In this section we shall use D to denote the standard notion of forcing that adds
a dominating real to V , i.e. a function r : ω → ω such that r(n) > /(n) for all but
finitely many n ∈ ω whenever f ∈ ωω ∩ V cf [4].



MORE ON COUNTABLY COMPACT, LOCALLY COUNTABLE SPACES 5

A space X is called nice iff it is a locally countable, locally compact T2 space.
Let us remark that each nice space is both first countable and regular. The proof
of 3.1 is based on the following lemma:

Lemma 3.2. Let 〈X, τ〉 be a nice space. Then, in V D , 〈X, τ〉 can be embedded as
a dense, open subspace into a nice space 〈Y, σ〉 satisfying property (∗) below:

(∗) Each Z ∈
[
X
]ω ∩ V has an accumulation point in 〈Y, σ〉.

Proof. First we fix, in V , a function F : X × ω →
[
X
]≤ω satisfying for each x ∈ X

3.1.1 and 3. 1.2 below:
(3.1.1) F (x, 0) ⊇ F (x, 1) ⊇ · · · ⊇ F (x, n) ⊇ . . .
(3.1.2) {F (x, n) : n ∈ ω} forms a local base of x in 〈X, τ〉 consisting of compact

open neighbourhoods.
Next we choose a maximal almost disjoint family A ⊂

[
X
]ω of countable, closed

discrete subsets of X. For each A ∈ A we use ~A to denote a one-to-one enumeration
of A in V in type ω.

Now we will extend X in such a way that for each A ∈ A the sequence ~A will
become convergent. The underlying set of 〈Y, σ〉 ( will be

Y = X ∪ {yA : A ∈ A}
where yA’s are new different points.

From now on we work in V D. Let us consider the function F∗ : Y × ω →
[
Y
]ω

given by 3.1.3 and 3.1.4:
(3.1.3) F ∗ extends F .
(3.1.4) F ∗(yA, n) = {yA} ∪ ∪{F ( ~A(k), r(k)) : k > n}.

We define the topology σ on Y as follows: for each y ∈ Y we choose {F ∗ (y, n) :
n ∈ ω} as a local base of y in Y .

Obviously, 〈X, τ〉 is an open, dense subspace of Y . It is also clear that 〈Y, σ〉 is
locally countable.

In order to prove that 〈Y, σ〉 is locally compact let us first remark that each
F (x, n) remains compact in V D, because it is a countable, compact T2 space, i.e.,
homeomorphic to a countable successor ordinal. Consequently Y is locally compact
at every x ∈ X. Next we prove that every F ∗ (yA, n) is also compact. Indeed, if
S is any infinite subset of F ∗ (yA, n) then either S ∩ F ( ~A(k), r(k)) is infinite for
some fixed k > n or S intersects F ( ~A(k), r(k)) for infinitely many k ∈ ω, hence, in
either case, S has a limit point.

Let us now check property (∗). Consider a B ∈
[
X
]ω∩V having no accumulation

point in X. By the maximality of A we can find A ∈ A having infinite intersection
with B . But then yA is a limit point of A ∩B , for ~A converges to yA .

Lastly, we prove that 〈Y, σ〉 is T2. Till now we have not used that r is a domi-
nating real. Let us fix two different points of Y , say u and v. Since X is an open
subspace of Y we can assume that u ∈ Y \X, u = yA.

We distinguish two cases:

Case 1. v ∈ X
First we fix a k ∈ ω with v /∈ { ~A(i) : i ≥ k}. Since A does not have an

accumulation point we can choose a neighbourhood F (v, n) of v, having empty
intersection with { ~A(i) : i ≥ k}. Now let us consider the function f : ω \ k → ω
defined in V as follows:

f(`) = min{i : F ( ~A(`), i) ⊂ X \ F (v, n)}.
We know that r dominates f , i.e. we have m ≥ k with f(i) < r(i) for each i > m.
Thus F ∗(yA,m) and F (v, n) are disjoint neighbourhoods of yA and v.
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Case 2. v = yB ∈ Y \X
First we fix k ∈ ω with { ~A(`) : ` > k} ∩ { ~B(l) : l > k} = ∅. Since { ~A(`) : ` > k}

and { ~B(l) : l > k} are disjoint, countable closed subsets of the regular space X,
they can be separated by open sets, i.e. there are functions f, g ∈ ωω ∩ V with⋃

{F ( ~A(`), f(`) : ` > k} ∩
⋃
{F ( ~B(`), g(`) : ` > k} = ∅.

But r dominates both f and g, i.e. we have n > k with r(i) > f(i), g(i) for each
i > n. This means that F ∗(yA, n) ∩ F ∗(yB , n) = 0 . This completes the proof of
Lemma 3.2. �

Proof of Theorem 3.1. The poset P = Pω1 is given by the finite support iteration〈
Pα : α ≤ ω1, Q̇α, α < ω1

〉
where

V Pα |= Q̇α = D

for each α < ω1.
Given a cardinal λ with λω = λ we define nice spaces Xα with Xα ∈ V Pα so that

Xα is an open subspace of Xβ for each α < β, by induction on α ≤ ω1, as follows.
We denote by τα the topology of Xα.

We set a discrete space of cardinality λ as X0 in V . For every limit α we put
Xα = ∪{Xβ : β < α} with the topology τα that is generated by ∪{τβ : β < α}.
Standard tricks (cf. e.g. [6] p. 281) will insure that Xα, τα ∈ V Pα . Obviously Xα

will be nice and every Xβ is open in Xα.
If α = β + 1 and Xβ is defined then we apply Lemma 3.2 for Xβ in V Pβ . We

get a nice space Y in V Pβ∗D = V Pβ+1 and we put Y as Xβ+1. This completes the
construction.

We claim that Xω1 is as required. It is easy to see by induction that for α ≤ ω1,
Xα = λ . Let A ∈

[
Xω1

]ω. Since we iterated by finite support there is α < ω1,
with A ∈

[
Xα

]ω ∩ V Pα . Then, by Lemma 3.2, A has an accumulation point in
Xα+1, hence in Xω1 as well.

Thus Xω1 is a countably compact nice space with cardinality λ, i.e., G(λ) holds.
The proof is completed. �

Let us note finally that P, being CCC and of cardinality continuum, is a very
”mild” notion of forcing. Thus e.g. forcing with P does not change cardinal ex-
ponentiation and preserves large cardinals. In particular, as was mentioned at the
end of Section 2, P preserves the relation (ωω+1, ωω) → (ω1, ω), consequently this
enables us to get a model in which S(κ) implies κ < ωω but G(λω) is valid for all
cardinals λ.

Moreover, this leads to the following intriguing problem: Is it true in ZFC that
G(λω) is valid for all λ? Note that by 0.1 this would be equivalent to the statement
that G(κ) is valid for arbitrarily large cardinals.
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