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Abstract

We introduce a new reflection principle which we call “Fodor-type
Reflection Principle” (FRP). This principle follows from but is strictly
weaker than Fleissner’s Axiom R. For instance, FRP does not impose
any restriction on the size of the continuum, while Axiom R implies that
the continuum has size ≤ ℵ2.

We show that FRP implies that every locally separable countably
tight topological space X is meta-Lindelöf if all of its subspaces of cardi-
nality ≤ ℵ1 are (Theorem 4.3). It follows that, under FRP, every locally
(countably) compact space is metrizable if all of its subspaces of cardi-
nality ≤ ℵ1 are (Corollary 4.4). This improves a result of Balogh who
proved the same assertion under Axiom R.

We also give several other results in this vein, some in ZFC, others
in some further extension of ZFC. For example, we prove in ZFC that
if X is a locally (countably) compact space of singular cardinality in
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which every subspace of smaller size is metrizable then X itself is also
metrizable (Corollary 5.2).

1 Introduction

In this note, we consider the following type of reflection phenomenon in topo-

logical spaces. Let P be a property of a topological space and κ a cardinal.

(1.1) If a topological space X satisfies the property P , then there is a subspace

of X of size < κ satisfying the property P .

For the negation Q of P , (1.1) can be reformulated as the following transfer

property of Q:

(1.2) If every subspace of X of size < κ satisfies the property Q, then X also

satisfies Q.

The instance of (1.2), where Q equals “metrizable”, is studied extensively in

the literature which started with Hajnal and Juhász [15]. The most prominent

result in this context is perhaps the theorem of Dow cited below (Theorem 1.2).

Definition 1.1. A topological space X is called ℵ1-metrizable if every subspace

of X of size ≤ ℵ1 is metrizable. More generally, X is said to be κ-metrizable

(< κ-metrizable resp.) for a cardinal κ if every subspace of X of size ≤ κ (< κ

resp.) is metrizable.

A κ-metrizable space satisfies a certain amount of separation axioms:

Lemma 1.1. (1) A topological space is < ℵ0-metrizable if and only if it is T1.

(2) If a topological space is first countable and ℵ0-metrizable then it is Haus-

dorff.

Proof. (1): If X is T1 then every finite subspace of X is discrete and hence

metrizable. If X is not T1 then there are x, y ∈ X, x ̸= y such that every

neighborhood of x contains y. Then the subspace topology of {x, y} ⊆ X is

trivial and hence non-metrizable.

(2): Suppose that X is first countable but not Hausdorff. Let x, y ∈ X,

x ̸= y be such that any neighborhoods of x and y intersect. Let {Un : n ∈ ω}
and {Vn : n ∈ ω} be neighborhood bases of x and y respectively, and let

zm,n ∈ Um ∩ Vn for n, m ∈ ω. Then Y = {x, y} ∪ {zm,n : m,n ∈ ω} as

a countable subspace of X is not Hausdorff and hence non-metrizable. This

shows that X is not ℵ0-metrizable. (Lemma 1.1)
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On the other hand, a κ-metrizable space for any cardinal κ need not to be

first countable in general: for example, the topological space X = (X, τ) with

X = κ+ and τ = {∅}∪{O ⊆ κ+ : |κ+\O | ≤ κ} for a cardinal κ is κ-metrizable

since every subspace of X of cardinality ≤ κ is discrete but we have χ(x, X) > κ

for all x ∈ X.

Theorem 1.2. (A. Dow [6, Theorem 3.1]) Every countably compact ℵ1-metrizable

space is metrizable.

In particular, every compact ℵ1-metrizable space is metrizable.

There are countably compact ℵ0-metrizable spaces which are not metrizable:

ω1 + 1 with the canonical order topology is such an example. This shows that

ℵ1-metrizability in Theorem 1.2 is optimal.

Theorem 1.2 implies that locally countably compact ℵ1-metrizable spaces

have many properties common with metrizable spaces. For example:

Lemma 1.3. A locally countably compact ℵ1-metrizable space is first countable

and hence Hausdorff.

Proof. Suppose that X is a locally countably compact ℵ1-metrizable space.

Then X is locally metrizable by Theorem 1.2. Since metrizable spaces are first

countable, X is also first countable. By Lemma 1.1, (2), it follows that X is

Hausdorff. (Lemma 1.3)

Arhangelskii [1] asked if every locally compact ℵ1-metrizable space is metriz-

able. Balogh proved that the answer is affirmative under Fleissner’s Axiom R.

In fact he proved the following stronger result.

Theorem 1.4. (Z. Balogh [3, Theorem 2.2]) Assume Axiom R. For a locally

compact regular Hausdorff space X, if every subspace of cardinality ≤ ℵ1 has a

point countable base then X is metrizable. In particular, every locally compact

and ℵ1-metrizable space is metrizable.

Recall that Axiom R is the principle asserting that AR([κ]ℵ0) holds for all

cardinals κ ≥ ℵ2, where

AR([κ]ℵ0) : For any stationary S ⊆ [κ]ℵ0 and ω1-club T ⊆ [κ]ℵ1 , there is I ∈ T

such that S ∩ [I]ℵ0 is stationary in [I]ℵ0 .

Here, T ⊆ [X]ℵ1 for an uncountable set X is said to be ω1-club (or tight and

unbounded in Fleissner’s terminology in [10]) if

(1.3) T is cofinal in [X]ℵ1 with respect to ⊆ and
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(1.4) for any increasing chain ⟨Iα : α < ω1⟩ in T of length ω1, we have∪
α<ω1

Iα ∈ T .

The assumption of Axiom R cannot be simply dropped from Theorem 1.4

since, as the next proposition shows, one obtains a counterexample to Arhangel-

skii’s question in a very strong sense under the existence of a non-reflecting

stationary set of ordinals of countable cofinality. However, we prove that, in

Balogh’s result, Axiom R can be replaced by Fodor-type Reflection Principle

which will be defined in Section 2 (Corollary 4.4) and that this principle is

substantially weaker than Axiom R (see Section 3).

Given a topological space X and a family F of open sets, let ord(x,F) =

| {F ∈ F : x ∈ F} | for x ∈ X and ord(F) = sup{ord(x,F) : x ∈ X}. We say

that F is point countable if ord(F) ≤ ℵ0. We shall also use the notation

ôrd(F) = min{κ : ∀x ∈ X (ord(x,F) < κ)} .

Note that ord(F) ≤ ôrd(F) and ôrd(F) = (ord(F))+ if ord(F) = ord(x,F) for

some x ∈ X.

Recall that a topological space X is said to be meta-Lindelöf if every open

cover B of X has a point countable open refinement. It is clear that every

paracompact space is meta-Lindelöf ; every metrizable space is paracompact by

Stone’s theorem, and hence meta-Lindelöf.

For a cardinal κ, Eκ
ω denotes the set of all ordinals < κ of countable cofinality.

A subset S of κ is said to be non-reflecting stationary if S is a stationary subset

of κ but S ∩ δ is non-stationary in δ for all limit ordinal δ < κ.

It was proved in Hajnal and Juhász [15] that if κ > ℵ1 is regular and

S ⊆ Eκ
ω is a non-reflecting stationary set then the usual order topology on S

is <κ-metrizable but not meta-Lindelöf and hence non-metrizable. This space

is not locally compact. However its natural modification as in the following

proposition is.

Proposition 1.5. If there is a non-reflecting stationary set S ⊆ Eκ
ω for a regular

cardinal κ ≥ ℵ2 then there is a non-meta-Lindelöf (and hence non-metrizable),

locally compact and locally countable <κ-metrizable space X of size κ.

Proof. Let I = {ξ + 1 : ξ < κ}. The underlying set of X is S ∪ I. For each

α ∈ S, choose a countable subset aα ∈ [I ∩α]ℵ0 of order type ω which is cofinal

in α. Now define the topology of X as follows:

(1.5) the elements of I are isolated;
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(1.6) a neighborhood base of α ∈ S is {{α} ∪ (aα \ β) : β < α}.

By Fodor’s (or even Neumer’s) theorem, for every open refinement B of the open

cover {α + 1 : α ∈ S} of X, there is a point x ∈ X such that ord(x,B) = κ. It

follows that X is not meta-Lindelöf (and hence, in particular, not metrizable).

X is clearly locally compact and Hausdorff, so it is regular. It is also clear

that X is locally countable.

The rest can be done similarly to the proof of [15, Theorem 2]: we show by

transfinite induction that X ¹ δ is metrizable for all δ < κ. If δ is a limit ordinal,

there is a club C ⊆ δ disjoint from S. Let ⟨γν : ν < λ⟩ be the increasing

enumeration of C. Then {X ¹ [γν , γν+1) : ν < λ} is a partition of X ¹ δ

into clopen sets and each of these clopen sets is metrizable by the induction

hypothesis. So X ¹ δ is metrizable as well. The successor case δ = α + 1

follows directly from [15, Lemma 2] because X ¹ δ = X ¹ (α ∪ {α}) is regular

and first countable while X ¹ α is metrizable by the induction hypothesis.

(Proposition 1.5)

In Section 2, we introduce a new type of stationary reflection principle which

we dubbed “Fodor-type Reflection Principle” and denote FRP. The principle

asserts that its local version FRP(κ) holds for all regular cardinals κ ≥ ℵ1. We

show that FRP(κ) follows from RP([κ]ℵ0) (Theorem 2.5) where RP([κ]ℵ0) is

a slight strengthening of what is called “Reflection Principle” and denoted by

RP(κ) in Jech’s Millennium Book [16].

Since Axiom R implies RP([κ]ℵ0) for all cardinals κ of cofinality ≥ ω1, FRP

is a consequence of Axiom R.

On the other hand, we show in Section 3 that FRP(κ) is preserved in generic

extensions by c.c.c. poset (Theorem 3.4). It is easy to see that this is not the

case for RP([κ]ℵ0). In particular, it is consistent that FRP(κ) for all cardinal κ

of cofinality ≥ ω1 holds while RP([κ]ℵ0) does not hold for all κ ≥ ℵ2 (Theorem

3.5, (1)). From these results we can conclude that FRP is a significantly weaker

principle than Axiom R.

In Section 4, we prove that, under FRP, the transfer property (1.2) holds

for meta-Lindelöfness of locally separable and countably tight spaces (Theorem

4.3). The assertion of Balogh’s theorem (Theorem 1.4) is then deduced from

FRP via Theorem 4.3 (Corollary 4.4). Since FRP is much weaker than Axiom

R, it is fair to say that Corollary 4.4 is an essential improvement of Balogh’s

theorem. In particular, Theorem 3.5 (2) implies that the topological transfer

properties in these theorems under FRP do not impose any restriction on the

size of the continuum.
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Since FRP(ω1) is simply equivalent to Fodor’s theorem for ω1, we can easily

single out the ZFC part of the proofs of these transfer theorems to obtain the

corresponding ZFC results (Corollaries 4.5 and 4.6).

For a property Q, let us say that a topological space be almost Q if every

subspace Y of X of cardinality < |X | satisfies the property Q. In particular,

X is almost metrizable if and only if X is <|X |-metrizable. Note that this

terminology conflicts with some established notions of covering properties like

“almost compact”, “almost Lindelöf” etc. However there will be no ambigu-

ity here as our “almost Q” terminology will be never used in connection with

covering properties.

A natural variant of (1.2) would be:

(1.7) If X is almost Q, then X satisfies Q.

Note that, in this terminology, the topological space constructed in Proposition

1.5 is almost metrizable.

For various properties Q, we can ask whether (1.7) holds for all members of

a given class C of topological spaces. We can consider this problem as a question

on compactness of C (in the sense of abstract model theory) with respect to the

property Q.

In Section 5, we present miscellaneous results concerning the metrizabil-

ity (resp. meta-Lindelöfness) of almost metrizable (resp. almost meta-Lindelöf)

spaces X in various classes C of topological spaces.

In Section 6, we show that the same kind of anticompactness of metriz-

ability as Proposition 1.5 can also hold without the existence of non-reflecting

stationary sets.

2 Fodor-type Reflection Principle

In this section, we introduce the principle which we call “Fodor-type Reflection

Principle”(FRP) and show that this principle follows from Axiom R. We show

in the next section that FRP is strictly weaker than Axiom R and even some

other weakenings of Axiom R.

The applications of FRP on reflection properties of topological spaces men-

tioned in the introduction will be given in Section 4. Actually, it appears that

most of the known applications of Axiom R are already provable under FRP

(see also Fuchino [13] and Fuchino, Sakai, Soukup and Usuba [14]).

Definition 2.1. Let κ be a cardinal of cofinality ≥ ω1. The Fodor-type Reflec-

tion Principle for κ (FRP(κ)) is the following statement:
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FRP(κ) : For any stationary S ⊆ Eκ
ω and mapping g : S → [κ]≤ℵ0 there is

I ∈ [κ]ℵ1 such that

(2.1) cf(I) = ω1;

(2.2) g(α) ⊆ I for all α ∈ I ∩ S;

(2.3) for any regressive f : S ∩ I → κ such that f(α) ∈ g(α) for all

α ∈ S ∩ I, there is ξ∗ < κ such that f−1 ′′{ξ∗} is stationary in

sup(I).

Note that, for S and I as above, S ∩ I is stationary in sup(I).

Fact 2.1. FRP(ω1) holds in ZFC.

Indeed, for I = ω1, (2.3) follows immediately from Fodor’s theorem.

Lemma 2.2. FRP(κ) fails for a singular cardinal κ.

Proof. Suppose that λ = cf(κ) < κ. Let ⟨αξ : ξ < λ⟩ be a continuously and

strictly increasing sequence of ordinals cofinal in κ \ λ. Let S = {αξ : ξ ∈ Eλ
ω}.

Then S is a stationary subset of Eκ
ω. Let g : S → κ be defined by

(2.4) g(αξ) = {ξ} for ξ ∈ Eκ
ω.

Since the mapping f : S → λ; αξ 7→ ξ is regressive but strictly increasing, there

is no I ∈ [κ]ℵ1 satisfying (2.3). This shows that FRP(κ) fails. (Lemma 2.2)

Definition 2.2. Let FRP be the assertion: FRP(κ) holds for all regular cardi-

nals κ ≥ ℵ1.

For any regular κ ≥ ℵ2, FRP(κ) is not provable in ZFC since the existence

of a non-reflecting subset of Eκ
ω refutes FRP(κ). In Section 6, we show that the

non-existence of non-reflecting subset of Eκ
ω does not even guarantee FRP(κ).

For a cardinal κ ≥ ℵ2, let RP([κ]ℵ0) be the following principle:

RP([κ]ℵ0) : For any stationary S ⊆ [κ]ℵ0 , there is an I ∈ [κ]ℵ1 such that

(2.5) ω1 ⊆ I;

(2.6) cf(I) = ω1;

(2.7) S ∩ [I]ℵ0 is stationary in [I]ℵ0 .

The following is well-known and easy to prove.

Lemma 2.3. RP([κ]ℵ0) is equivalent to the assertion that for any stationary

S ⊆ [κ]ℵ0, there are stationarily many I ∈ [κ]ℵ1 satisfying (2.5), (2.6) and (2.7).
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AR([κ]ℵ0) implies RP([κ]ℵ0) for a cardinal κ of cofinality ≥ ω1 since T =

{I ∈ [κ]ℵ1 : ω1 ⊆ I and cf(I) = ω1} is ω1-club. Jech [16] called the weakening

of RP([κ]ℵ0) “Reflection Principle” which is obtained by dropping the condition

(2.6) from the definition of RP([κ]ℵ0). Jech’s reflection principle is sometimes

also called “Weak Reflection Principle” in the literature (see, e.g. König, Larson

and Yoshinobu [18]) and so we shall denote this principle here by WRP([κ]ℵ0).

Axiom R follows from MA+(σ-closed) (see Beaudoin [4]) which in turn is a

consequence of Martin’s Maximum (see Foreman, Magidor and Shelah [11]). In

the terminology of Foreman and Todorcevic [12], Axiom R is equivalent to the

stationary reflection to an internally unbounded structure (this fact is stated

essentially in Dow [7] under the definition of Axiom R which is slightly stronger

than ours). Since MA+(σ-closed) is consistent with CH (under a large cardinal

hypothesis), all the reflection principles we treat here are compatible with CH.

It is still open if WRP([κ]ℵ0), RP([κ]ℵ0) and AR([κ]ℵ0) can ever be separated.

In fact, this seems to be quite a difficult problem: it is known that RP([ω2]
ℵ0)

and AR([ω2]
ℵ0) are equivalent; under 2ℵ1 = ℵ2, WRP([ω2]

ℵ0) and RP([ω2]
ℵ0)

are equivalent and, e.g. under GCH, WRP([ωn]ℵ0) and RP([ωn]ℵ0) for all n ∈ ω

are equivalent (see König, Larson and Yoshinobu [18]). On the other hand, our

Fodor-type Reflection Principle can be easily separated from these reflection

principles as we will see in the next section.

The following is a useful characterization of FRP(κ).

Lemma 2.4. For a regular cardinal κ ≥ ℵ2, FRP(κ) is equivalent to the fol-

lowing FRP•(κ):

FRP•(κ) : For any stationary S ⊆ Eκ
ω and mapping g : S → [κ]≤ℵ0 there is a

continuously increasing sequence ⟨Iξ : ξ < ω1⟩ of countable subsets of

κ such that

(2.8) ⟨sup(Iξ) : ξ < ω1⟩ is strictly increasing;

(2.9) each Iξ is closed with respect to g and

(2.10) {ξ < ω1 : sup(Iξ) ∈ S and g(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ} is sta-

tionary in ω1.

Proof. First, assume FRP(κ). Let S ⊆ Eκ
ω be stationary and g : S → [κ]ℵ0 .

Without loss of generality, we may assume that g(α) ∩ α ̸= ∅ for all α ∈ S.

Let I ∈ [κ]ℵ1 be as in the definition of FRP(κ) for these S and g. Then, by

(2.1) and (2.2), there is a filtration ⟨Iξ : ξ < ω1⟩ of I, that is, a continuously

increasing sequence ⟨Iξ : ξ < ω1⟩ of subsets of I of cardinality < | I | with

I =
∪

ξ<ω1
Iξ, satisfying (2.8) and (2.9).
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We show that ⟨Iξ : ξ < ω1⟩ satisfies (2.10) as well. Suppose not. Then

{ξ < ω1 : sup(Iξ) ̸∈ S or g(sup(Iξ)) ∩ sup(Iξ) ̸⊆ Iξ} includes a club set ⊆ ω1.

It follows that S ∩ I \ S0 is non stationary in sup(I), where

S0 = {α ∈ S ∩ I : α = sup(Iξ) for some ξ < ω1 and g(α) ∩ α ̸⊆ Iξ}.

Let f : S ∩ I → I be defined by

(2.11) f(α) =

{
min((g(α) ∩ α) \ Iξ) if α ∈ S0 and α = sup(Iξ);

min(g(α)) otherwise.

Then f is regressive and f(α) ∈ g(α) for all α ∈ S ∩ I. By the choice of I,

there is an α∗ ∈ I such that f−1 ′′{α∗} is stationary in sup(I). In particular,

S0 ∩ f−1 ′′{α∗} is stationary in sup(I). Let ξ∗ ∈ ω1 be such that α∗ ∈ Iξ∗ and

let β ∈ S0 ∩ f−1 ′′{α∗} be such that β > sup(Iξ∗). Let η < ω1 be such that

β = sup(Iη). Then α∗ ∈ Iξ∗ ⊆ Iη. Since β ∈ S0, we have f(β) ̸∈ Iη by the

definition (2.11) of f . It follows that f(β) ̸= α∗. This is a contradiction to the

choice of β.

Now, assume FRP•(κ). Suppose that S ⊆ Eκ
ω is stationary and g : S →

[κ]ℵ0 . Let S0 = {α ∈ S : α is closed with respect to g}. Since κ is regular, S0

is stationary. Let ⟨Iξ : ξ < ω1⟩ be as in the definition of FRP•(κ) for S0 and

g ¹ S0. Let I be the closure of
∪

ξ<ω1
Iξ ∪ {sup(Iξ) : ξ < ω1} with respect to

g. By the definition of S0 and since sup(Iξ) ∈ S0 for stationarily many ξ < ω1,

we have sup(I) = sup(
∪

ξ<ω1
Iξ). Hence {sup(Iξ) : ξ < ω1} is a club subset of

sup(I).

We claim that this I satisfies the conditions in the definition of FRP(κ).

It is clear that I satisfies (2.1) and (2.2). To see that it also satisfies (2.3),

suppose that f : S ∩ I → κ is regressive and f(α) ∈ g(α) for all α ∈ S ∩ I. Let

S1 = {ξ ∈ ω1 : f(sup(Iξ)) ∈ Iξ}. Then we have

S1 ⊇ {ξ ∈ ω1 : g(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ}

and thus S1 is stationary by the choice of I. For each ξ ∈ S1, let

h(ξ) = min{η < ω1 : f(sup(Iξ)) ∈ Iη}.

Then the mapping h : S1 → ω1 is regressive. Thus, by Fodor’s theorem, there

is a stationary S2 ⊆ S1 such that h ′′S2 = {η∗} for some η∗ ∈ ω1. Since Iη∗ is

countable, there is a stationary S3 ⊆ S2 such that, for any ξ ∈ S3, f(sup(Iξ)) =

α∗ for some fixed α∗ ∈ Iη∗ . It follows that f−1 ′′{α∗} ⊇ {sup(Iξ) : ξ ∈ S3} is

stationary in sup(I). (Lemma 2.4)

9



Theorem 2.5. For any regular cardinal κ > ℵ1, RP([κ]ℵ0) implies FRP(κ).

Proof. By Lemma 2.4, it is enough to show that RP([κ]ℵ0) implies FRP•(κ).

Suppose that S ⊆ Eκ
ω is stationary and g : S → [κ]≤ℵ0 . Let

(2.12) S0 = {a ∈ [κ]ℵ0 : sup(a) ∈ S \ a and g(sup(a)) ∩ sup(a) ⊆ a}.

Claim 2.5.1. S0 is a stationary subset of [κ]ℵ0.

⊢ Suppose that C ⊆ [κ]ℵ0 is a club. We show that C ∩ S0 ̸= ∅.
By Kueker’s theorem, there is a mapping s : κ<ω → κ such that C ⊇

C(s) = {a ∈ [κ]ℵ0 : s ′′a<ω ⊆ a}. Let D = {α < κ : s ′′α<ω ⊆ α}. Since κ is

regular, D is a club subset of κ. So there is an α∗ ∈ S ∩ D. Let ⟨αn : n ∈ ω⟩
be an increasing sequence of ordinals such that α∗ = supn∈ω αn. Let a∗ be the

closure of a0 = {αn : n ∈ ω}∪ (g(α∗)∩α∗) with respect to s. Since a0 is cofinal

in α∗ and α∗ ∈ D, we have sup(a∗) = α∗. Hence a∗ ∈ S0. By the definition of

a∗, we also have a∗ ∈ C(s) ⊆ C.

⊣ (Claim 2.5.1)

By RP([κ]ℵ0), there is I ∈ [κ]ℵ1 such that

(2.13) cf(I) = ω1;

(2.14) g(α) ⊆ I for all α ∈ I ∩ S;

(2.15) S0 ∩ [I]ℵ0 is stationary in [I]ℵ0 .

Note that the additional condition (2.14) is possible by Lemma 2.3.

Let ⟨Iξ : ξ < ω1⟩ be a filtration of I such that each Iξ is closed with respect

to g (this is possible by (2.14)) and ⟨sup(Iξ) : ξ < ω1⟩ is strictly increasing

(possible by (2.13)).

Let

S1 = {ξ < ω1 : ξ is a limit and Iξ ∈ S0} and

S2 = {ξ < ω1 : g(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ)}.

By the definition (2.12) of S0, we have S2 ⊇ S1 and S1 is a stationary subset of

ω1 by (2.15). Thus S2 is stationary as well. (Theorem 2.5)

Corollary 2.6. RP implies FRP. In particular, Axiom R implies FRP.

3 Separation of FRP from WRP

In this section, we prove the consistency of Fodor-type Reflection Principle with

the total negation of the Weak Reflection Principle.

The following lemma is well-known and easy to prove:
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Lemma 3.1. For ℵ2 ≤ κ ≤ κ′, if WRP([κ′]ℵ0) then WRP([κ]ℵ0).

For a proof of the following proposition, see e.g. Jech [16, Theorem 37.18].

Proposition 3.2 (S. Todorčević). WRP([ℵ2]
ℵ0) implies 2ℵ0 ≤ ℵ2.

The first author learned the following lemma in one of Shelah’s papers:

Lemma 3.3 (S. Shelah). Suppose that P is a c.c.c. poset, S a stationary subset

of ω1 and pα ∈ P for α ∈ S. Then, S \ S ′ is non-stationary where

S ′ = {β ∈ S : pβ ∥–P “ {α ∈ S : pα ∈ Ġ} is stationary in ω1 ”}.

Proof. Suppose otherwise. Then S ′′ = S \ S ′ is stationary. For ξ ∈ S ′′, let

qξ ≤P pξ and Cξ ⊆ ω1 be such that Cξ is a club subset of ω1 and

(3.1) qξ ∥–P “ {α ∈ S : pα ∈ Ġ} ∩ Cξ = ∅ ”

for all ξ ∈ S ′′. Choose βξ ∈ ω1, ξ < ω1 inductively such that

(3.2) βξ ∈ S ′′ ∩
∩
{Cβη : η < ξ}.

Claim 3.3.1. {qβξ
: ξ < ω1} is an antichain.

⊢ For ξ < ξ′ < ω1, we have βξ′ ∈ Cβξ
by (3.2). Thus qβξ

∥–P “ pβξ′
̸∈ Ġ ” by

(3.1). Since qβξ′ ≤P pβξ′ , it follows that qβξ
∥–P “ qβξ′ ̸∈ Ġ ”. Hence qβξ

and qβξ′

are incompatible. ⊣ (Claim 3.3.1)

But this is a contradiction to the c.c.c. of P. (Lemma 3.3)

Theorem 3.4. Suppose that FRP(κ) holds and P is a c.c.c. poset. Then

∥–P “ FRP(κ) holds ”.

Proof. Suppose that Ṡ is a P-name of a stationary subset of Eκ
ω and ġ a P-name

of a mapping from Ṡ to [κ]ℵ0 . Let

(3.3) S = {α ∈ κ : p ∥–P “ α ∈ Ṡ for some p ∈ P ”}.

Then S is a stationary subset of κ. Let g : S → [κ]ℵ0 be defined by

(3.4) g(α) = {β ∈ κ : p ∥–P “ β ∈ ġ(α) for some p ∈ P ”}

for α ∈ S. g is well-defined by the c.c.c. of P.

By Lemma 2.4, there is a continuously increasing sequence ⟨Iξ : ξ < ω1⟩
with Iξ ∈ [κ]ℵ0 for ξ < ω1 such that

(3.5) ⟨sup(Iξ) : ξ < ω1⟩ is strictly increasing;
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(3.6) Iξ is closed with respect to g for all ξ < ω1, and

(3.7) S1 = {ξ ∈ ω1 : sup(Iξ) ∈ S and g(sup(Iξ))∩sup(Iξ) ⊆ Iξ} is stationary.

For ξ ∈ S1, since sup(Iξ) ∈ S, there is a pξ ∈ P such that pξ ∥–P “ sup(Iξ) ∈
Ṡ ”. Hence, by Lemma 3.3, there is a ξ∗ ∈ S1 such that

pξ∗ ∥–P “ {ξ ∈ S1 : pξ ∈ Ġ} is stationary in ω1 ”.

Let Ṡ2 be a P-name of “{ξ ∈ S1 : pξ ∈ Ġ}”. Then we have pξ∗ ∥–P “ Ṡ2 is

stationary ”. By the definition (3.4) of g,

(3.8) ∥–P “ ġ(α) ⊆ g(α) for every α ∈ Ṡ ”.

Since ∥–P “ Ṡ2 ⊆ S1 ”, we have

pξ∗ ∥–P “ Ṡ2 ⊆ {ξ ∈ ω1 : sup(Iξ) ∈ Ṡ and ġ(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ} ”.

Hence

pξ∗ ∥–P “ {ξ ∈ ω1 : sup(Iξ) ∈ Ṡ and ġ(sup(Iξ)) ∩ sup(Iξ) ⊆ Iξ}
is stationary ”.

By (3.8) and (3.6),

∥–P “ Iξ is closed with respect to ġ for all ξ < ω1 ”.

Thus pξ∗ forces that ⟨Iξ : ξ < ω1⟩ is as in the definition of FRP•(κ) for Ṡ and

ġ.

Since the argument above can be repeated in P ¹ p for any p ∈ P, it follows

that ∥–P “ FRP(κ) ”. (Theorem 3.4)

Theorem 3.5. (1) Suppose that “ ZFC + FRP” is consistent. Then so is

“ ZFC + FRP + ¬WRP([κ]ℵ0) for all κ ≥ ℵ2”.

(2) If “ ZFC + CH + FRP” is consistent, then “ ZFC + FRP” is consistent

with any value of the size of continuum possible under ZFC.

Proof. (1): Suppose that V |= “ZFC + FRP”. In V , let P = Cλ (= the Cohen

forcing adding λ many Cohen reals) for some λ ≥ ℵ3. Then V P |= 2ℵ0 ≥ ℵ3.

Hence, by Proposition 3.2 and Lemma 3.1, V P |= “¬WRP([κ]ℵ0) for all κ ≥ ℵ2”.

By Theorem 3.4, V P |= “FRP(κ) for all cardinals κ of cofinality ≥ ω1”.

(2): Suppose that V |= “ZFC + CH + FRP”. In V , let λ be a cardinal such

that λℵ0 = λ. Then, for P = Cλ, we have V P |= 2ℵ0 = λ and V P |=“FRP”.

(Theorem 3.5)
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It seems that we can only establish the consistency of FRP + ¬WRP under

2ℵ0 ≥ ℵ3 by arguments similar to the one as above. However, it is shown in

Fuchino, Sakai, Soukup and Usuba [14] using a completely different method

that FRP + ¬WRP is also consistent with 2ℵ0 ≤ ℵ2 (under a large cardinal

hypothesis).

4 Reflection property of meta-Lindelöfness under FRP

Definition 4.1. A topological space X is said to be small subspaces meta-

Lindelöf (ssmL for short) if every subspace of X of size ℵ1 is meta-Lindelöf.

In analogy to “ℵ1-metrizability”, the natural wording for this notion might

be “ℵ1-meta-Lindelöf”. However “ℵ1-meta-Lindelöf” has been already used for

a different notion in the literature and hence we decided for the terminology

with “ssmL”. Nevertheless, we shall also say for an uncountable cardinal κ that

a topological space X is < κ-meta-Lindelöf (≤κ-meta-Lindelöf resp.) if every

subspace Y of X of cardinality < κ (≤ κ resp.) is meta-Lindelöf.

Before going to the reflection results, let us introduce a notation and a simple

but useful lemma which will be applied repeatedly in the following arguments.

For a family F of sets, let ∼F be the intersection relation on F , i.e. let F ∼F

G for F , G ∈ F if and only if F ∩ G ̸= ∅, and let ≈F be the transitive closure

of ∼F . An argument in elementary cardinal arithmetic shows the following:

Lemma 4.1. Let µ be an uncountable regular cardinal and F a family of sets

such that, for all F ∈ F , we have | {G ∈ F : F ∼F G} | < µ. Then every

equivalence class of ≈F has cardinality < µ.

The next ZFC result illustrates the use of Lemma 4.1.

Theorem 4.2. Suppose that X is a locally countably compact and meta-Lindelöf

space. If X is ℵ1-metrizable then it is actually metrizable.

Proof. Let E be a point countable cover of X consisting of open sets with

countably compact closures. By Dow’s theorem (Theorem 1.2), E is metrizable,

and hence compact and second countable, for all E ∈ E . Note that X is then

regular, being locally compact and Hausdorff.

Since every E ∈ E is separable and E is point countable, it is easy to see

that | {F ∈ E : F ∼E E} | ≤ ℵ0 for all E ∈ E . Thus it follows from Lemma 4.1

(with µ = ℵ1) that each equivalence class of ≈E is countable.

Let E be the set of all equivalence classes of the relation ≈E . Then {
∪

e :

e ∈ E} is a partition of X into disjoint open sets. For each e ∈ E,
∪

e is
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a countable union of second countable open subspaces, so
∪

e is also second

countable (regular) and hence metrizable by Urysohn’s metrization theorem.

This shows that X can be partitioned into clopen metric subspaces, hence X

itself is also metrizable. (Theorem 4.2)

In the following, L(X) denotes the Lindelöf degree of the topological space

X. That is,

L(X) = min{κ : every open cover of X, has a subcover of size ≤ κ}.

Theorem 4.3. (1) Assume that FRP(κ) holds for every regular cardinal κ with

ω1 < κ ≤ λ and X is a locally separable, countably tight space with L(X) ≤ λ.

If X is ssmL then X is actually meta-Lindelöf.

(2) Under FRP every locally separable, countably tight ssmL space is meta-

Lindelöf.

Proof. We shall prove only (1) since (2) trivially follows from (1).

Since we are dealing with spaces with Lindelöf degree ≤ λ, it is enough to

show that the following statement (∗)κ holds for all κ ≤ λ by induction on κ.

(∗)κ For every locally separable, countably tight, ssmL space X, any cover

B of X of cardinality κ that consists of separable open sets has a point

countable open refinement.

So assume that κ ≤ λ and (∗)µ holds for all µ < κ. Let X and B = {Bα : α < κ}
be as in (∗)κ.

Case 1. κ = ℵ0.

Then (∗)κ trivially holds since B itself is point countable.

Case 2. κ is regular uncountable.

Let Gα =
∪
{Bβ : β < α} for α < κ and S = {α < κ : Gα ̸= Gα}.

Claim 4.3.1. S is non-stationary.

⊢ We prove first the following weaker assertion:

Subclaim 4.3.1.1. S ∩ Eκ
ω is non-stationary.

⊢ Toward a contradiction, suppose that S ∩ Eκ
ω were stationary. For each

α ∈ S ∩ Eκ
ω, let

(4.1) pα ∈ Gα \ Gα.
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Fix h : S ∩ Eκ
ω → κ such that pα ∈ Bh(α) for all α ∈ S ∩ Eκ

ω. For each α < κ,

let Dα ∈ [Bα]ℵ0 be dense in Bα. Note that we have Dβ ⊆ Bβ ⊆ Gα for all

β < α < κ.

Since pα ∈ Gα =
∪

β<α Dβ and X is countably tight, there is g0(α) ∈ [α]ℵ0

such that pα ∈
∪
{Dβ : β ∈ g0(α)} for all α ∈ S ∩ Eκ

ω.

Let g(α) = g0(α) ∪ {h(α)}. Applying FRP(κ) to S ∩ Eκ
ω and g, we obtain

I ∈ [κ]ℵ1 such that

(4.2) cf(I) = ω1 ;

(4.3) h(α) ∈ I for all α ∈ S ∩ Eκ
ω ∩ I ;

(4.4) g0(α) ⊆ I for all α ∈ S ∩ Eκ
ω ∩ I ;

(4.5) if f : S ∩ Eκ
ω ∩ I → κ is such that f(α) ∈ g0(α) for all α ∈ S ∩ Eκ

ω ∩ I,

then there is ξ∗ ∈ I with sup(f−1{ξ∗}) = sup(I).

Let Y = {pα : α ∈ S ∩ Eκ
ω ∩ I} ∪

∪
{Dβ : β ∈ I}. Since |Y | ≤ ℵ1, Y is

meta-Lindelöf. By (4.3), G = {Gα : α ∈ I} covers Y . So it follows that G has

an open refinement E that also covers Y and is point countable on Y . For each

α ∈ S∩Eκ
ω∩I, let Eα ∈ E be such that pα ∈ Eα. Since pα ∈

∪
{Dβ : β ∈ g0(α)},

we have Eα ∩
∪
{Dβ : β ∈ g0(α)} ̸= ∅. Thus, f(α) ∈ g0(α) can be chosen such

that Eα ∩ Df(α) ̸= ∅ for all α ∈ S ∩ Eκ
ω ∩ I.

By (4.5) there is ξ∗ ∈ I such that J = f−1{ξ∗} is unbounded in I. As

Dξ∗ is countable and Eα ∩ Dξ∗ ̸= ∅ for all α ∈ J , there is d ∈ Dξ∗ such that

K = {α ∈ J : d ∈ Eα} is also unbounded in I. But since ord(d, E) is countable,

there are K ′ ⊆ K and E∗ ∈ E such that K ′ is still unbounded in I and Eα = E∗

for all α ∈ K ′.

As E refines G, there is β ∈ I such that E∗ ⊆ Gβ. Then (4.1) implies

Eγ ∋ pγ ̸∈ Gβ for all γ ∈ (S ∩ Eκ
ω ∩ I) \ β. In particular, we have Eγ ̸= E∗ for

any γ ∈ K ′ \ β. This is a contradiction to the choice of E∗ and K ′.

⊣ (Subclaim 4.3.1.1)

Now let C be a club subset of κ consisting of limit ordinals such that S ∩
Eκ

ω ∩ C = ∅ and set

D = {α ∈ C : α \ S is cofinal in α}.

Then D is also a club subset of κ. So we are done by establishing the following

subclaim.

Subclaim 4.3.1.2. S ∩ D = ∅.
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⊢ Suppose that α ∈ D. If cf(α) = ω, then α ̸∈ S since D ⊆ C. So assume

cf(α) > ω. For p ∈ Gα, there is Y ∈ [Gα]ℵ0 such that p ∈ Y by the countable

tightness of X. By the definition of D there is β ∈ α \ S such that Gβ ⊇ Y . It

follows that p ∈ Gβ = Gβ ⊆ Gα. Hence Gα = Gα, i.e. α ̸∈ S.

⊣ (Subclaim 4.3.1.2)

⊣ (Claim 4.3.1)

For every γ ∈ κ\S the set Gγ is clopen, so if C is a club in κ \ S and

⟨γi : i < κ⟩ is the increasing enumeration of C ∪ {0} and Hi = Gγi+1
\ Gγi

for

all i < κ then {Hi : i < κ} is a partition of X into clopen sets.

Now Ui = {Bξ \ Gγi
: γi ≤ ξ < γi+1} is an open cover of Hi with | Ui | < κ.

So Ui has a point countable open refinement Fi by the induction hypothesis.

Since Hi’s are pairwise disjoint, F =
∪
{Fi : i < κ} is a point countable open

cover of X that refines B.

Case 3. κ is singular.

Let ⟨κi : i < cf(κ)⟩ be a continuously and strictly increasing sequence of

cardinals cofinal in κ. Let Gi =
∪
{Bα : α < κi} for each i < cf(κ).

By the induction hypothesis, there is a point countable open refinement Ci

of {Bα : α < κi} with
∪

Ci = Gi for each i < cf(κ). Note that each element

C of Ci is separable since C is an open subset of Bα for some α < κi. Put

C =
∪

i<cf(κ) Ci, then C covers X and ord(C) ≤ cf(κ).

Since each C ∈ C is separable, it is easy to see that | {C ′ ∈ C : C ∼C C ′} | ≤
cf(κ). Hence, by Lemma 4.1, we have | {C ′ ∈ C : C ≈C C ′} | ≤ cf(κ) as well.

Let E be the set of all equivalence classes of the relation ≈C, then {
∪

e :

e ∈ E} is a partition of X into disjoint open sets and every
∪

e is covered

by e ⊂ C. As | e | ≤ cf(κ) < κ we can apply the induction hypothesis to get

a point countable open refinement Fe of e which covers
∪

e. Consequently,

F =
∪
{Fe : e ∈ E} is a point countable open refinement of C and hence of B

as desired. (Theorem 4.3)

The promised strengthening of Balogh’s theorem (Theorem 1.4) can be ob-

tained now as an easy corollary of Theorems 4.2 and 4.3.

Corollary 4.4. (1) Let λ be a cardinal such that for each regular cardinal

κ with ω1 < κ ≤ λ we have FRP(κ). If X is a locally countably compact and

ℵ1-metrizable space with L(X) ≤ λ then X is metrizable.

(2) Assume FRP. Then every locally countably compact and ℵ1-metrizable

space is metrizable.
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Proof. We prove only (1) since it is clear that (2) follows from (1).

Let X be as in (1). Then every point of X has a countably compact neigh-

borhood, and this neighborhood is compact metrizable by Dow’s theorem (The-

orem 1.2). It follows that X is both locally separable and countably tight. But

X is ssmL since it is ℵ1-metrizable. Hence X is meta-Lindelöf by Theorem

4.3 (1). By Theorem 4.2, it follows then that X is metrizable.

(Corollary 4.4)

As noted in Fact 2.1, FRP(ℵ1) is a theorem in ZFC. Thus the proofs of

Theorem 4.3 and Corollary 4.4 also establish the following ZFC results:

Corollary 4.5. Suppose that X is a locally separable and countably tight space

with L(X) ≤ ℵ1. If X is ssmL, then X is meta-Lindelöf.

Corollary 4.6. Suppose that X is a locally countably compact space with L(X) ≤
ℵ1. If X is ℵ1-metrizable, then X is metrizable.

5 Almost metrizability and almost meta-Lindelöfness

The following result may be seen as a singular compactness theorem on the

meta-Lindelöfness of locally separable and countably tight spaces, in analogy

with Shelah’s Singular Compactness Theorem on the notion of freeness (Shelah

[21]). It also shows that the regularity of κ in Proposition 1.5 cannot be dropped.

Theorem 5.1. Every locally separable and almost meta-Lindelöf space of sin-

gular cardinality is meta-Lindelöf.

The proof of Theorem 5.1 will be given after Proposition 5.3.

Corollary 5.2. Every locally countably compact and almost metrizable space of

singular cardinality is metrizable.

Proof. By Theorem 5.1 and Theorem 4.2 (Repeat the argument of the proof

of Corollary 4.4). (Corollary 5.2)

Proposition 5.3. Suppose that X is almost meta-Lindelöf. Then every cover

of X of cardinality < |X | consisting of separable open sets has a point countable

open refinement.

Proof. Similarly to Theorem 4.3, it is enough to prove the following assertion

(∗)κ for all cardinals κ by induction on κ.
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(∗)κ For any almost meta-Lindelöf space X with |X | > κ, if B is a cover of

X of cardinality κ consisting of separable open sets then B has a point

countable open refinement.

Assume that (∗)κ′ holds for all κ′ < κ and B = {Bα : α < κ} is a cover of X

as in (∗)κ.

Case 1. κ ≤ ℵ0.

B itself is point countable.

Case 2. κ is regular uncountable.

Let Gα =
∪
{Bβ : β < α} for α < κ and S = {α < κ : Gα ̸= Gα}.

Claim 5.3.1. S is non-stationary.

⊢ Toward a contradiction, suppose that S were stationary. For each α ∈ S,

let pα ∈ Gα \ Gα. For α ∈ κ, let Dα be a countable dense subset of Bα. Note

that we have Gα =
∪

β<α Dβ for α < κ.

Let A = {pα : α ∈ S} ∪
∪

β<κ Dβ. Since X is almost meta-Lindelöf and

|A | = κ < |X | , the subspace A of X is meta-Lindelöf. Thus there is an open

refinement E of {Gα : α < κ} that covers A and is point countable on A. For

each α ∈ S choose Eα ∈ E such that pα ∈ Eα. Then pα ∈
∪

β<α Dβ implies that

there is f(α) < α with Eα ∩ Df(α) ̸= ∅.
By Fodor’s theorem, there is a β∗ < κ such that T = {α ∈ S : f(α) = β∗} is

stationary. Since Dβ∗ is countable, there is a d∗ ∈ Dβ∗ such that |{α ∈ T : d∗ ∈
Dβ∗ ∩Eα}| = κ and by the point countability of E (on A) there is E∗ ∈ E such

that d∗ ∈ E∗ and |{α ∈ T : E∗ = Eα}| = κ. Let γ < κ be such that E∗ ⊆ Gγ

and let α ∈ S \ γ be such that E∗ = Eα. Then pα ∈ Eα = E∗ ⊆ Gγ ⊆ Gα .

This is a contradiction to the choice of pα. ⊣ (Claim 5.3.1)

The rest of the proof for this case can be carried out just as in Case 2 of the

proof of Theorem 4.3.

Case 3. κ is singular.

Let ⟨κi : i < cf(κ)⟩ be a continuously and strictly increasing sequence of

cardinals cofinal in κ and put Gi =
∪
{Bα : α < κi} for i < cf(κ).

For each i < cf(κ) there is a point countable open refinement Ci of the cover

{Bα : α < κi} of Gi : if |Gi | = |X | then this follows from the induction

hypothesis, since |Gi | = |X | > κi ≥ | {Bα : α < κi} | ; if |Gi | < |X | then

from the almost meta-Lindelöfness of X.
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C =
∪

i<cf(κ) Ci is then an open refinement of B with ord(C) ≤ cf(κ). Since

each member of C is separable, as we have seen several times already, the inter-

section relation ∼C on C satisfies | {C ′ ∈ C : C ′ ∼C C} | ≤ cf(κ) for each C ∈ C.

Consequently, every equivalence class e of the transitive closure ≈C of ∼C is of

size ≤ cf(κ) by Lemma 4.1. But then the open cover e of
∪

e has a point count-

able open refinement De : if |
∪

e | = |X | then by the induction hypothesis, and

if |
∪

e | < |X | then by the almost meta-Lindelöfness of X. It is now obvious

that if E is the set of all equivalence classes of ≈C then
∪
{De : e ∈ E} is a

point countable open refinement of C and hence of B. (Proposition 5.3)

Proof of Theorem 5.1: Let X be a locally separable and almost meta-Lindelöf

space with |X| = λ > cf(λ).

First we show that every open cover B of X has an open refinement C with

ord(C) ≤ cf(λ). Since X is locally separable, we may assume that B consists of

separable open sets. If |B| < λ then B has a point countable open refinement

by Proposition 5.3. Thus we may assume | B | = λ. Let B = {Oα : α ∈ λ}.
Fix an increasing sequence of cardinals ⟨λi : i < cf(λ)⟩ cofinal in λ and

for each i < cf(λ) let Bi = {Oα : α < λi}. Bi has a point countable open

refinement Ci for each i < λ. Indeed, if |
∪
Bi | < λ this is because X is almost

meta-Lindelöf, and if |
∪

Bi | = λ then this follows from Proposition 5.3. Clearly

C =
∪
{Ci : i < cf(λ)} is the required refinement.

Now we show that X is meta-Lindelöf. For this, it is enough to show that

if B is a cover of X consisting of separable open sets with ord(B) ≤ cf(λ) then

B has a point countable open refinement.

This is done simply by repeating the proof of Case 3 of Proposition 5.3

with the only difference that if we have |
∪

e | = λ for an equivalence class e of

the transitive closure ≈B of the intersection relation ∼B on B. Then we apply

Proposition 5.3 instead of the induction hypothesis. (Theorem 5.1)

Proposition 5.3 also has the following obvious application:

Corollary 5.4. Suppose that X is locally separable with L(X) < |X |. If X is

almost meta-Lindelöf then X is meta-Lindelöf.

Corollary 5.5. Suppose that X is a locally countably compact space such that

max{L(X), ℵ1} < |X |. If X is almost metrizable then X is metrizable.

Proof. By Corollary 5.4 and the argument of the proof of Corollary 4.4.

(Corollary 5.5)
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We note that local (countable) compactness cannot be simply dropped from

any of the results above on almost metrizability implying metrizability. In

fact, it was observed in Hajnal and Juhász [15] that for every uncountable

cardinal κ there is an almost metrizable but non-metrizable space of cardinality

κ. Moreover, the space constructed in [15] is “nice” in the sense that it has a

single non-isolated point and hence is totally paracompact.

Extending the terminology of local countability, let us say that a topological

space X is locally < κ if each x ∈ X has a neighborhood U of cardinality < κ.

Locally ≤ κ is the same as locally < κ+.

Proposition 5.6. Assume that µ > ℵ1 is a regular cardinal, µ ≤ λ and FRP(δ)

holds for all regular δ with µ ≤ δ ≤ λ. If X is a countably tight and < µ-meta-

Lindelöf space of size ≤ λ then every cover B of X consisting of open sets of

size < µ has an open refinement B′ with ôrd(B′) ≤ µ.

Proof. Let (∗)κ be the following assertion:

(∗)κ Any cover B of size κ consisting of open sets of size < µ of a countably

tight and <µ-meta-Lindelöf space X has an open refinement B′ with

ôrd(B′) ≤ µ.

Clearly it is enough to prove (∗)κ for all cardinals κ by induction on κ ≤ λ.

So assume that (∗)κ′ holds for all κ′ < κ ≤ λ and suppose that X and B are as

in (∗)κ.

Case 1. κ < µ.

Then B is an open refinement of itself with ôrd(B) ≤ µ.

Case 2. κ ≥ µ is regular.

Note that we have |X | ≤ | B | · µ = κ. If |X| < κ we are done by the

induction hypothesis, so we may assume that |X | = κ and in fact that X = κ.

Let B = {Bα : α < κ} and Gα =
∪

β<α Bβ for α < κ. Since |Bα | < µ for all

α < κ, we have |Gα | < κ for all α < κ. Thus C = {α < κ : α is a limit or 0

and Gα = α} is a club in κ.

Claim 5.6.1. {α ∈ C : Gα = Gα} contains a club.

⊢ Since X is countably tight, the same argument as in the proof of Subclaim

4.3.1.2 can be repeated here to conclude that it suffices to show that S = {α ∈
C ∩ Eκ

ω : Gα ̸= Gα} is non-stationary.

Suppose, toward a contradiction, that S were stationary. Choose

(5.1) pα ∈ Gα \ Gα
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for each α ∈ S. Since Gα = α and X is countably tight, there is g0(α) ∈ [α]ℵ0

such that pα ∈ g0(α). Let

(5.2) g(α) = g0(α) ∪ {pα}.

Now, there is I ∈ [κ]ℵ1 as in the definition of FRP(κ) for these S and g. For

every α ∈ S ∩ I, we have pα ∈ I and g0(α) ⊆ I by (2.2) and (5.2). Since

| I | = ℵ1 < µ, I as a subspace of X is meta-Lindelöf. Thus the open cover

E = {Gα ∩ I : α ∈ I} of I has a point countable open refinement E∗. For

each α ∈ S ∩ I let Eα ∈ E∗ be such that pα ∈ Eα. Then pα ∈ g0(α) implies

g0(α) ∩ Eα ̸= ∅, so we may pick f(α) ∈ g0(α) ∩ Eα. By the choice of I then

there is β∗ ∈ I such that {α ∈ S ∩ I : f(α) = β∗} is stationary in sup(I).

Now, ord(β∗, E∗) ≤ ℵ0 implies that there is E∗ ∈ E∗ such that J = {α ∈
S ∩ I : Eα = E∗} is unbounded in sup(I). Let γ ∈ I be such that E∗ ⊂ Gγ

and α ∈ J \ γ. Then pα ∈ Eα = E∗ ⊆ Gγ ⊆ Gα . This is a contradiction to

(5.1). ⊣ (Claim 5.6.1)

The rest of the proof can be carried out as in Case 2 of the proof of Theorem

4.3. Let D ⊆ {α ∈ C : Gα = Gα} be a club and ⟨γi : i < κ⟩ be the

increasing enumeration of D ∪ {0}. Let Hi = Gγi+1
\ Gγi

for i < κ. Then

{Hi : i < κ} forms a partition of X into disjoint clopen sets of size < κ and

by the induction hypothesis there is an open refinement B′
i of B ¹ Hi with

ôrd(B′
i) ≤ µ. B′ =

∪
i<κ B′

i is then a refinement of B as required.

Case 3. κ > µ is singular.

The proof of this case is quite similar to Case 3 in the proof of Theorem

4.3. Let ⟨κi : i < cf(κ)⟩ be a continuously and strictly increasing sequence of

cardinals cofinal in κ and put Gi =
∪
{Bα : α < κi} for each i < cf(κ). By the

induction hypothesis, the cover {Bα : α < κi} of Gi has an open refinement Ci

such that ôrd(Ci) ≤ µ. Note that each element C of Ci is of cardinality < µ.

Now, if C =
∪

i<cf(κ) Ci then C covers X and ord(C) ≤ max{cf(κ), µ} < κ.

Let ≈C be the transitive closure of the intersection relation ∼C on C. Using

Lemma 4.1 it is easy to check that each equivalence class of ≈C has cardinality

≤ max{cf(κ), µ}. So if E is the set of all equivalence classes of ≈C then {
∪

e :

e ∈ E} is a partition of X into disjoint clopen sets of size ≤ max{cf(κ), µ} < κ

and so the inductive hypothesis can be applied as in Case 2 to obtain a desired

refinement. (Proposition 5.6)

The following theorem shows that Question 4.3 in Dow [6] can be (consis-

tently) irrelevant:
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Theorem 5.7. (1) Assume that ℵ0 < µ ≤ λ with µ regular and FRP(δ) holds

for all regular δ with µ ≤ δ ≤ λ. Then every locally < µ and < µ-metrizable

space of cardinality ≤ λ is metrizable.

(2) Assume that FRP holds and µ is an uncountable regular cardinal. Then

every locally < µ and < µ-metrizable space is metrizable.

Proof. Again, it suffices to prove only (1). Let X be locally < µ and <

µ-metrizable with |X| ≤ λ. By Proposition 5.6 and Lemma 4.1, X can be

partitioned into open subsets of cardinality < µ. As X is < µ-metrizable, each

open set in the partition is metrizable, hence so is X. (Theorem 5.7)

Dow proved in [6] the statement of the following corollary under Axiom R.

Corollary 5.8. (1) Assume that FRP(δ) holds for all regular δ for which

ℵ1 ≤ δ ≤ λ. Then every locally ≤ ℵ1 and ℵ1-metrizable space of cardinality ≤ λ

is metrizable.

(2) Assume FRP. Then every locally ≤ ℵ1 and ℵ1-metrizable space is

metrizable.

Corollary 5.8 is a variant of 4.4 in which “countable compactness” is replaced

by “locally ≤ ℵ1”. Since any compact metric space has cardinality ≤ 2ℵ0 , this

corollary extends 4.4 if, in addition to FRP, we also have CH.

The following natural problem remains open.

Problem 1. Is it consistent that the statement of Theorem 5.7 holds for all

uncountable cardinals µ?

For singular µ, Dow [6] showed in ZFC that if X is of cardinality µ and

locally ≤ δ for some cf(µ) ≤ δ < µ then the < µ-metrizability of X implies the

metrizability of X.

The following result was established in Hajnal and Juhász [15]: If κ is a

weakly compact cardinal then every countably tight and almost metrizable (i.e.

<κ-metrizable) space of cardinality κ is metrizable. Actually, this was stated

as [15, Theorem 1] for first countable spaces but the same proof as there also

works for countably tight spaces. The next theorem shows that if we assume

“more” compactness of κ then we can strengthen this result for countably tight

< κ-metrizable spaces of cardinality ≥ κ.

Theorem 5.9. (1) Assume that κ ≤ λ and κ is λ-compact. Then every count-

ably tight and < κ-metrizable space of cardinality λ is metrizable.

(2) Assume that κ is (strongly) compact. Then every countably tight and

< κ-metrizable space is metrizable.
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Proof. (1): Without loss of generality we may assume that X = λ with the

topology τ .

Recall that “κ is λ-compact” means there is a κ-complete fine ultrafilter U

on Pκλ (for more about λ-compact cardinals see e.g. [16] or [17]). For each

x ∈ Pκλ, let dx be a metric on x compatible with the subspace topology of x

induced by τ . Now, we define d : λ × λ → R+ by

(5.3) d(α, β) = r if and only if {x ∈ Pκλ : dx(α, β) = r} ∈ U .

It is easy to check that d is a metric on X. Let τd be the topology on X induced

from d. We claim that τ = τd.

Since both τ and τd are countably tight, it suffices for this to show that α ∈ A

if and only if α ∈ A
d

whenever α ∈ X and A ⊆ X is countable where A denotes

the closure of A with respect to τ while A
d

the closure of A with respect to d.

But this easily follows from the fact that Hα,A = {x ∈ Pκλ : {α}∪A ⊆ x} ∈ U

and, for every x ∈ Hα,A , the metric dx is compatible with the τ -subspace

topology on x. This completes the proof of (1).

(2) follows immediately from (1) since κ is compact if and only if it is λ-

compact for all λ ≥ κ. (Theorem 5.9)

The assumption of countable tightness in Theorem 5.9 may seem to be

restrictive but it actually is not. To explain this let us recall the following piece

of notation from cardinal function theory. For a topological space X, let t̂(X)

denote the smallest cardinal µ such that whenever p ∈ A for some p ∈ X and

A ⊂ X then there is a subset B ⊂ A with p ∈ B and |B| < µ. Thus X

is countably tight if and only if t̂(X) ≤ ℵ1. The following simple proposition

implies that in Theorem 5.9 the assumption of countable tightness could have

been replaced by the seemingly much weaker condition t̂(X) ≤ κ.

Proposition 5.10. For any cardinal κ, if X is < κ-metrizable and t̂(X) ≤ κ

then X is actually countably tight.

Proof.

Assume that p ∈ A in X, then t̂(X) ≤ κ implies p ∈ B for some B ⊆ A with

|B| < κ. But the subspace B ∪{p} of X is metrizable because of its cardinality

being less than κ. Hence there is a countable set C ⊆ B ⊆ A such that p ∈ C.

(Proposition 5.10)

The following is mentioned in [22] as Hamburger’s problem:

Problem 2. Is it consistent that every regular, first countable and ℵ1-metrizable

space is metrizable?
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The assertion in Problem 2 with “ℵ1-metrizable” replaced by “< 2ℵ0-metri-

zable” is known to be consistent. In Dow, Tall and Weiss [8, Theorem 5.2] it is

shown that the model of ZFC obtained by adding supercompact many Cohen

reals satisfies that every first countable < 2ℵ0-metrizable space is metrizable.

Note however that the continuum in this model is fairly large. Theorem 5.9

above can be also seen as a special case of this theorem since it is proved in [8,

Lemma 5.4] that non-metrizability of a topological space in the ground model

is preserved in Cohen extensions.

Problem 3. Is every regular, first countable, and almost metrizable space of

singular cardinality metrizable?

Koszmider [19, Theorem 35] showed that the negative answer to the problem

above is consistent for spaces of singular cardinality of uncountable cofinality.

6 Non-reflection for locally compact spaces under the

reflection of all stationary sets

For a regular cardinal κ, let ADS−(κ) denote the following principle:

ADS−(κ): there are a stationary set S ⊆ κ and a sequence ⟨aα : α ∈ S⟩ such

that

(6.1) aα ⊆ α and otp(aα) = ω for all α ∈ S;

(6.2) for any β < κ, there is a mapping f : S ∩ β → β such that

f(α) < sup(aα) for all α ∈ S ∩ β and aα \ f(α), α ∈ S ∩ β are

pairwise disjoint.

Let ADS−∗(κ) be the assertion that there are a stationary S ⊆ Eκ
ω and a

sequence ⟨aα : α ∈ S⟩ such that (6.1) and (6.2) hold.

Lemma 6.1. For any regular κ, ADS−(κ) is equivalent to ADS−∗(κ).

Proof. It is clear that ADS−(κ) follows from ADS−∗(κ). So assume ADS−(κ)

with S ⊆ κ and ⟨aα : α ∈ S⟩ witnessing this. We have to show that there are

a stationary S∗ ⊆ Eκ
ω and a sequence ⟨a∗

α : α ∈ S∗⟩ such that they satisfy (6.1)

and (6.2).

Case 1. {sup(aα) : α ∈ S ′} is bounded in κ for some stationary S ′ ⊆ S.

Let α∗ = sup{sup(aα) : α ∈ S ′} < κ and S∗ = Eκ
ω\α∗. Let ⟨a∗

α : α ∈ S∗⟩ be

any one-to-one re-enumeration of ⟨aα : α ∈ S ′⟩. Then this S∗ and ⟨a∗
α : α ∈ S∗⟩

are as desired.
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Case 2. {sup(aα) : α ∈ S ′} is unbounded in κ for all stationary S ′ ⊆ S.

Claim 6.1.1. S∗ = {α ∈ S : sup(aα) = α} is stationary.

⊢ Otherwise there is a club C such that C∩S∗ = ∅. Then for every α ∈ S∩C

we have sup(aα) < α. By Fodor’s theorem there are a stationary set S ′ ⊆ S∩C

and a δ < κ such that sup(aα) = δ for all α ∈ S ′ which is a contradiction to the

assumption of the case. ⊣ (Claim 6.1.1)

Clearly S∗ ⊆ Eκ
ω. Thus these S∗ and ⟨aα : α ∈ S∗⟩ are as desired.

(Lemma 6.1)

Proposition 6.2. For a regular cardinal κ > ℵ1, ADS−(κ) implies ¬FRP(κ).

Proof. Suppose that a stationary S ⊆ κ and a sequence ⟨aα : α ∈ S⟩ witness

ADS−(κ). By Lemma 6.1, we may assume that S ⊆ Eκ
ω. Let g : S → [κ]ℵ0 be

defined by g(α) = aα for α ∈ S. For any I ∈ [κ]ℵ1 , since sup(I) < κ, there is

an f : S ∩ I → κ such that f(α) ∈ g(α) ⊂ α for all α ∈ S ∩ I and the sets

g(α) \ f(α) are pairwise disjoint for α ∈ S ∩ I. But since f(α) ∈ g(α) \ f(α), f

is one-to-one. This shows that FRP(κ) fails. (Proposition 6.2)

ADS−(κ) for a regular κ > ℵ1 not only negates FRP(κ) but actually it also

implies the existence of a space as in Proposition 1.5.

Proposition 6.3. Suppose that ADS−(κ) holds for a regular uncountable κ.

Then there is a locally countable, locally compact, and almost metrizable space

of cardinality κ that is not meta-Lindelöf.

Proof. Let ⟨aα : α ∈ S⟩ be a sequence as in the definition of ADS−(κ).

Without loss of generality we may assume that all members of S are limit

ordinals while the elements of the aα’s are successors. For the latter condition

note that we may simply replace each aα by a′
α = {ξ + 1 : ξ ∈ aα}.

Let X = S ∪ {ξ + 1 : ξ ∈ κ} with the topology defined as follows: All

successors are isolated and a basic neighborhood of α ∈ S is of the form {α} ∪
(aα\β) where β < sup(aα). Just as in the proof of Proposition 1.5, it is easy

to show that X is not meta-Lindelöf, locally countable, and locally compact.

Thus the following claim completes the proof.

Claim 6.3.1. X is almost metrizable.

⊢ It is enough to show that X ∩ β is metrizable for every limit ordinal β < κ.

To see this, take an f : S ∩ β → β such that f(α) < sup(aα) for all α ∈ S ∩ β
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and the sets aα\f(α) for α ∈ S ∩ β are pairwise disjoint. Let I = {ξ + 1 :

ξ ∈ β} \
∪
{aα \ f(α) : α ∈ S ∩ β}. Then U = {{α} ∪ (aα \ f(α)) : α ∈

S ∩ β} ∪ {{α} : α ∈ I} is a partition of X ∩ β into countable open sets. Each

element of U is second countable and regular and hence metrizable. It follows

that X ∩ β is metrizable as well. ⊣ (Claim 6.3.1)

(Proposition 6.3)

The following principle ADS(λ) was studied by S. Shelah in [20].

ADS(λ): there is a sequence ⟨aα : α < λ+⟩ such that

(6.3) aα ⊆ λ, sup(aα) = λ and otp(aα) = cf(λ) for all α < λ+;

(6.4) for any β < λ+, there is a mapping f : β → λ such that

aα \ f(α), α < β are pairwise disjoint.

The following is immediate from the definitions of the principles ADS(λ) and

ADS−(λ+):

Proposition 6.4. Suppose that cf(λ) = ω. Then ADS(λ) implies ADS−(λ+).

Note that, even if cf(λ) = ω, ADS(λ) and ADS−(λ+) are not quite the

same: while, in ADS(λ), the ”almost” pairwise essentially disjoint family ⟨aα :

α < λ+⟩ consists of subsets of λ, there is no such restriction on the correspond-

ing family in ADS−(λ+). Actually, it is proved in [14] that, for a cardinal κ,

ADS−(λ) for all regular cardinal λ < κ is equivalent to ¬FRP(λ) for all regular

cardinal λ < κ. From Theorem 4.3, Corollary 4.4 and Proposition 6.3 together

with this result from [14], it follows that FRP is equivalent with both of the

assertions of Theorem 4.3, (2) and Corollary 4.4 over ZFC.

Let us denote with ORP(κ) the assertion that (the stationarity of) every

stationary subset of Eκ
ω reflects down to an ordinal of cofinality ω1 (in the

notation of [5], this is Refl(1, Eκ
ω, ω1) ). Clearly FRP(κ) implies ORP(κ) but

the converse is false, as we shall see.

The following two results from [5] now provide what we need to show the

consistency (modulo consistency strength of some large cardinal) of ADS−(κ)

+ ORP(κ) for a regular cardinal κ > ℵ1.

Theorem 6.5. (J. Cummings, M. Foreman and M. Magidor [5, Theorem 7 and

Theorem 21])

(1) ¤∗
λ implies ADS(λ).

(2) If ZFC + “there are infinitely many supercompact cardinals” is con-

sistent then so ZFC + ¤∗
ωω

+ ORP(ℵω+1).
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Actually, [5] proves the consistency of ¤∗
ωω

with a reflection property that

looks much stronger than ORP(ℵω+1).

Corollary 6.6. It is consistent (modulo the large cardinal assumption of Theo-

rem 6.5,(2)) that there is a locally countable, locally compact Hausdorff space of

cardinality ℵω+1 which is almost metrizable but not meta-Lindelöf (in particular,

then FRP(ℵω+1) fails), while ORP(ℵω+1) holds.

In Fuchino, Sakai, Soukup and Usuba [14], the consistency of ORP(ℵ2) with

¬FRP(ℵ2) is proved relative to a single supercompact cardinal.
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