PARTITIONS INTO POWER-HOMOGENEOUS PATHS

MÁRTON ELEKES, DÁNIEL T. SOUKUP, LAJOS SOUKUP, AND ZOLTÁN SZENTMIKLÓSSY

1. Introduction

Our aim is to prove theorems stating that certain edge-colored graphs can be partitioned into monochromatic paths or powers of paths.

Investigations began in the 80s with a results of Rado [5] implying that the every r-edge colored $(r \in \omega$) complete graph on ω can be partitioned into r monochromatic paths with different colors. Rado's result extends to finite complete graphs with 2-edge colorings, however by increasing the number of colors one runs into difficulties. Indeed, Kathy Heinrich constructed colorings of K_{n} with $r \geqslant 3$ colors so that there is no r-partition of K_{n} to paths with different colors. However, A. Pokrovskiy [3] quite recently proved that one can partition a 3-colored K_{n} into 3 monochromatic paths. Again in 1986, Gyárfás [2] showed that for every $r \in \omega$ there is $f(r) \in \omega$ so that for any r-edge coloring of K_{n} there is a cover of K_{n} by $\leqslant f(r)$ monochromatic paths.

We extend these results by proving ...
Naturally, one would like to extend the above results to graphs with fewer edges and hence, we turn to complete bipartite graphs. Pokrovskiy [3] proves (also follows from Gyárfás, Lehel ???, see [3]) that for every 2-edge coloring of $K_{n, n}$ there is a 3-partition to monochromatic paths and this result is sharp. Furthermore, Haxell proved that for all $r \in \omega$ there is $C_{r} \in \omega$ so that every r-edge colored $K_{n, n}$ partitions into at most C_{r}-many monochromatic cycles (in particular, paths).

Again, we extend this line of research by proving that ...

2. Preliminaries

$$
\begin{gathered}
\mathrm{N}_{G}(v)=\{u \in \mathrm{~V}(G): u v \in \mathrm{E}(G)\} . \\
\mathrm{N}_{G}(A)=\bigcap_{v \in A} \mathrm{~N}_{G}(v) .
\end{gathered}
$$

Definition 2.1. Let G be a graph and $c: E(G) \rightarrow \nu$ a coloring of the edges of G. We say that the sequence of vertices $P=\left\langle p_{\alpha}: \alpha<\kappa\right\rangle$ of G is a path iff
(1) $\left(p_{\alpha}, p_{\alpha+1}\right) \in E(G)$ for all $\alpha<\kappa$,
(2) $\sup \left\{\alpha<\beta:\left(p_{\alpha}, p_{\beta}\right) \in E(G)\right\}=\beta$ for all limit $\beta<\kappa$.

[^0]A path P is monochromatic in some color $i<\nu$ (or a path in color i) iff
(1') $c\left(p_{\alpha}, p_{\alpha+1}\right)=i$ for all $\alpha<\nu$,
$\left(2^{\prime}\right) \sup \left\{\alpha<\beta:\left(p_{\alpha}, p_{\beta}\right) \in E(G)\right.$ and $\left.c\left(p_{\alpha}, p_{\beta}\right)=i\right\}=\beta$ for all limit $\beta<\nu$.
Definition 2.2. Let G be a graph and $c: E(G) \rightarrow \nu$ a coloring of the edges of G and κ a cardinal. A subset $A \subseteq V(G)$ is κ-connected in color i for some $i<\nu$ iff for every $a, b \in A$ and $B \in[A]^{<\kappa}$ there is a finite, path $P=\left\langle p_{j}: j<k\right\rangle$ in $(A \backslash B) \cup\{a, b\}$ in color i with $p_{0}=a$ and $p_{k-1}=b$.

The following lemma is well-known and easy.
Lemma 2.3. If G is a copy of K_{ω}, moreover $c: E(G) \rightarrow r$ is a coloring of the edges of G with finitely many colors, then there is a function $d_{c}: \mathrm{V}(G) \rightarrow r$ and there is a color $j_{c} \in r$ such that
(*) for each finite subset U of $\mathrm{V}(G)$ there is $v \in \mathrm{~V}(G)$ such that $d(v)=j_{c}$ and $c(u, v)=d_{c}(u)$ for all $u \in U$.

3. Partitions of hypergraphs

A loose path in a k-uniform hypergraph is a sequence of edges, e_{1}, e_{2}, \ldots such that for $\left|e_{i} \cap e_{i+1}\right|=1$ and $e_{i} \cap e_{j}=\varnothing$ for $i+1<j$

A tight path is a sequence of distinct vertices where every consecutive set of k vertices forms an edge.
A. Gyárfás and G.N. Sárközy, [1, Theorem 3.], proved the following result: Suppose that the edges of a countably infinite complete k-uniform hypergraph are colored with r colors. Then the vertex set can be partitioned into monochromatic finite or one-way infinite loose paths of distinct colors.
Theorem 3.1. Suppose that the edges of the countably infinite complete k uniform hypergraph on ω are colored with r colors. Then the vertex set can be partitioned into monochromatic finite or one-way infinite tight paths of distinct colors.
Proof. The case $k=2$ was proved by Rado in [5]. We imitate his proof.
Let $c:[\omega]^{k} \rightarrow r$. A set $T \subset r$ of colors is called prefect iff there are vertex disjoint finite paths $\left\{P_{t}: t \in T\right\}$ and there is an infinite set A such that for all $t \in T$
(a) P_{t} is a tight monochromatic path in color t
(b) if $1 \leqslant i<k$ and x is the last i vertices from P_{t} and $y \in[A]^{k-i}$, then $c(x \cup y)=t$.
Let T be a perfect set of colors with maximal number of elements.
Claim 3.1.1. If the vertex disjoint finite paths $\left\{P_{t}: t \in T\right\}$ and the infinite set A satisfy (a) and (b), then for all $v \in \omega \backslash \bigcup_{i \in T} P_{t}$ there is a color $t \in T$ and a finite sequence $v_{1} v_{2} \ldots v_{k-1}$ from A, and an infinite set $A^{\prime} \subset A$ such that the paths

$$
\begin{equation*}
\left\{P_{s}: s \in T \backslash\{t\}\right\} \cup\left\{P_{t}^{\complement} v_{1} v_{2} \ldots v_{k-1} v\right\} \tag{3.1}
\end{equation*}
$$

and A^{\prime} satisfy (a) and (b).

Proof of the Claim. Define a new coloring $d:[A]^{k-1} \rightarrow r$ by the formula $d(x)=$ $c(x \cup\{v\})$. By Ramsey Theorem, there is an infinite d-homogeneous set $B \subset A$ in some color t. Then $t \in T$, otherwise $T \cup\{t\}$ would be a bigger perfect set witnessed by $P_{t}=\{v\}$ and B.

Now pick $v_{1} v_{2} \ldots v_{k-1}$ from B and let $A^{\prime}=B \backslash\left\{v_{0}, v_{1}, v_{k-1}, v\right\}$.
The Claim clearly implies the Theorem.

4. An infinite version of a conjecture of Seymour

Seymour's Conjecture . Let G be a finite graph of order $n \geqslant 3$, and let $k \in \omega$. If G has minimum degree

$$
\begin{equation*}
\delta(G) \geqslant \frac{k}{k+1} n \tag{4.1}
\end{equation*}
$$

contains the k th power of a Hamiltonian cycle.
If $k+1 \nmid n$, then the assumption (4.1) implies that $\mathrm{N}_{G}[A] \neq \varnothing$ for all $A \in[\mathrm{~V}(G)]^{k+1}$.
Theorem 4.1. Let G be a countably infinite graph, and let $k \in \omega$. If $\mathrm{N}_{G}[A]$ is infinite for all $A \in[\mathrm{~V}(G)]^{k+1}$, then G contains the k th power of a Hamiltonian path.
Proof.
Claim 4.1.1. If the k th power of a finite path $P=x_{0} \ldots x_{n}$ is in G, then for all $v \in \mathrm{~V}(G) \backslash P$ there is a a finite sequence $v_{1} v_{2} \ldots v_{k-1}$ of vertices, such that the k th power of the finite path $P{ }^{\complement} v_{1} v_{2} \ldots v_{k-1} v$ is also in G.

Proof of the Claim. By finite induction pick distinct vertices v_{1}, \ldots, v_{k-1} such that

$$
\begin{equation*}
v_{i} \in \mathrm{~N}_{G}\left[\left\{x_{n-k+i}, \ldots, x_{n}\right\} \cup\{v\} \cup\left\{v_{j}: j<i\right\}\right] . \tag{4.2}
\end{equation*}
$$

Using the Claim, we can construct the rewuired Hamiltonian path inductively.

5. Covers by ℓ th powers of paths

Definition 5.1. Assume that H is a graph, $W \subset V(H)$, and $k \in \omega$. The game $\mathfrak{G}_{k}(H, W)$ is played by two players, Adam and Bob, as follows. The players choose pairwise disjoint finite subsets of $V(H)$ alternately:

$$
A_{0}, B_{0}, A_{1}, B_{1}, \ldots
$$

Bob wins the game $\mathfrak{G}_{k}(H, W)$ if
(A) $W \subset \bigcup_{i \in \omega} A_{i} \cup B_{i}$, and
(B) $H\left[\bigcup_{i \in \omega} B_{i}\right]$ contains the k th power of a (finite or one way infinite) Hamiltonian path.
Claim 5.1.1. If $H=(V, E)$ and $W \subset V$ then the following are equivalent:
(1) for every $a, b \in W$ and $F \in[V \backslash\{a, b\}]^{<\omega}$ there is a path in from a to b in $V \backslash F$.
(2) Bob wins $\mathfrak{G}_{1}(H, W)$.

Proof. (1) $\Rightarrow(2)$: By our assumption, Bob can always connect an uncovered point of W to a previously constructed path.
$(2) \Rightarrow(1)$: Let Adam start with $A_{0}=F$ and continue with $A_{i}=\varnothing$; the Hamiltonian path constructed by Bob's strategy will go through a and b.

We will convert a winning strategy of Bob into a partition by the following
lel Lemma 5.2. Suppose that $H=(V, E), V=\cup\left\{W_{i}: i<N\right\}$ with $N \in \omega$ and let $H_{i}=\left(V, E_{i}\right)$ for some $E_{i} \subset E$. If Bob wins $\mathfrak{G}_{k}\left(H_{i}, W_{i}\right)$ for all $i<N$ then V can be partitioned into kth powers of paths $\left\{P_{i}: i<N\right\}$ so that edges between consecutive vertices of P_{i} are in E_{i}.
ite Corollary 5.3. Let $c: E\left(K_{\omega, \omega}\right) \rightarrow r$ for some $r \in \omega$. Then $K_{\omega, \omega}$ can be partitioned into at most $2 r-1$ monochromatic paths. Furthermore, for every $r \in \omega$ there is $c_{r}: E\left(K_{\omega, \omega}\right) \rightarrow r$ so that $K_{\omega, \omega}$ cannot be covered by less than $2 r-1$ monochromatic paths.

Proof. Let us denote the two classes of $K_{\omega, \omega}$ by A and B. Fix a coloring c and ultrafilters U_{A}, U_{B} on A, B respectively; now, let $A_{i}=\{u \in A:\{v \in B: c(u, v) \in$ $\left.i\} \in U_{B}\right\}$ and similarly $B_{i}=\left\{v \in B:\{u \in A: c(u, v) \in i\} \in U_{A}\right\}$. Without loss of generality, we can suppose that $A_{0} \in U_{A}$. Let H_{i} denote the graph on $A \cup B$ with edges $c^{-1}(i)$.

Claim 5.3.1. Bob wins the games $\mathfrak{G}_{1}\left(H_{0}, A_{0} \cup B_{0}\right), \mathfrak{G}_{1}\left(H_{i}, A_{i}\right)$ and $\mathfrak{G}_{1}\left(H_{i}, B_{i}\right)$ for $1 \leqslant i<r$.

Proof. It is easy to see that Claim 5.1.1 can be applied in each case.
This finishes the proof of the first part of the theorem by Lemma 5.2.
Next, we will construct our colorings c showing that the above results is sharp. Let $r \geqslant 2$, let $A=\cup\left\{A_{i}: i<r\right\}$ with A_{0} infinite and $A_{i}=\left\{a_{i}\right\}$ for $1 \leqslant i<r$ and let $B=\cup\left\{B_{i}: i<r\right\}$ with each B_{i} infinite. Define the r-coloring c_{r} as follows: let

$$
c_{r} \upharpoonright A_{i} \times B_{j}=i+j \quad \bmod r \quad \text { for } i, j \in r
$$

Note that if P is a monochromatic path which covers some A_{i} then $\mid\{j<r$: $\left.P \cap B_{j} \neq \varnothing\right\} \mid \leqslant 1$; furthermore P is finite and thus $B_{j} \backslash P \neq \varnothing$ if $1 \leqslant i<r$ and $j<r$. Similarly, if P is a monochromatic path which covers some B_{i} then $\left|\left\{j<r: P \cap A_{j} \neq \varnothing\right\}\right| \leqslant 1$ as well. Now it is easy to see that there is no c_{r}-monochromatic cover by less than $2 r-1$ paths.

Theorem 5.4. Assume that H is a countably infinite graph, $W \subset V(H)$, and $k \in \omega$. If there are subsets W_{0}, \ldots, W_{k} of W such that $W_{0}=W$ and

$$
W_{j+1} \cap N_{H}[F] \text { is infinite }
$$

for each $j<k$ and for all $F \in\left[\bigcup_{i \leqslant j} W_{i}\right]^{2 k}$, then Adam wins that game $\mathfrak{G}_{k}(H, W)$.

Proof. Assume that $\mathrm{V}(H)=\omega$.
Define the relation \sqsubset on $(k+1) \times \omega$ as follows:

$$
\begin{equation*}
\langle i, x\rangle \sqsubset\langle i, y\rangle \text { and }\langle i, x\rangle \sqsubset\langle i+1, y+1\rangle \text { for } x<y . \tag{5.1}
\end{equation*}
$$

The ᄃ-predecessors of $\langle i, y\rangle$ are

$$
\begin{equation*}
\{\langle i, x\rangle: x<y\} \cup\{\langle i+1, z\rangle: y<z\} . \tag{5.2}
\end{equation*}
$$

Let $\left\{\left\langle i_{n}, x_{n}\right\rangle: n<\omega\right\}$ be an enumeration of $k \times \omega$ such that

$$
\begin{equation*}
\left\langle i_{m}, x_{m}\right\rangle \sqsubset\left\langle i_{n}, x_{n}\right\rangle \text { implies } m<n . \tag{5.3}
\end{equation*}
$$

In the stage n, Adam picks $a_{\left\langle i_{n}, x_{n}\right\rangle} \in W_{i_{n}} \backslash \bigcup_{i<n} A_{i} \cup B_{i}$ such that

$$
\begin{equation*}
a_{\left\langle i_{n}, x_{n}\right\rangle} a_{\left\langle i_{m}, x_{m}\right\rangle} \in \mathrm{E}(H) \text { for }\left\langle i_{m}, x_{m}\right\rangle \sqsubset\left\langle i_{n}, x_{n}\right\rangle, \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{\left\langle i_{n}, x_{n}\right\rangle}=\min \left(W_{0} \backslash \bigcup_{i<n} A_{i} \cup B_{i}\right) \text { provided } i_{n}=0 . \tag{5.5}
\end{equation*}
$$

Let $A_{n}=\left\{a_{\left\langle i_{n}, x_{n}\right\rangle}\right\}$.
Then (A) holds by 5.5.
Let $\left\{\left\langle j_{n}, y_{n}\right\rangle: n<\omega\right\}$ be the lexicographical enumeration of $k \times \omega$. Then $\left\{a_{\left\langle j_{n}, y_{n}\right\rangle}: j<\omega\right\}$ is the k th power of a path. Indeed, assume that $0 \leqslant m<n \leqslant$ $m+k$. Then either $\left\langle j_{n}, y_{n}\right\rangle \sqsubset\left\langle j_{m}, y_{m}\right\rangle$ or $\left\langle j_{m}, y_{m}\right\rangle \sqsubset\left\langle j_{n}, y_{n}\right\rangle$. Then 5.4 implies that $a_{\left\langle i_{n}, x_{n}\right\rangle} a_{\left\langle i_{m}, x_{m}\right\rangle} \in \mathrm{E}(H)$.
Theorem 5.5. (1) Given any coloring of the edges of K_{ω} with 2 colors, the vertices can be partitioned into 5 homogeneous path-square.
(2) For each natural numbers k and r there is a natural number M such that given any coloring of the edges of K_{ω} with r colors, the vertices can be partitioned into M homogeneous k-power of a path apart from a finite set.

Proof of theorem 5.5(2). (2) We will use the notation of lemma 2.3. By induction on the length of sequences, for each finite sequence $s \in r^{\leqslant k r+1}$ define a set $A_{s} \subset \mathrm{~V}(G)$ as follows:

- $A_{\varnothing}=\mathrm{V}(G)$.
- if A_{s} is defined, let

$$
\begin{equation*}
A_{s \frown i}=\left\{u \in A_{s}: d_{c \upharpoonright A_{s}}(u)=i\right\} \tag{5.6}
\end{equation*}
$$

provided A_{s} is infinite. If A_{s} is finite, then let

$$
\begin{equation*}
A_{s \sim 0}=A_{s} \text { and } A_{s \sim i}=\varnothing \text { for } 1 \leqslant i<r \tag{5.7}
\end{equation*}
$$

Consider an arbitrary $s \in r^{k r+1}$ such that A_{s} is infinite. Then there is a color $i_{s}<r$ and there is a k-element subset $H_{s}=\left\{h_{0}>h_{1}>\cdots>h_{k}\right\}$ of $k r+1$ such that $s\left(h_{0}\right)=s\left(h_{1}\right)=\cdots=i_{s}$. So, by theorem 5.4, the finite sequence

$$
\begin{equation*}
A_{s}, A_{s \upharpoonright h_{0}}, \ldots, A_{s \upharpoonright h_{k}} \tag{5.8}
\end{equation*}
$$

witnesses that Adam has a winning strategy in the game $\left\langle G_{i_{s}}, A_{s}\right\rangle$, where $G_{i_{s}}=$ $\left\langle\mathrm{V}(G), c^{-1}\left\{i_{s}\right\}\right\rangle$.

Playing the games

$$
\begin{equation*}
\left\{\left\langle G_{i_{s}}, A_{s}\right\rangle: A_{s} \text { is infinite }\right\} \tag{5.9}
\end{equation*}
$$

parallel, we can find at most $r^{k r+1}$-many k th power of vertex disjoint monochromatic paths which cover $\mathrm{V}(G)$ apart from the finite set $\bigcup\left\{A_{s}: A_{s}\right.$ is finite $\}$.

To prove theorem $5.5(1)$ we need some preparation.
In [4, Corollary 1.10] Pokrovskiy proved the following: Let $k \geqslant 1$. Suppose that K_{n} is colored with two colours. Then K_{n} can be covered with k disjoint red paths and a disjoint blue k th power of a path.

Lemma 5.6. Assume that $P=v_{0} v_{1} \ldots$ is a path such that

$$
\begin{equation*}
\mathrm{N}_{G}\left[\left\{v_{i}, v_{i+1}, v_{i+2}, v_{i+3}\right\}\right] \backslash P \tag{5.10}
\end{equation*}
$$

is infinite for all $v_{i} \in P$. Then G contains a 2 nd power of a path with covers P.
Proof. Pick pairwise disjoint vertices w_{0}, w_{1}, \ldots, from $\mathrm{V}(G) \backslash P$ such that $w_{i} \in$ $\mathrm{N}_{G}\left[\left\{v_{2 i}, v_{2 i+1}, v_{2 i+2}, v_{2 i+3}\right\}\right]$.

Then

$$
\begin{equation*}
v_{0} v_{1} w_{0} v_{2} v_{3} w_{1} v_{4} \ldots v_{2 i} v_{2 i+1} w_{i} v_{2 i+1} v_{2 i+2} w_{i+1} \ldots \tag{5.11}
\end{equation*}
$$

is a 2 nd power of a path with covers P.
Proof of theorem 5.5(1). (1) Fix a coloring $c:[\omega]^{2} \rightarrow 2$. Let $G_{i}=\left\langle\omega, c^{-1}\{i\}\right\rangle$ for $i<2$.

We will use the notation of lemma 2.3.
Let $c_{0}=c$ and

$$
\begin{equation*}
A_{0}=\left\{v \in \omega: d_{c_{0}}(v)=j_{c_{0}}\right\}, \text { and } B_{0}=\omega \backslash A_{0} \tag{5.12}
\end{equation*}
$$

Let $c_{1}=c_{0} \upharpoonright B_{0}$ and

$$
\begin{equation*}
A_{1}=\left\{v \in B_{0}: d_{c_{1}}(v)=j_{c_{1}}\right\}, \text { and } B_{1}=B_{0} \backslash A_{1} \tag{5.13}
\end{equation*}
$$

Let $c_{2}=c_{1} \upharpoonright B_{0}$ and

$$
\begin{equation*}
A_{2}=\left\{v \in B_{1}: d_{c_{2}}(v)=j_{c_{2}}\right\}, \text { and } B_{2}=B_{1} \backslash A_{2} \tag{5.14}
\end{equation*}
$$

We can assuem that $j_{c_{0}}=0$.
Case 1. B_{0} is finite
$G\left[B_{0}\right]$ can be covered by two 0 -paths P_{0} and P_{1} and a 1 square path Q_{1}. by [4, Corollary 1.10].

So by lemma 5.6 P_{0} and P_{1} can be covered by two 0 -homogeneous squares of some paths R_{0} and R_{1}. We can guarantee that R_{0}, R_{1}, Q_{1} are vertex disjoint.

Since Adam wins $\mathfrak{G}_{2}\left(G_{0}, A_{0}\right)$, so $G\left[\omega \backslash R_{0} \cup R_{1} \cup Q_{1}\right]$ can be covered by one 0 -homogeneous square of paths.

So G can be covered by 4 squares of paths.
Case 2. B_{0} is infinite, $j_{c_{1}}=0$
Case 3. B_{0} is infinite, $j_{c_{1}}=1, B_{1}$ is finite
Case 4. $j_{c_{1}}=1$ and B_{1} is infinite
Assume that $j_{c_{2}}=1$
Adam wins $\mathfrak{G}_{2}\left(G_{0}, A_{0}\right), \mathfrak{G}_{2}\left(G_{1}, A_{1}\right)$ and $\mathfrak{G}_{2}\left(G_{j_{c_{2}}}, A_{2}\right)$.
Moreover Adam also wins $\mathfrak{G}_{2}\left(G_{1-j_{c_{2}}}, B_{2}\right)$ witnesses by

- $\left(B_{2}, A_{2}, A_{1}\right)$ if $j_{c_{2}}=1$, and by
- $\left(B_{2}, A_{2}, A_{0}\right)$ if $j_{c_{2}}=0$.

So G can be covered by 4 squares of paths.

6. Partitioning the 2-Edge colored $K_{\omega_{1}, \omega_{1}}$

Theorem 6.1. Given any coloring of the edges of $K_{\omega_{1}, \omega_{1}}$ with 2 colors, the vertices can be partitioned into finitely many ($\leqslant 11$??) monochromatic paths.

Let us fix a coloring c for the rest of this section, and let $K_{\omega_{1}, \omega_{1}}=A \cup B$ the two classes.

Claim 6.1.1. If there is a i-monochromatic copy of $K_{\omega_{1}, \omega_{1}}$ in $A \cup B$ for some $i<2$ then $A \cup B$ can be partitioned into 3 monochromatic paths.

Proof. Let $A_{0} \cup B_{0}$ denote the monochromatic $K_{\omega_{1}, \omega_{1}}$ and extend $A_{0} \cup B_{0}$ to Z which is a maximal ω_{1}-connected set in color i. Clearly, Z is a path in color i.

Now, it is easy to see that there is $A_{1} \subset A_{0}$ and $B_{1} \subset B_{0}$ so that
(1) $Z \backslash\left(A_{1} \cup B_{1}\right)$ is a path in i,
(2) $A \backslash Z \cup B_{1}$ and $B \backslash Z \cup A_{1}$ are paths in color 0 .

Hence, we can suppose that there is no monochromatic copy of $K_{\omega_{1}, \omega_{1}}$ in $A \cup B$. Let

$$
\Gamma_{i}=\{\alpha \in A:|N(\alpha, i)| \leqslant \omega\}
$$

and

$$
\Delta_{i}=\{\beta \in B:|N(\beta, i)| \leqslant \omega\}
$$

Observation 6.2. For all $A^{\prime} \in[A]^{\omega_{1}}$ and $B^{\prime} \in[B]^{\omega_{1}}$ there are ω_{1} independent edges of color i between A^{\prime} and B^{\prime} (for $i<2$). Hence
(1) $\min \left\{\left|\Gamma_{i}\right|,\left|\Delta_{i}\right|\right\} \leqslant \omega$ if $i<2$,
(2) if $\alpha \in A \backslash \Gamma_{i}$ and $\beta \in B \backslash \Delta_{i}$ then there are ω_{1} many vertex disjoint paths in color i between α and β.

Without loss of generality, we can suppose that $\left|\Gamma_{0}\right| \leqslant \omega$ and hence it suffices to consider the case when $\Gamma_{0}=\varnothing$ by Theorem 5.3.

Claim 6.2.1. If Γ_{1} is uncountable then there is an uncountable $B^{\prime} \subset B$ so that $\Gamma_{1} \cup B^{\prime}$ is a path in color 0 and $\left|N(\alpha, i) \backslash B^{\prime}\right|=\omega_{1}$ if $\alpha \in A, i<2$ and $|N(\alpha, i)|=\omega_{1}$.

Therefore, we can further suppose that Γ_{1} is empty as well. We need to consider 3 cases as follows:
Case 1: $\left|\Delta_{0}\right|,\left|\Delta_{1}\right| \leqslant \omega$,
Case 2: $\left|\Delta_{0}\right|=\omega_{1}$ while $\left|\Delta_{1}\right| \leqslant \omega$,
Case 3: $\left|\Delta_{0}\right|=\left|\Delta_{1}\right|=\omega_{1}$.

In Case 1, we can suppose that $\left|\Delta_{i}\right|=\varnothing$ by Theorem 5.3. Now $A \cup B$ is ω_{1} connected in both colors by Observation 6.2 (2). Also, if $A \cup B$ is not a 0 -trail then it is clearly a 1 -trail (as shown many times before).

Second, in Case 2, we can suppose that $\left|\Delta_{1}\right|=\varnothing$ by Theorem 5.3. Now $\left|\Delta_{0}\right|=\omega_{1}$ implies that $A \cup B$ is a 1 -trail while it is clearly 1 -connected by $\left|\Delta_{1}\right|=\left|\Gamma_{1}\right|=\varnothing$; hence $A \cup B$ is a path.

Finally, we consider Case 3. We inductively build P_{0}, P_{1} partitioning $A \cup B$ to monochromatic paths (P_{i} to be ($1-i$)-homogeneous) so that $P_{i}=\cup\left\{P_{i, \alpha}: \alpha<\right.$ $\left.\omega_{1}\right\}$ and Δ_{i} is cofinal in $P_{i, \alpha}$. Limits points are easy to choose by the definition of Δ_{i} and in successor steps we can cover the remaining points using connectedness ensured by Observation 6.2 (2).
Problem 6.3. Given an edge coloring of $K_{\omega_{1}, \omega_{1}}$ with finitely many colors is there a partition of the vertices into finitely many monochromatic paths?

7. Finitely many colors and finite partitions on ω_{1}

Let $H_{\omega_{1}, \omega_{1}}$ denote the balanced bipartite graph with classes $A=\left\{a_{\xi}: \xi<\right.$ $\left.\omega_{1}\right\}, B=\left\{b_{\xi}: \xi<\omega_{1}\right\}$ of size ω_{1} such that

$$
\left(a_{\xi}, b_{\zeta}\right) \in E\left(H_{\omega_{1}, \omega_{1}}\right) \text { iff } \xi \leqslant \zeta .
$$

We will call A the main class of $H_{\omega_{1}, \omega_{1}}$.
The following lemma will be of surprising relevance:
Lemma 7.1. Let $r \in \omega$ and $c: E\left(H_{\omega_{1}, \omega_{1}}\right) \rightarrow r$. Then there are finitely many monochromatic and disjoint paths $\left\{P_{i}: i<N\right\}$ covering the main class of $H_{\omega_{1}, \omega_{1}}$.
Proof. We prove by induction on r. Note that a monochromatic $H_{\omega_{1}, \omega_{1}}$ is a paths which concludes the $r=1$ case. Now, in general, it suffices to see that there are disjoint $\left\{Q_{j}: j<M\right\}$ such that Q_{j} is either countable or a monochromatic path or a copy of $H_{\omega_{1}, \omega_{1}}$ colored with $\leqslant r-1$ colors. Fix a uniform ultrafilter U on B and let $A_{j}=\{a \in A: N(a, j) \in U\}$ for $j<r$. We can disregard those $A_{j} \mathrm{~s}$ which are countable; see theorem on countable bipartite partitions.
Claim 7.1.1. If $\left|A_{j}\right|=\omega_{1}$ then one of the following holds
(1) there is a club C so that for all $\alpha \in C$ there is $B_{\alpha} \in\left[N\left(x_{\alpha}, j\right)\right]^{\omega_{1}}$ (where $\left.x_{\alpha}=\min A \backslash \alpha\right)$ such that $\sup \left\{\delta \in \alpha: a_{\delta} \in A_{j}, c\left(a_{\delta}, b\right)=j\right\}=\alpha$ for all $b \in B_{\alpha}$, or
(2) there is a countable $E \subset A$ and uncountable B_{j} so that c colors $H_{\omega_{1}, \omega_{1}}\left[A_{j} \backslash E \cup\right.$ $\left.B_{j}\right]$ with $r \backslash\{j\}$.
Now an easy induction shows that there are disjoint sets Q_{j} so that $A_{j}=$ $Q_{j} \cap A$ and either Q_{j} has properties
(1) there is a club C so that for all $\alpha \in C$ there is $b_{\alpha} \in N\left(x_{\alpha}, j\right) \cap Q_{j}$ (where $\left.x_{\alpha}=\min A \backslash \alpha\right)$ such that $\sup \left\{\delta \in \alpha: a_{\delta} \in A_{j}, c\left(a_{\delta}, b_{\alpha}\right)=j\right\}=\alpha$, and
(2) for all $a, a^{\prime} \in A_{j}$ there are ω_{1}-many vertex disjoint paths from a to a^{\prime} inside Q_{j}
or Q_{j} is a copy of $H_{\omega_{1}, \omega_{1}}$ colored with $\leqslant r-1$ colors (Case (1) and Case (2) respectively from above). In the first case, Q_{j} is not necessarily a path but we can cover A_{j} inside Q_{j} with a j-monochromatic path.

Corollary 7.2. Suppose that the edges of a complete balanced bipartite graph are colored with finitely many colors. Then
(1) the vertices can be covered by finitely many monochromatic paths,
(2) the vertices can be partitioned into countably many monochromatic paths.

Theorem 7.3. Suppose that $G=(V, E)$ satisfies $|V|=\omega_{1}$ and $\left|V \backslash N_{G}(v)\right| \leqslant \omega$ for all $v \in V$. Given an edge coloring of G with finitely many colors the vertices of G can be partitioned into finitely many monochromatic paths.

Proof. We prove by induction on r. Fix a coloring c with $r \in \omega$ colors, wlog $r \geqslant 2$. Naturally $\omega_{1}=V$.

Case 1: suppose that there is $A \subset \omega_{1}$ which is a copy of $K_{\omega_{1}}$ colored only by $\leqslant r-1$ colors. Pick $A^{\prime} \subset A$ so that $\left|A^{\prime}\right|=\left|\omega_{1} \backslash A\right|$ and $\omega_{1} \backslash A \cup A^{\prime}$ forms a copy of $H_{\omega_{1}, \omega_{1}}$ with main class $\omega_{1} \backslash A$. By Lemma 7.1 there are finitely many disjoint paths $\left\{P_{i}: i<n\right\}$ inside $\omega_{1} \backslash A \cup A^{\prime}$ covering $\omega_{1} \backslash A$. Finally, note that $W=\omega_{1} \backslash \cup P_{i} \subset A$ hence the edges of W are only $r-1$-colored; by our inductional hypothesis, we can cover W by finitely many disjoint paths.

Case 2: suppose that there is no $A \subset \omega_{1}$ which is a copy of $K_{\omega_{1}}$ colored only by $\leqslant r-1$ colors.

Observation 7.4. If $A \in\left[\omega_{1}\right]^{\omega_{1}}$ and $i<r$ then A must be an i-trail.
Proof. Otherwise, there is a uncountable $S \subset \omega_{1}$, a 1-1 increasing sequence $\left\{a_{\alpha}\right.$: $\alpha \in S\} \subset A$ and $\lambda \in \omega_{1}$ so that $c \upharpoonright\left(A \backslash \lambda \cap \alpha \times\left\{a_{\alpha}\right\}\right) \neq i$ and $\alpha<a_{\alpha}<\beta$ and $\left(a_{\alpha}, a_{\beta}\right) \in E$ if $\alpha<\beta \in S$. Clearly $\left\{a_{\alpha}: \alpha \in S\right\}$ would be a copy of $K_{\omega_{1}}$ colored with $\leqslant r-1$ colors.

Now find an uncountable $A \subseteq \omega_{1}$ so that A is ω_{1}-connected in some color, wlog in 0 . Pick $A^{\prime} \subset A$ so that $\left|A^{\prime}\right|=\left|\omega_{1} \backslash A\right|, A \backslash A^{\prime}$ is uncountable and for all $x, y \in A$ there are ω_{1}-many vertex disjoint $x \rightarrow y 0$-monochromatic paths P with $P \backslash\{x, y\} \subset A \backslash A^{\prime}$.

Observation 7.5. Suppose that W satisfies $A \backslash A^{\prime} \subset W \subset A$. Then W is ω_{1-} connected in color 0 .

There is $A^{\prime \prime} \subset A^{\prime}$ so that $\omega_{1} \backslash A \cup A^{\prime \prime}$ forms a copy of $H_{\omega_{1}, \omega_{1}}$ with main class $\omega_{1} \backslash A$. By Lemma 7.1 there are finitely many disjoint paths $\left\{P_{i}: i<n\right\}$ inside $\omega_{1} \backslash A \cup A^{\prime}$ covering $\omega_{1} \backslash A$. Finally note that $W=\omega_{1} \backslash \cup P_{i}$ is both a 0 -trail and ω_{1}-connected in color 0 by the last two Observations. Hence W is a path in color 0 .

Corollary 7.6. Given an edge coloring of $K_{\omega_{1}}$ with finitely many colors the vertices of $K_{\omega_{1}}$ can be partitioned into finitely many monochromatic paths.

We will see in the next section that actually every 2-edge coloring of $K_{\omega_{1}}$ actually admits a 2 -partition into monochromatic paths. However, the following is not known:

Problem 7.7. Given a r-edge coloring of $K_{\omega_{1}}$ is there a partition of the vertices into $\leqslant r$ many monochromatic paths (of different colors)?

8. Neighbors from the club filter

Naturally, one would like to have an answer for the following:
Problem 8.1. Suppose that the graph $G=\left(\omega_{1}, E\right)$ satisfies that $N_{G}(v)$ is a club for all $v \in \omega_{1}$ and E is colored by finitely many colors. Is there a partition of ω_{1} into finitely many monochromatic paths?

We have two partial answers:
Claim 8.1.1. Suppose that the graph $G=\left(\omega_{1}, E\right)$ satisfies that $N_{G}(v)$ is a club for all $v \in \omega_{1}$ and E is colored by finitely many colors. Then we can
(1) partition ω_{1} into countably many monochromatic paths,
(2) cover ω_{1} by finitely many monochromatic paths.

Proof. First, we prove (1): let $\omega_{1}=\cup\left\{S_{n}: n \in \omega\right\}$ so that S_{n} are disjoint and stationary. We can inductively define a sequence \mathcal{P}_{n} so that
(1) each $P \in \mathcal{P}_{n}$ is a monochromatic path,
(2) $P \cap P^{\prime}=\varnothing$ if $P \in \mathcal{P}_{n}, P^{\prime} \in \mathcal{P}_{m}$,
(3) $\cup \mathcal{P}_{n}$ covers S_{n}.

If \mathcal{P}_{k} is constructed for $k<n$ and $S_{n} \backslash \cup\left\{P: P \in \mathcal{P}_{k}, k<n\right\}$ is uncountable then there is a copy of $H_{\omega_{1}, \omega_{1}}$ inside $S_{n} \cup S_{n+1}$ with main class $S_{n} \backslash \cup\left\{P: P \in \mathcal{P}_{k}, k<\right.$ $n\}$. Now apply Lemma 7.1 to get \mathcal{P}_{n}.

Second, we prove (2): let $\omega_{1}=S_{0} \cup S_{1}$ with S_{i} disjoint stationary. There are two copies of $H_{\omega_{1}, \omega_{1}}$, say X_{i} inside ω_{1} so that the main class of X_{i} is S_{i} (and second class contained in S_{1-i}). Apply Lemma 7.1 for X_{i} to finish the proof.

Theorem 8.2. Suppose that $G=\left(\omega_{1}, E\right)$ is a graph so that $N_{G}(v)$ is a club for all $v \in \omega_{1}$. If c is a 2-edge coloring of G then ω_{1} can be partitioned into 2 monochromatic paths.

Proof. We distinguish two cases as follows:
Case 1: there is a monochromatic (say in color 0) copy (A, B) of $H_{\omega_{1}, \omega_{1}}$ in G so that $A \cup B$ is stationary. If so, then extend $A \cup B$ to a maximal ω_{1}-connected C. Note that there is $D \subset C$ so that $\left(\omega_{1} \backslash(A \cup B), D\right)$ is a 1-monochromatic copy of $H_{\omega_{1}, \omega_{1}}$ while and $A \cup B \backslash D$ is still a 0 -connected and still contains a 0 monochromatic copy of $H_{\omega_{1}, \omega_{1}}$. Observe that $A \cup B \backslash D$ is a 0 -path while $\omega_{1} \backslash(A \cup$ $B) \cup D$ is a 1 -path.

Case 2: there is no monochromatic copy (A, B) of $H_{\omega_{1}, \omega_{1}}$ in G so that $A \cup B$ is stationary. The standard argument shows that every stationary $S \subset \omega_{1}$ is a trail in both colors. Pick an ultrafilter containing all clubs and using that find a stationary $S \subset \omega_{1}$ so that S is ω_{1}-connected in some color, say 0 . Without loss of generality, it can be supposed that S is maximal with respect to being ω_{1}-connected in 0 . Now, there is a non stationary $S_{0} \subset S$ so that $\omega_{1} \backslash S \cup S_{0}$ is a 1 -monochromatic copy of $H_{\omega_{1}, \omega_{1}}$ and so that $S \backslash S_{0}$ is ω_{1}-connected in 0 . Note that $\omega_{1} \backslash S \cup S_{0}$ is a 1-path and $S \backslash S_{0}$ is a 0 -path (as ω_{1}-connected in 0 and stationary, so a 0 -trail).

Corollary 8.3. Given any coloring of the edges of $K_{\omega_{1}}$ with 2 colors, the vertices can be partitioned into 2 monochromatic paths.

Clearly, if $\left\{N_{G}(v): v \in V\right\}$ forms a uniform filter on ω_{1} then G is ω_{1}-connected. The following examples shows that being ω_{1}-connected is nowhere near enough to admit monochromatic partitions for arbitrary 2-edge colorings.

Example 8.4. There is an ω_{1}-connected graph (V, E) with an 2-edge coloring so that there are no monochromatic cycles (of length $\geqslant 3$); in particular, there is no monochromatic path of size $\omega+1$ and so there is no cover by countably many monochromatic paths.

Proof. Let $\omega_{1}=\cup\left\{S_{n}: n \in \omega\right\}$ so that S_{n} are pairwise disjoint and uncountable. Furthermore, let $S_{n}=\bigcup\left\{T_{x, y}^{n}: x \neq y \in \cup\left\{S_{k}: k<n\right\}\right\}$ with $T_{x, y}^{n}$ pairwise disjoint uncountable. Let $E_{0}=\varnothing$ and

$$
E_{n}=E_{n-1} \cup \bigcup\left\{\{x, y\} \times T_{x, y}^{n}: x \neq y \in \cup\left\{S_{k}: k<n\right\}\right\}
$$

and let $E=\cup E_{n}$.
Clearly, $\left(\omega_{1}, E\right)$ is ω_{1}-connected. Now, define $c \upharpoonright E_{n} \backslash E_{n-1}$ so that if $x<$ $y \in \cup\left\{S_{k}: k<n\right\}$ and $z \in T_{x, y}$ then $c(x, z)=0$ and $c(y, z)=1$. It is not hard to see that there are no monochromatic cycles; if C is a cycle consider $N=\max \left\{n: C \cap E_{n} \backslash E_{n-1} \neq \varnothing\right\}$ and let $z \in C \cap E_{N} \backslash E_{N-1}$. By the definition of the coloring, the two edges in C on z are colored with different colours.

9. Path decompositions on higher cardinals

Definition 9.1. A graph $G=(V, E)$ is called κ-complete iff $|V| \geqslant \kappa$ and

$$
\left|V \backslash N_{G}(x)\right|<\kappa
$$

for all $x \in V$.
Our final goal is to prove Corollary 9.10, that every finite-edge coloured κ complete graph can be partitioned into finitely many monochromatic paths.
9.1. Preliminaries. We will make use of the following definition:

Definition 9.2. A graph $G=(V, E)$ is of type $H_{\kappa, \kappa}$ iff $V=A \cup B$ where $A=\left\{a_{\xi}: \xi<\kappa\right\}, B=\left\{b_{\xi}: \xi<\kappa\right\}$ and

$$
\left(a_{\xi}, b_{\zeta}\right) \in E(G) \text { iff } \xi \leqslant \zeta<\kappa
$$

We will call A the main class and (A, B) with the inherited ordering is called the $H_{\kappa, \kappa}$-decomposition of G.

Note that A, B in the $H_{\kappa, \kappa}$-decomposition are not necessarily disjoint.
We will prove in Theorem 9.9 that every finite-edge coloured graph of type $H_{\kappa, \kappa}$ contains a monochromatic path of size κ; furthermore, if the two classes are disjoint then the main class is covered by finitely many disjoint monochromatic paths. This result will be used in the proof of Corollary 9.10.

Observation 9.3. Suppose that $G=(V, E)$ is κ-complete (for an arbitrary infinite κ) and let $X, Y \in[V]^{\kappa}$. Then there is $F \subset E$ so that $(X \cup Y, F)$ is of type $H_{\kappa, \kappa}$ and there is a $H_{\kappa, \kappa}$-decomposition $A \cup B$ so that $X=A$ and $B \subset Y$.

Proof. If κ is regular then we can take an arbitrary enumeration $X=\left\{a_{\xi}: \xi<\kappa\right\}$ and $\left\{b_{\xi}: \xi<\kappa\right\} \subset Y$ are easily constructed by induction so that $\left(a_{\xi}, b_{\zeta}\right) \in E$ for $\xi \leqslant \zeta<\kappa$.

If kappa is singular then let $\mu=c f(\kappa)$ and let $\left(\kappa_{\alpha}\right)_{\alpha<\mu}$ increase to κ. Let $X_{\alpha}=\left\{x \in X:|V \backslash N(x)|<\kappa_{\alpha}\right\}$ and list X as $\left\{a_{\xi}: \xi<\kappa\right\}$ so that for all $\lambda<\kappa$ there is $\alpha<\mu$ with $\left\{a_{\xi}: \xi<\lambda\right\} \subset X_{\alpha}$. That is,

$$
\left|Y \cap \bigcap\left\{N\left(a_{\xi}\right): \xi<\lambda\right\}\right|=\kappa
$$

for all $\lambda<\kappa$. Now $\left\{b_{\xi}: \xi<\kappa\right\} \subset Y$ is easily constructed by induction so that $\left(a_{\xi}, b_{\zeta}\right) \in E$ for $\xi \leqslant \zeta<\kappa$.

Observation 9.4. Suppose that $G=(V, E)$ is of type $H_{\kappa, \kappa}$ with main class V. Then there is a κ-complete graph embedded in G.
Proof. If A, B is the $H_{\kappa, \kappa}$ decomposition then we have $B \subset A=V$ and B is the κ-complete subgraph.

For a path P and $x<_{P} y \in P$ let $P \upharpoonright[x, y)$ denote the segment of P from x to y (excluding y itself). For a set A and i-monochromatic path P we say that P is concentrated on A iff

$$
N(x, i) \cap A \cap P \upharpoonright[y, x) \neq \varnothing
$$

for all limit element $x \in P$ and y below x in P. Clearly, if P is concentrated on A then for every $x \in P$ there is $x^{\prime} \in P \cap A$ above x so that $P \upharpoonright\left[x, x^{\prime}\right)$ is finite.
Observation 9.5. Suppose that G is of type $H_{\kappa, \kappa}$. Then there is a path of order type κ which is concentrated on the main class of G.

An elementary submodel M is covering iff for all $A \subset M$ with $|A|<|M|$ there is $A^{\prime} \in M$ so that $A \subset A^{\prime}$. If $M=\cup\left\{M_{\xi}: \xi<\mu^{+}\right\}$where $\left\{M_{\xi}: \xi<\mu^{+}\right\}$is an ϵ-chain of elementary submodels, $\left|M_{\xi}\right|=\mu$ then M is covering.

Observation 9.6. Suppose that the graph $A \subset V(G)$ is κ-saturated in some color i with respect to a coloring c. If $M=\cup\left\{M_{\xi}: \xi<\nu\right\}$ where $\left\{M_{\xi}: \xi<\nu\right\}$ is an ϵ-chain of covering elementary submodels and $|M|=\lambda \leqslant \kappa$ so that $G, c \in M_{0}$ then $M \cap A$ is λ-saturated in color i inside $M \cap V(G)$.

Proof. If $|M|=\lambda^{+}$with $\left|M_{\xi}\right| \leqslant \lambda$ then the claim is trivial. If $|M|=\lambda$ with $\left|M_{\xi}\right|=\lambda$ then it suffices to prove that $N \cap A$ is λ-saturated in color i inside N for all covering submodels N of size λ, which is easy to see.

Otherwise, we can suppose that $\left|M_{\xi}\right|>\left|M_{<\xi}\right|$ where $M_{<\xi}=\cup\left\{M_{\zeta}: \zeta<\xi\right\}$. Take $a, a^{\prime} \in A \cap M$ and $\tilde{A} \in[A]^{<\lambda}$. There is $\nu_{0}<\nu$ so that $\left|M_{\xi}\right|>|\tilde{A}|$ for all $\xi \in \nu \backslash \nu_{0}$. There is $X_{\xi} \in M_{\xi}$ of size $<\left|M_{\xi}\right|$ so that

$$
M_{<\xi} \cup\left(\tilde{A} \cap M_{\xi}\right) \subset X
$$

by covering; so we can find $\left|M_{\xi}\right|$-many disjoint i-monochromatic paths in $M_{\xi} \backslash X$ connecting a to a^{\prime}. This holds for all for all $\xi \in \nu \backslash \nu_{0}$ so we found λ many
9.2. Outline of the proof. Let $(I H)_{\kappa, r}$ denote the statement that for any r edge colouring of a graph G of type $H_{\kappa, \kappa}$ with main class A, we can find a monochromatic paths concentrated on A of size κ. Let $(I H)_{\kappa}$ denote $(I H)_{\kappa, r}$ for all $r \in \omega$; we will prove that $(I H)_{\kappa}$ holds for all κ which will imply the decomposition theorem for κ-complete graphs.

Lemma 9.7. Let κ be infinite with $\mu=c f(\kappa)$. Suppose that c is an r-edge coloring of a graph $G=(V, E)$ where G is of type $H_{\kappa, \kappa}$ with $H_{\kappa, \kappa}$-decomposition A, B. Suppose that A is κ-saturated in a color $i<r$ and for all $\tilde{A} \in[A]^{<\kappa}$ and $\lambda<\kappa$ there is an i-monochromatic path P of size at least λ disjoint from \tilde{A} which is concentrated on A. Then either
(a) A is covered by an i-monochromatic path concentrated on A, or
(b) there is $\tilde{A} \in[A]^{<\kappa}$ so that $A \backslash \tilde{A}$ is covered by a graph H of type $H_{\kappa, \kappa}$ with main class $A \backslash \tilde{A}$ so that $c \upharpoonright E(H) \neq i$.
2 Lemma 9.8. Let κ be infinite. Suppose that c is an r-edge coloring of a graph $G=(V, E)$ where G is of type $H_{\kappa, \kappa}$ with $H_{\kappa, \kappa}$-decomposition A, B and $I \in[r]^{<r}$. Suppose A is κ-saturated in all colors $i \in I$. If $(I H)_{\kappa, r-1}$ then either
(a) there is an $i \in I$ such that for all $\tilde{A} \in[A]^{<\kappa}$ and $\lambda<\kappa$ there is an i monochromatic path P of size at least λ disjoint from \tilde{A} which is concentrated on A, or
(b) there is $\tilde{A} \in[A]^{<\kappa}$ so that there is a partition $A \backslash \tilde{A}=\cup\left\{A_{j}: j \in r \backslash I\right\}$ where $\left|N(x, j) \cap N\left(x^{\prime}, j\right)\right|=\kappa$ for all $x, x^{\prime} \in A_{j}$ and $j \in r \backslash I$.

Before proving the lemmas, let us show that they imply our main results.
f Theorem 9.9. $(I H)_{\kappa}$ holds for all infinite κ, i.e. if G is a graph of type $H_{\kappa, \kappa}$ with a finite-edge colouring then we can find a monochromatic path of size κ concentrated on the main class of G.

Moreover, for any r-edge colouring of the graph $H_{\kappa, \kappa}$ we can cover the main class by finitely many disjoint monochromatic paths.
Proof. We prove $(I H)_{\kappa}$ by induction on κ. We can suppose that $\kappa>\omega$ by previous results. Now we prove $(I H)_{\kappa, r}$ by induction on r. Note that $r=1$ is trivial so let $r>1$.

Fix an r-edge colouring and start applying Lemma 9.8 to find a decreasing sequence $A_{0} \supseteq A_{1} \supseteq \ldots$ and a $1-1$ sequence i_{0}, i_{1}, \ldots from r so that A_{j} is κ saturated in color i_{j}. If A_{j} satisfies (a) of Lemma 9.8 with $I=\left\{i_{0}, \ldots, i_{j}\right\}$ then applying Lemma 9.7 finishes the proof (either by finding a j-monochromatic path or by invoking the inductional hypothesis). If A_{j} satisfies (b) of Lemma 9.7 then one piece of the given partition defines A_{j+1}. If this induction goes on to define A_{r} then we have a set of size κ which is κ-saturated in all colors. By the inductional hypothesis for smaller graphs, we certainly have $i \in r$ so that for all $\tilde{A} \in[A]^{<\kappa}$ and $\lambda<\kappa$ there is an i-monochromatic path P of size at least λ which is concentrated on A. Thus applying Lemma 9.7 finishes the proof as before.

We prove the second statement by induction on κ and r as well; note that $\kappa=\omega$ or $\kappa>\omega$ and $r=1$ are trivial. We will construct a finite tree $T \subset \omega^{<\omega}$ and subsets $\left\{Q_{t}: t \in T\right\}$ of $V=V\left(H_{\kappa, \kappa}\right)$ so that every branch of tree has length $r+1$ and
(1) $A=\dot{\cup}\left\{A \cap Q_{t}: t \in T,|t|=k\right\}$ for all $k<h t(T)$,
(2) Q_{t} is a copy of $H_{\lambda, \lambda}$ for some $\lambda \leqslant \kappa$ for all $t \in T$
and for all $t \in T$ we have either
(3) $A \cap Q_{t}$ is covered by finitely many disjoint monochromatic paths inside Q_{t}, or
(4) t is injective with $\operatorname{ran}(t) \subset r$ and $Q_{t} \cap A$ is κ-saturated in color i inside Q_{t} for all $i \in \operatorname{ran}(t)$.
We will prove that such a construction can be carried out and so (3) must hold for every $t \in T$ with $|t|=r+1$; this finishes the proof.

We start by setting $Q_{\varnothing}=V$. Suppose Q_{t} is constructed with $|t| \leqslant r$. If (3) holds then set $Q_{t \sim 0}=Q_{t}$; note that (3) holds whenever $\left|Q_{t}\right|<\kappa$ by induction. Otherwise, suppose that (4) holds and we distinguish two cases: suppose that there is an $i \in \operatorname{ran}(t)$ so that for all $\tilde{A} \in[A]^{<\kappa}$ and $\lambda<\kappa$ there is an i-monochromatic path P of size at least λ in $Q_{t} \backslash \tilde{A}$ which is concentrated on A. Note that this is the case if $|t|=r$ by the inductional hypothesis. Then Lemma 9.7 gives that $A \cap Q_{t}$ is either a single path or covered by an $\leqslant r-1$ coloured copy of $H_{\kappa, \kappa}$ modulo a set of size $<\kappa$. In the latter case, we can clearly partition $Q_{t}=Q_{t \sim 0} \cup Q_{t \sim 1}$ so that
(i) $Q_{t \sim 0}$ is a copy of $H_{\lambda, \lambda}$ with $\lambda<\kappa$,
(ii) $Q_{t \sim 1}$ is a copy of $H_{\kappa, \kappa}$ so that c admits only $\leqslant r-1$ coulours.

Note that $Q_{t \sim 0}$ and $Q_{t \sim 1}$ both satisfy (3) by induction.
In the second case there is no $i \in \operatorname{ran}(t)$ so that for all $\tilde{A} \in[A]^{<\kappa}$ and $\lambda<\kappa$ there is an i-monochromatic path P of size at least λ in $Q_{t} \backslash \tilde{A}$ which is concentrated on A; in particular, $|t|<r$. Apply Lemma 9.8 with $I=\operatorname{ran}(t)$ and get a decomposition $Q_{t} \cap A=\cup\left\{A_{j}: j \in r \backslash I\right\} \cup \tilde{A}$ so that \tilde{A} has size $<\kappa$ and A_{j} is κ-saturated in color j inside Q_{t} for all $j \in r \backslash I$. It is clear that we can find a partition

$$
Q_{t}=\cup\left\{Q_{t^{\wedge} j}: j \in r \backslash I\right\} \cup Q_{t^{\wedge}}
$$

so that $A_{j}=Q_{t^{\wedge} j} \cap A$ for $j \in r \backslash I$ and $\tilde{A}=Q_{t^{\wedge} r} \cap A$ which satisfies (1),(2) and (3) or (4) respectively; note that we would run into trouble finding this partition if the two classes are not disjoint.

Corollary 9.10. Suppose that c is a finite-edge colouring of a κ-complete graph $G=(V, E)$ on κ vertices. Then there is a partition of the vertices into finitely many disjoint monochromatic paths.

Proof. We prove by induction on κ and r as before; we can suppose that $\kappa>\omega$ and $r>1$.

Case 1: there is a κ-complete subgraph $W \subset V$ which is only coloured by $\leqslant r-1$ colours. Find a subset $U \subset W$ so that $V \backslash W \cup U$ is covered by a copy of $H_{\lambda, \lambda}$ with $\lambda \leqslant \kappa$ and main class $V \backslash W$ while $W \backslash U$ still has size κ; in particular, $W \backslash U^{\prime}$ is still κ-complete for all $U^{\prime} \subset U$. Apply Theorem 9.9 to cover $V \backslash W$ inside $V \backslash W \cup U$ with finitely many disjoint monochromatic paths \mathcal{P} and apply the inductional hypothesis to partition $W \backslash \cup \mathcal{P}$.

Case 2: not Case 1. We construct $A_{j} \subset V, t_{j} \in r^{j}$ and finite sets of disjoint monochromatic paths \mathcal{P}_{j} for $j \leqslant r+1$ so that
(1) $A_{j} \supseteq A_{j+1}, \mathcal{P}_{j} \subset \mathcal{P}_{j+1}$ and $t_{j} \subset t_{j+1}$,
(2) A_{j} is either κ-complete (equivalenty, has size κ) or empty,
(3) A_{j} is κ-saturated in color $t\left(j^{\prime}\right)$ inside $A_{j^{\prime}}$ for all $j^{\prime} \leqslant j$,
(4) $V \backslash A_{j}$ is covered by \mathcal{P}_{j}.

It suffices to have $A_{j}=\varnothing$ for some j. We will see that this happens for some $j \leqslant r+1$. Let $A_{\varnothing}=V$ and $\mathcal{P}_{0}=I_{0}=\varnothing$. Suppose we constructed A_{j} for some $j<r$ and $A_{j} \neq \varnothing$. Note that A_{j} is of type $H_{\kappa, \kappa}$ by Observation 9.3 and we can have a $H_{\kappa, \kappa}$-decomposition with main class A_{j}. Let $I_{j}=\operatorname{ran}\left(t_{j}\right) \in[r]^{<r}$.

Case 2/a: there is an $i \in I_{j}$ so that for all $\tilde{A} \in[A]^{<\kappa}$ and $\lambda<\kappa$ there is an i-monochromatic path P of size at least λ in $A_{j} \backslash \tilde{A}$ which is concentrated on A_{j}. We claim that A_{j} is covered by a single i-monochromatic path P, i.e. let $A_{j+1}=\varnothing$ and $\mathcal{P}_{j+1}=\mathcal{P}_{j} \cup\{P\}$. Otherwise, we apply Lemma 9.7 to find a graph H in A_{j} of type $H_{\kappa, \kappa}$ which is coloured only by $\leqslant r-1$ colours. This cannot happen by our assumption (that Case 1 fails) and Observation 9.4.

Case 2/b: not Case 2/a. Note that A_{j} is of type $H_{\kappa, \kappa}$ with main class A_{j} so Lemma 9.8 implies that we can find $A \in\left[A_{j}\right]^{\kappa}$ which is κ-connected in some color $i \in r \backslash I_{j}$. We can select $U \subset A$ so that $A_{j} \backslash A \cup U$ is of type $H_{\lambda, \lambda}$ with $\lambda \leqslant \kappa$ and main class $A_{j} \backslash U$ while $A_{j} \backslash U^{\prime}$ is κ-connected in colour i for all $U^{\prime} \subset U$. Now apply Lemma 9.7 to cover $A_{j} \backslash A$ with finitely many disjoint monochromatic paths \mathcal{P} inside $A_{j} \backslash A \cup U$. Let $A_{j+1}=A_{j} \backslash \cup \mathcal{P}, \mathcal{P}_{j+1}=\mathcal{P}_{j} \cup \mathcal{P}$ and $t_{j+1} \supseteq t_{j}$ with $t_{j+1}(j)=i$.

If $A_{r} \neq \varnothing$ then note that Case $2 /$ a must have failed at all previous steps so by induction A_{r} must satisfy Case $2 /$ a with the last colour $i=t_{r}(r)$. Thus we have $A_{r+1}=\varnothing$ which finishes the proof.
9.3. Proving the main lemmas. Our first goal is to prove Lemma 9.8.

2 Lemma 9.11. Suppose that $\omega \leqslant \lambda \leqslant c f \kappa$ and $(I H)_{\lambda, r-1}$ holds. Suppose that c is an r-edge coloring of a graph $G=(V, E)$ where G is of type $H_{\kappa, \kappa}$ with $H_{\kappa, \kappa}$ decomposition A, B. Let $I \in[r]^{<r}$ and suppose that A is λ-saturated in all colours $i \in I$. Then either
(a) there is an $i \in I$ and an i-monochromatic path of size λ concentrated on A, or
(b) there is $\tilde{A} \in[A]^{<\lambda}$ so that

$$
|B \backslash N(a, I)|=\kappa
$$

for all $a \in[A \backslash \tilde{A}]^{<\omega}$.
Moreover, (b) implies that $A \backslash \tilde{A}$ can be partitioned into $A \backslash \tilde{A}=\cup\left\{A_{j}: j \in r \backslash I\right\}$ where $\left|N(x, j) \cap N\left(x^{\prime}, j\right)\right|=\kappa$ for all $x, x^{\prime} \in A_{j}$ and $j \in r \backslash I$.

Proof. Suppose (b) fails. Then inductively build a sequence of pairwise disjoint finite sets $\left\{a_{\xi}: \xi<\lambda\right\} \subset[A]^{<\omega}$ and sequence of points $Y=\left\{y_{\xi}: \xi<\lambda\right\}$ so that

$$
y_{\zeta} \in N\left(a_{\xi}, I\right)
$$

for all $\xi \leqslant \zeta<\lambda$. Now let $a_{\xi}^{\prime}=\cup\left\{a_{\xi+i}: i<|I|+1\right\}$ and $y_{\xi}^{\prime}=y_{\xi+|I|+1}$ for $\xi<\lambda$ limit. Note that for all limit ordinals $\xi \leqslant \zeta<\lambda$ there is an $i \in I$ so that

$$
\left|\left\{x \in a_{\xi}^{\prime}: c\left(x, y_{\zeta}^{\prime}\right)=i\right\}\right| \geqslant 2
$$

By thinning out, we can suppose that for all $i \in I, \xi<\lambda$ and $x, x^{\prime} \in a_{\xi}^{\prime}$ there are λ-many disjoint finite i-monochromatic path from x to x^{\prime} which avoid $Y^{\prime}=\left\{y_{\xi}^{\prime}: \xi<\lambda\right\}$ and all other points of $X=\cup\left\{a_{\xi}^{\prime}: \xi<\lambda\right\}$.

Define a coloring of $H_{\lambda, \lambda}$ by $d(\xi, \zeta)=i$ iff $\left|\left\{x \in a_{\xi}^{\prime}: c\left(x, y_{\zeta}^{\prime}\right)=i\right\}\right| \geqslant 2$ and i is minimal such. $(I H)_{\lambda, r-1}$ implies the existence of a monochromatic path Q of size λ concentrated on the main class of $H_{\lambda, \lambda}$. It is easy to see now that using Q we can define a monochromatic path of size λ in our original graph which is concentrated on A.

Finally, let \mathcal{U} be a uniform ultrafilter on B containing the filter $\{B \backslash N(a, I)$: $\left.a \in[A \backslash \tilde{A}]^{<\omega}\right\}$. Define $A_{j}=\{x \in A \backslash \tilde{A}: N(x, j) \in \mathcal{U}\}$ for $j \in r$. Clerly $A \backslash \tilde{A}$ is partitioned into $\cup\left\{A_{j}: j \in r\right\}$ but note that $A_{i}=\varnothing$ if $i \in I$.

Proof of Lemma 9.8. Note that if κ is regular then applying Lemma 9.11 to $\lambda=\kappa$ gives us Lemma 9.8.

Suppose that κ is singular with $c f(\kappa)=\mu$ and pick a sequence of regular cardinals κ_{α} increasing to κ. We can suppose that (a) fails so say that there are no i-monochromatic paths of size κ_{0}. Write $H_{\kappa, \kappa}$ as an increasing union $\cup\left\{V_{\alpha}: \alpha<\mu\right\}$ so that V_{α} is of type $H_{\kappa_{\alpha}, \kappa_{\alpha}}$ so that $A \cap V_{\alpha}$ is κ_{α}-saturated in all colours $i \in I$. Apply Lemma 9.11 to each V_{α} with $\lambda=\kappa_{0}$ and select $\tilde{A}_{\alpha} \in\left[V_{\alpha} \cap A\right]^{<\kappa_{0}}$ so that

$$
|B \backslash N(a, I)| \geqslant \kappa_{\alpha}
$$

for all $a \in\left[A \cap V_{\alpha} \backslash \tilde{A}_{\alpha}\right]^{<\omega}$. Note that $\tilde{A}=\cup\left\{\tilde{A}_{\alpha}: \alpha<\mu\right\}$ has size $\mu \cdot \kappa_{0}$ less than κ and that

$$
|B \backslash N(a, I)| \geqslant \sup \left\{\kappa_{\alpha}: \alpha<\mu\right\}=\kappa
$$

for all $a \in[A \backslash \tilde{A}]^{<\omega}$. The ultrafilter trick described at the end of Lemma 9.11 finishes the proof.

We now turn our attention to proving Lemma 9.7. We need to prove some claims first:

Claim 9.11.1. Suppose that $\kappa \geqslant c f(\kappa)>\omega, c$ is an r-edge coloring of a graph $G=(\kappa, E)$ where G is of type $H_{\kappa, \kappa}$ with $H_{\kappa, \kappa}$-decomposition A, B. Suppose that $\left\{M_{\alpha}: \alpha<\mu\right\}$ is a continuous ϵ-chain of elementary submodels with $\left|M_{\alpha}\right|=\kappa_{\alpha}<$ κ so that κ_{α} is a subset and element of M_{α}. If $i \in r$ then either
(a) there is club $C \subset \mu$ so that for every $\alpha \in C$ there is $x \in A \backslash M_{\alpha}, y \in B \backslash M_{\alpha}$ with $c(x, y)=i$ and

$$
\left|N(y, i) \cap A \cap M_{\alpha} \backslash M_{\alpha^{\prime}}\right| \geqslant \omega
$$

for all $\alpha^{\prime}<\alpha$, or
(b) there is $\tilde{A} \in[A]^{<\kappa}$ so that $A \backslash \tilde{A}$ is covered by the main class of an $\leqslant r-1$ coloured graph H of type $H_{\kappa, \kappa}$.

Proof. Suppose that (a) fails; i.e. there is a stationary set $S \subset \mu$ so that for all $x \in A \backslash M_{\alpha}, y \in B \backslash M_{\alpha}$ with $c(x, y)=i$ we have

$$
\left|N(y, i) \cap A \cap M_{\alpha} \backslash M_{\alpha^{\prime}}\right|<\omega
$$

for some $\alpha^{\prime}<\alpha$.
Note that
Observation 9.12. If there is an $\alpha \in S$ and $\lambda<\kappa$ so that

$$
|N(x, i)| \leqslant \lambda
$$

for every $x \in A \backslash M_{\alpha}$ then (b) holds with $\tilde{A}=A \cap M_{\alpha}$.
Otherwise, we distinguish two cases:
Case 1: κ is regular. Note that there is a club $D \subset \kappa$ so that $M_{\alpha} \cap \kappa \in \kappa$ if $\alpha \in D$ and so we can suppose that $S \subset D$. Also, note that $\left\{M_{\alpha} \cap \kappa: \alpha \in S\right\}$ is stationary in κ.

Select $y_{\alpha} \in B \backslash M_{\alpha}$ so that

$$
\left|N\left(y_{\alpha}, i\right) \cap A \cap M_{\alpha} \backslash M_{\alpha^{\prime}}\right|<\omega
$$

for some $\alpha^{\prime}<\alpha$. That is, there is $\delta_{\alpha}<M_{\alpha} \cap \kappa$ so that

$$
N\left(y_{\alpha}, i\right) \cap A \cap M_{\alpha} \subset \delta_{\alpha}
$$

Apply Fodor's pressing down lemma to the regressive function $M_{\alpha} \cap \kappa \rightarrow \delta_{\alpha}$ and find stationary $T \subset S$ and $\delta \in \kappa$ so that $\delta_{\alpha}=\delta$ for all $\alpha \in T$. It is easy to see that (b) is satisfied with $\tilde{A}=\delta$.

Case 2: κ is singular. Without loss of generality $\kappa_{\alpha}>\mu$ if $\alpha \in S$. Select $Y_{\alpha} \in\left[B \backslash M_{\alpha}\right]^{\kappa_{\alpha}^{+}}$so that there is finite F_{α} and $\delta_{\alpha}<\alpha$ with

$$
F_{\alpha}=N(y, i) \cap A \cap M_{\alpha} \backslash M_{\delta_{\alpha}}
$$

for all $y \in Y_{\alpha}$. The importance here is that δ_{α} and $N(y, i) \cap A \cap M_{\alpha} \backslash M_{\delta_{\alpha}}$ does not depend on $y \in Y_{\alpha}$ which can be done as there are only $|\alpha|$ choices for δ_{α} and κ_{α} choices for F_{α} while κ_{α}^{+}choices for y.

Apply Fodor's pressing down lemma to the regressive function $\alpha \rightarrow \delta_{\alpha}$ and find stationary $T \subset S$ and $\delta \in \mu$ so that $\delta_{\alpha}=\delta$ for all $\alpha \in T$. It is easy to see that $\tilde{A}=M_{\delta} \cup \bigcup\left\{F_{\alpha}: \alpha \in T\right\} \in[A]^{<\kappa}$ satisfies (b).

Claim 9.12.1. Suppose that $\kappa>\omega$ has countable cofinality, c is an r-edge coloring of a graph $G=(\kappa, E)$ where G is of type $H_{\kappa, \kappa}$ with $H_{\kappa, \kappa}$-decomposition A, B. If $i \in r$ and $\left(M_{n}\right)_{n \in \omega}$ is an ϵ-chain of covering elementary submodels of regular size $<\kappa$ with $\kappa \subset \cup M_{n}$ then either
(a) there are infinitely many $n \in \omega$ such that there is $x \in A \backslash M_{n}, y \in B \backslash M_{n}$ with $c(x, y)=i$ and

$$
\left|N(y, i) \cap A \cap M_{n}\right| \geqslant \omega
$$

or
(b) there is $\tilde{A} \in[\kappa]^{<\kappa}$ so that $A \backslash \tilde{A}$ is covered by an $\leqslant r-1$-coloured H of type $H_{\kappa, \kappa}$.

Proof. Pick any ϵ-chain of covering elementary submodels $\left(M_{n}\right)_{n \in \omega}$ as above and suppose that (a) fails. Without loss of generality, we can suppose that if $x \in A \backslash M_{n}, y \in B \backslash M_{n}$ with $c(x, y)=i$ then $N(y, i) \cap M_{n}$ is finite for all $n \in \omega$.
Observation 9.13. If there is $n \in \omega$ and $\lambda<\kappa$ so that $N(x, i) \leqslant \lambda$ for all $x \in A \backslash M_{n}$ then (b) holds with $\tilde{A}=A \cap M_{n}$.

Otherwise, we can select $Y_{n} \in\left[M_{n+1} \backslash M_{n}\right]^{\left|M_{n}\right|^{+}}$and finite $a_{n} \subset A \cap M_{n}$ so that $N(y, i) \cap M_{n}=a_{n}$ for all $y \in Y_{n}$. Let $\tilde{A}=\cup\left\{a_{n}: n \in \omega\right\}$ and $Y=\cup\left\{Y_{n}: n \in \omega\right\}$. It easy to see now that $A \backslash \tilde{A}$ is covered by H of type $H_{\kappa, \kappa}$ so that $V(H) \cap B \subset Y$.

Before proving Lemma 9.7 we need the following
Lemma 9.14. Suppose that c is an r-edge colouring of a graph $G=(V, E), i \in r$ and $A \subset V$ is κ-saturated in a color i with $a \in A$. Furthermore, suppose that there is an i-monochromatic path P of order type κ so that P is concentrated on A. Then A is actually covered by an i-monochromatic path Q so that Q is concentrated on A, has order type κ and first point a. Moreover, for any given $K \in[A]^{c f(\kappa)}$ we can construct Q with the above properties so that K is cofinal in Q.
Proof. We prove by induction on κ; the result clearly holds for $\kappa=\omega$ so suppose that $\kappa>\omega$ and we proved for cardinals $<\kappa$. Also, fix $a \in A, K \in[A]^{c f(\kappa)}$ and i-monochromatic path P concentrated on A; note that we don't need to worry about K if κ is regular as every subset of A of size κ will be cofinal in Q.

Find a continuous ϵ-chain of elementary submodels $\left(M_{\alpha}\right)_{\alpha<\mu}$ with $\mu=c f(\kappa)$ so that
(i) $M_{0}=\varnothing, \kappa_{\alpha}=\left|M_{\alpha}\right|<\kappa$ and $M_{\alpha+1}$ is covering for all $\alpha<\mu$,
(ii) if κ is a limit then make κ_{α} strictly increasing with $\kappa_{\alpha+1}$ regular,
(iii) if $\kappa=\lambda^{+}$then let $\kappa_{\alpha}=\lambda$,
(iv) let $M_{\alpha} \cap \kappa \in \kappa$ if κ is regular,
(v) κ_{α} is an element and subset of M_{α} for $\alpha>0$,
(vi) P, A, a and everything relevant is in M_{1}.

Let us enumerate K as $\left\{k_{\alpha}: \alpha<\mu\right\}$ if κ is singular.
Observation 9.15. There is a sequence $\left\{R_{\alpha}: \alpha<\mu\right\}$ of disjoint, finite i monochromatic paths with union R so that
(1) $R_{0}=\{a\}$,
(2) R_{α} is a path from a point x_{α} which terminates in an element of A and $R_{\alpha} \subset M_{\alpha+1}$,
(3) $\left|N\left(x_{\alpha}, i\right) \cap A \cap M_{\alpha} \backslash M_{\alpha^{\prime}}\right| \geqslant c f\left(\kappa_{\alpha}\right)$ for all $\alpha^{\prime}<\alpha<\mu$.
(4) $k_{\alpha} \in R_{\alpha}$ for $\alpha<\mu$ if κ is singular.
(5) $A \cap M_{\alpha+1} \backslash M_{\alpha}$ is κ_{α}-saturated even in $V \cap M_{\alpha+1} \backslash\left(M_{\alpha} \cup R\right)$,
(6) $M_{\alpha+1} \backslash M_{\alpha} \cap R$ is finite for all $\alpha<\kappa$ if κ is regular.

Proof. First, suppose that κ is regular. Let $x_{\alpha}=\min P \backslash M_{\alpha}$ and $x_{\alpha}^{\prime}=\min P \cap$ $A \backslash M_{\alpha}$ with $R_{\alpha}=P \upharpoonright\left[x_{\alpha}, x_{\alpha}^{\prime}\right]$ for limit $\alpha<\mu$. Let $x_{\alpha+1} \in M_{\alpha+1} \backslash\left(M_{\alpha} \cup R_{\alpha}\right)$ be a $\kappa_{\alpha+1}$-limit of P and $x_{\alpha+1}^{\prime}$ be the first element of $P \cap A$ above $x_{\alpha+1}$. (1)
and (2) are clearly satisfied; it suffices to check (3) which will be satisfied by our choices of x_{α} and the fact that $M_{\alpha^{\prime}} \cap P$ is an initial segment of P below x_{α}. (4) and (5) holds as the R_{α} 's are separated by the models.

Now, suppose that $\kappa>\mu$. Select κ_{α}^{+}-limit x_{α} of P and let x_{α}^{\prime} be the first element of $P \cap A$ above x_{α}; extend $P \upharpoonright\left[x_{\alpha}, x_{\alpha}^{\prime}\right]$ into a finite i-monochromatic path R_{α} which terminates in k_{α}. Note that we can actually suppose that $\left\{R_{\alpha}: \alpha<\mu\right\}$ is a subset and element of M_{1}. Now (3) is satisfied by the fact that $\left|M_{\alpha^{\prime}}\right|<\kappa_{\alpha}$ and (5) holds as $\cup\left\{R_{\alpha}: \alpha<\mu\right\}$ has size less than κ.

Let $R=\cup\left\{R_{\alpha}: \alpha<\mu\right\}$ as above. We construct a continuous increasing sequence $\left(Q_{\alpha}\right)_{\alpha<\mu}$ of i-monochromatic paths so that
(a) Q_{α} covers $A \cap M_{\alpha} \backslash R$ inside M_{α},
(b) Q_{α} is of order type κ_{α} and is concentrated on A,
(c) Q_{α} end extends $Q_{\alpha^{\prime}}$ for all $\alpha^{\prime}<\alpha<\mu$,
(d) the first element of Q_{0} is a,
(e) $N\left(x_{\alpha}, i\right) \cap A \cap M_{\alpha+1} \backslash M_{\alpha}$ is cofinal in $Q_{\alpha+1}$,
(f) R_{α} is an initial segment of $Q_{\alpha+1} \backslash Q_{\alpha}$ while $R_{\alpha} \cap Q_{\alpha^{\prime}}=\varnothing$ for all $\alpha^{\prime}<\alpha$.

Clearly, $Q=\cup\left\{Q_{\alpha}: \alpha<\mu\right\}$ will be an i-monochromatic path that covers A and is concentrated on A.
Let $Q_{0}=\varnothing$. If $\alpha<\mu$ is limit and we constructed $Q_{\alpha^{\prime}}$ for $\alpha^{\prime}<\alpha$ then let $Q_{\alpha}=\cup\left\{Q_{\alpha^{\prime}}: \alpha^{\prime}<\alpha\right\}$. Suppose we constructed Q_{α} and we wish to extend it into $Q_{\alpha+1}$.
Observation 9.16. $Q_{\alpha} \wedge R_{\alpha}$ is an i-monochromatic path concentrated on A.
Proof. Recall that x_{α} was the first element of R_{α} so we need to check that

$$
N\left(x_{\alpha}, i\right) \cap A \cap Q_{\alpha}
$$

is cofinal in Q_{α}. First, if α is a limit this amounts to checking that

$$
N\left(x_{\alpha}, i\right) \cap A \cap M_{\alpha} \backslash M_{\alpha^{\prime}} \neq \varnothing \text { for all } \alpha^{\prime}<\alpha
$$

as any selection from $\left\{A \cap M_{\alpha} \backslash M_{\alpha^{\prime}}\right\}$ is cofinal in Q_{α}. This clearly holds by the choice of x_{α}.

Second, if $\alpha=\alpha^{\prime}+1$ then property (e) from above ensures that x_{α} is a valid continuation of $Q_{\alpha^{\prime}}$.

Therefore, our goal now is to cover $A \cap M_{\alpha+1} \backslash\left(M_{\alpha} \cup R\right)$ by a path P_{α} inside $V \cap M_{\alpha+1} \backslash\left(M_{\alpha} \cup R\right)$ where P_{α} is concentrated on A, starts at x_{α}^{\prime} (the endpoint of R_{α}), has order tpye $\kappa_{\alpha+1}$ and $N\left(x_{\alpha+1}, i\right) \cap A \cap M_{\alpha+1} \backslash M_{\alpha}$ is cofinal in P_{α}. We then define

$$
Q_{\alpha+1}=Q_{\alpha} \wedge R_{\alpha} \wedge P_{\alpha}
$$

which will finish the induction and our proof. Naturally, we will apply the inductional hypothesis on $\kappa_{\alpha+1}<\kappa$ to conctruct P_{α} with cofinal set $K_{\alpha} \in$ $\left[N\left(x_{\alpha+1}, i\right) \cap A \cap M_{\alpha+1} \backslash M_{\alpha}\right]^{c f\left(\kappa_{\alpha+1}\right)}$. Note that $A \cap M_{\alpha+1} \backslash\left(M_{\alpha} \cup R\right)$ is $\kappa_{\alpha+1^{-}}$ saturated in the graph $V \cap M_{\alpha+1} \backslash\left(M_{\alpha} \cup R\right)$ and $x_{\alpha}^{\prime} \in A$ by the construction of the R.

Hence, it suffice to show that there is a path P^{\prime} inside $V \cap M_{\alpha+1} \backslash\left(M_{\alpha} \cup R\right)$ which is concentrated on A and has order type $\kappa_{\alpha+1}$. If κ is regular then $P \cap M_{\alpha}$ is an initial segment of P defined in $M_{\alpha+1}$ and hence we can select a $\kappa_{\alpha+1}$-limit z of our original path P above M_{α} that is in $M_{\alpha+1}$ and note $P \upharpoonright z \subset M_{\alpha+1}$. Also, $P \cap\left(M_{\alpha} \cup R\right)$ must be bounded below z in P by point (5) in our construction of R. Hence, there is $w \in P \upharpoonright z$ so that

$$
P^{\prime}=P \upharpoonright[w, z) \subset M_{\alpha+1} \backslash\left(M_{\alpha} \cup R\right)
$$

which we wanted to show. If κ is singular then the first $\kappa_{\alpha+1}$-limit z of P is in $M_{\alpha+1}$ and the same argument works.

Finally we arrive at the
Proof of Lemma 9.7. We start by assuming that (b) fails.
We distinguish 2 cases depending on the value of $c f(\kappa)$.
Case 1: suppose that $\kappa>c f(\kappa)=\omega$. Recall Claim 9.12.1 and take an ϵ chain of covering elementary submodels $\left(M_{n}\right)_{n \in \omega}$ of uncountable regular size $<\kappa$ with $\kappa \subset \cup M_{n}$ so that there is an infinite $N \subset \omega$ so that for all $n \in N$ there is $x_{n} \in A \backslash M_{n}, y_{n} \in B \backslash M_{n}$ with $c\left(x_{n}, y_{n}\right)=i$ and

$$
\left|N\left(y_{n}, i\right) \cap A \cap M_{n}\right| \geqslant \omega
$$

Without loss of generality $N=\omega$ and $x_{n}, y_{n} \in M_{n+1}$.
Observation 9.17. There is a sequence $\left\{R_{n}: n \in \omega\right\}$ of pairwise disjoint finite i-monochromatic path so that
(1) R_{n} is a path from a point $u_{n} \in M_{n}$ with last two points y_{n}, x_{n},
(2) $\left|N\left(u_{n}, i\right) \cap A \cap M_{n}\right|=\kappa_{n}$.

Proof. First, find distinct $z_{n} \in N\left(y_{n}, i\right) \cap A \cap M_{n}$ for $n \in N$. We build R_{n} inductively on $n \in N$. Now, in each model M_{n} we can find an i-monochromatic path Q_{n} concentrated on A, of order type $\kappa_{n}+\omega+1$ and disjoint from $\cup\left\{R_{k}\right.$: $k<n\}$; we can take u_{n} to be its κ_{n}-limit point. Find $v_{n} \in Q_{n} \cap A$ above u_{n}. We can extend $Q_{n} \upharpoonright\left[u_{n}, v_{n}\right]$ into a path R_{n} terminating in y_{n}, x_{n} and avoiding $\cup\left\{R_{k}: k<n\right\}$. This is done using saturation.

Let $R=\cup\left\{R_{n}: n \in N\right\}$. If $P_{n} \subseteq M_{n}$ is an i-monochromatic path of order type κ_{n} which covers $A \cap M_{n} \backslash R$ and is disjoint from R_{n} then $P_{n}{ }^{\wedge} R_{n}$ is still an i-monochromatic path; also, if P_{n} is concentrated on A then so does $P_{n}{ }^{\wedge} R_{n}$. Hence it suffice to find P_{n} as above so that P_{n+1} starts from $\left\{x_{n}\right\}$ (the terminal point of R_{n}). Then $P=\cup\left\{P_{n}{ }^{\wedge} R_{n}: n \in N\right\}$ is a path as desired.

It is easy to see that Lemma 9.14 can be applied to the construction of P_{n}.
Case 2: $\kappa \geqslant \mu=c f(\kappa)$. By Claim 9.11.1 and the failure of (b) we can find a continuous ϵ-chain of elementary submodels $\left(M_{\alpha}\right)_{\alpha<\mu}$ so that
(i) $M_{0}=\varnothing$, and M_{α} is the limit of covering elementary submodels for all $\alpha \in \mu \backslash 1$,
(ii) if $\kappa=\lambda^{+}$then let $\kappa_{\alpha}=\left|M_{\alpha}\right|=\lambda$,
(iii) if κ is a limit then let κ_{α} strictly increasing,
(iv) let $M_{\alpha} \cap \kappa \in \kappa$ for all $\alpha<\kappa$ if $\kappa=\mu$
(v) κ_{α} is an element and subset of M_{α} for $\alpha>0$,
(vi) P, A, a, C and everything relevant is in M_{1},
(vii) for every $\alpha \in \mu$ there is $x \in A \backslash M_{\alpha}, y \in B \backslash M_{\alpha}$ with $c(x, y)=i$ and

$$
\left|N(y, i) \cap A \cap M_{\alpha} \backslash M_{\alpha^{\prime}}\right| \geqslant \omega
$$

for all $\alpha^{\prime}<\alpha$
We construct a continuous increasing sequence $\left(Q_{\alpha}\right)_{\alpha<\mu}$ of i-monochromatic paths and finite i-monochromatic paths $\left(R_{\alpha}\right)_{\alpha<\mu}$ so that
(a) Q_{α} is inside M_{α} and $Q_{\alpha} \cup R_{\alpha}$ covers covers $A \cap M_{\alpha}$,
(b) Q_{α} is of order type κ_{α} and is concentrated on A,
(c) Q_{α} end extends $Q_{\alpha^{\prime}}$ for all $\alpha^{\prime}<\alpha<\mu$,
(d) R_{α} starts with a point y_{α} and terminates in an element of A,
(e) $\left|N\left(y_{\alpha}, i\right) \cap A \cap M_{\alpha} \backslash M_{\alpha^{\prime}}\right| \geqslant c f\left(\kappa_{\alpha}\right)$ if $\alpha^{\prime}<\alpha<\kappa$,
(f) R_{α} is an initial segment of $Q_{\alpha+1} \backslash Q_{\alpha}$.

Let $Q_{0}=\varnothing$ and R_{0} a single element of $A \cap M_{1}$. For limit α simply let $Q_{\alpha}=$ $\cup\left\{Q_{\alpha^{\prime}}: \alpha^{\prime}<\alpha\right\}$. By (vii) above, we can find $x_{\alpha} \in A \cap M_{\alpha+1} \backslash M_{\alpha}, y_{\alpha} \in B \cap$ $M_{\alpha+1} \backslash M_{\alpha}$ connected by an edge coloured i so that $R_{\alpha}=\left(y_{\alpha}, x_{\alpha}\right)$ satisfies the above conditions.

Suppose we constructed Q_{α} and R_{α} and we wish to extend it into $Q_{\alpha+1}$. Let us define $R_{\alpha+1}$ first, i.e. the end of the new extension.

Observation 9.18. There is a finite i-monochromatic path $R_{\alpha+1} \subset V \backslash\left(M_{\alpha} \cup\right.$ R_{α}) from an element $u \in M_{\alpha+1}$ into a $v \in A \cap M_{\alpha+2} \backslash M_{\alpha+1}$ so that $N(u . i) \cap A \cap$ $M_{\alpha+1} \backslash M_{\alpha}$ has size at least cf $\left(\kappa_{\alpha+1}\right)$.

Proof. If κ is limit then pick an i-monochromatic path P of order type $\kappa_{\alpha+1}+$ $\omega+1$ in $M_{\alpha+1}$ which is inside $M_{\alpha+1} \backslash M_{\alpha}$; this can be done as $\kappa_{\alpha+1}^{+}$is still less than κ. Let u be the $\kappa_{\alpha+1}$-limit of P and v^{\prime} the first element of $P \cap A$ above u. Pick arbitrary $v \in A \cap M_{\alpha+2} \backslash M_{\alpha+1}$ and extend $P \upharpoonright\left[u, v^{\prime}\right]$ into a finite i-monochromatic path $R_{\alpha+1} \subset V \backslash\left(M_{\alpha} \cup R_{\alpha}\right)$ terminating in v.

Now, suppose that $\kappa=\lambda^{+}$. There is a chain of elementary submodels $\left\{N_{\xi}\right.$: $\xi<\lambda\} \in M_{\alpha+1}$ with $N=\cup\left\{N_{\xi}: \xi<\lambda\right\}$ so that $M_{\alpha} \subset N_{0}$ and there is $x \in A \backslash N, y \in B \backslash N$ with $c(x, y)=i$ and

$$
\left|N(y, i) \cap A \cap N \backslash N_{\xi}\right| \geqslant \omega .
$$

Cleary, $N \subset M_{\alpha+1}$ as N has size λ and also we can take x, y as above in $M_{\alpha+1}$. Note that we have

$$
\left|N(y, i) \cap A \cap N \backslash M_{\alpha}\right| \geqslant c f(\lambda)
$$

so we can extend the path (y, x) into R_{α} terminating in an arbitrary element of $A \cap M_{\alpha+2} \backslash M_{\alpha+1}$.

Now use Lemma 9.14 to cover the rest of $A \cap M_{\alpha+1}$ by an i-monochromatic path P^{\prime} concentrated on A, of order type $\kappa_{\alpha+1}$ so that there is $K_{\alpha} \in\left[N\left(y_{\alpha}, i\right) \cap A \cap\right.$ $\left.M_{\alpha+1} \backslash M_{\alpha}\right]^{c f\left(\kappa_{\alpha+1}\right)}$ cofinal in P^{\prime}; note that $P^{\wedge} R_{\alpha+1}^{\prime}$ is also an i-monochromatic path concentrated on A.

References

[1] Gyárfás, András; Sárközy, Gábor N. ; Monochromatic path and cycle partitions in hypergraphs. Electron. J. Combin. 20 (2013), no. 1, Paper 18, 8 pp.
[2] Gyárfás, András: Covering complete graphs by monochromatic paths. Irregularities of partitions (Fertőd, 1986), 89-91, Algorithms Combin. Study Res. Texts, 8, Springer, Berlin, 1989.
[3] Pokrovskiy, Alexey; Partitioning edge-coloured complete graphs into monochromatic cycles and paths, submitted to Journal of Comb. Theory
[4] Pokrovskiy, Alexey; Calculating Ramsey Numbers by partitioning coloured graphs, preprint
[5] Rado, Richard; Monochromatic paths in graphs. Advances in graph theory (Cambridge Combinatorial Conf., Trinity College, Cambridge, 1977). Ann. Discrete Math. 3 (1978), 191-194.

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences E-mail address: emarci@renyi.hu
URL: http://www.renyi.hu/~emarci
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences E-mail address: soukup@renyi.hu
URL: http://www.renyi.hu/~soukup
University of Toronto, Toronto, On, Canada
E-mail address: daniel.soukup@mail.utoronto.ca URL: http://www.math.toronto.edu/~dsoukup
Eötvös Loránd University, Budapest, Hungary
E-mail address: szentmiklossy@renyi.hu

[^0]: Date: October 31, 2013.
 2010 Mathematics Subject Classification. 03E35.
 Key words and phrases. X.

