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1. INTRODUCTION

Our aim is to prove theorems stating that certain edge-colored graphs can be
partitioned into monochromatic paths or powers of paths.

Investigations began in the 80s with a results of Rado [5] implying that the
every r-edge colored (r € w) complete graph on w can be partitioned into r
monochromatic paths with different colors. Rado’s result extends to finite com-
plete graphs with 2-edge colorings, however by increasing the number of colors
one runs into difficulties. Indeed, Kathy Heinrich constructed colorings of K,
with r > 3 colors so that there is no r-partition of K,, to paths with different
colors. However, A. Pokrovskiy [3] quite recently proved that one can partition
a 3-colored K, into 3 monochromatic paths. Again in 1986, Gyarfis [2] showed
that for every r € w there is f(r) € w so that for any r-edge coloring of K,, there
is a cover of K,, by < f(r) monochromatic paths.

We extend these results by proving ...

Naturally, one would like to extend the above results to graphs with fewer
edges and hence, we turn to complete bipartite graphs. Pokrovskiy [3] proves
(also follows from Gyérfas, Lehel 777, see [3]) that for every 2-edge coloring of
K, » there is a 3-partition to monochromatic paths and this result is sharp.
Furthermore, Haxell proved that for all » € w there is C,. € w so that every
r-edge colored K, , partitions into at most C,-many monochromatic cycles (in
particular, paths).

Again, we extend this line of research by proving that ...

2. PRELIMINARIES
Ng(v) = {ue V(G) : wv € E(G)}.

Ng(4) = ﬂveA Ng(v).

Definition 2.1. Let G be a graph and ¢ : F(G) — v a coloring of the edges of
G. We say that the sequence of vertices P = (p,, : @ < k) of G is a path iff

(1) (PasPa+1) € E(G) for all @ < &,
(2) sup{a < B : (pa,pg) € E(G)} = B for all limit 5 < k.
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A path P is monochromatic in some color i < v (or a path in color i) iff

(1) e(pa;pat1) =i forall a < v,
(2') sup{a < B : (pa,pp) € E(G) and c(pa,pg) = i} = B for all limit 5 < v.

Definition 2.2. Let G be a graph and ¢ : F(G) — v a coloring of the edges of
G and k a cardinal. A subset A € V(G) is k-connected in color i for some i < v
iff for every a,b € A and B € [A]=" there is a finite, path P = {p; : j < k) in
(A\B) u {a,b} in color ¢ with pg = a and py_1 = b.

The following lemma is well-known and easy.

Lemma 2.3. If G is a copy of K,,, moreover ¢ : E(G) — r is a coloring of the
edges of G with finitely many colors, then there is a function d.: V(G) — r and
there is a color j. € v such that

() for each finite subset U of V(G) there is v € V(G) such that d(v) = j. and
c(u,v) = de(u) for allueU.

3. PARTITIONS OF HYPERGRAPHS

A loose path in a k-uniform hypergraph is a sequence of edges, e, es,... such
that for |e; ne;p1|=1ande;nej=Ffori+1<j

A tight path is a sequence of distinct vertices where every consecutive set of k
vertices forms an edge.

A. Gyérfds and G.N. Sarkozy, [1, Theorem 3.], proved the following result:
Suppose that the edges of a countably infinite complete k-uniform hypergraph are
colored with r colors. Then the vertex set can be partitioned into monochromatic
finite or one-way infinite loose paths of distinct colors.

Theorem 3.1. Suppose that the edges of the countably infinite complete k-
uniform hypergraph on w are colored with r colors. Then the vertex set can be
partitioned into monochromatic finite or one-way infinite tight paths of distinct
colors.

Proof. The case k = 2 was proved by Rado in [5]. We imitate his proof.

Let ¢ : [w]k — 1. A set T c r of colors is called prefect iff there are vertex
disjoint finite paths {P; : ¢ € T} and there is an infinite set A such that for all
teT

(a) P, is a tight monochromatic path in color ¢
(b) if 1 € ¢ < k and « is the last i vertices from P; and y € [A]k_z, then
c(ruy) =t

Let T be a perfect set of colors with maximal number of elements.

Claim 3.1.1. If the vertex disjoint finite paths {P; : t € T} and the infinite set A

satisfy (a) and (), then for all v € w\U,er Py there is a color t € T and a finite

sequence v1Vs . ..Vg_1 from A, and an infinite set A’ ¢ A such that the paths
{Ps:seT\{t}} v {P viva... . vp_1v} (3.1)

and A’ satisfy (a) and (b).
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Proof of the Claim. Define a new coloring d : [A]k_1 — 7 by the formula d(z) =
c(z v {v}). By Ramsey Theorem, there is an infinite d-homogeneous set B ¢ A
in some color ¢t. Then t € T , otherwise T' U {t} would be a bigger perfect set
witnessed by P; = {v} and B.

Now pick vjva...v,_1 from B and let A’ = B\{vg, v1,vg_1,0}. a

The Claim clearly implies the Theorem. O

4. AN INFINITE VERSION OF A CONJECTURE OF SEYMOUR

Seymour’s Conjecture . Let G be a finite graph of order n = 3, and let k € w.
If G has minimum degree

k
n
k+1"7
contains the kth power of a Hamiltonian cycle.

I(G) =

(4.1)

If k+ 1 t n, then the assumption (4.1) implies that Ng[A] # & for all
Ae V(@]
Theorem 4.1. Let G be a countably infinite graph, and let k € w. If Ng[A] is
infinite for all A € [V(G)]kJrl
path.
Proof.

Claim 4.1.1. If the kth power of a finite path P = xq...x, is in G, then for
all v e V(G)\P there is a a finite sequence v1vs ... vE_1 of vertices, such that the
kth power of the finite path P v1vy ... vx_1v is also in G.

, then G contains the kth power of a Hamiltonian

Proof of the Claim. By finite induction pick distinct vertices vy, ...,vg_1 such
that

01 € Na[{Enmtais- a2} 0 {0} U {0y 1§ <i}]. (4.2)

O

Using the Claim, we can construct the rewuired Hamiltonian path inductively.
O

5. COVERS BY /TH POWERS OF PATHS

Definition 5.1. Assume that H is a graph, W < V(H), and k € w. The game
&, (H,W) is played by two players, Adam and Bob, as follows. The players
choose pairwise disjoint finite subsets of V(H) alternately:
Ao, Bo, A1, By, . ...

Bob wins the game & (H, W) if
(A) W c Uiew Az V) Bi7 and
(B) H[UJ;e,, Bi] contains the kth power of a (finite or one way infinite) Hamil-

tonian path.

Claim 5.1.1. If H = (V,E) and W c V then the following are equivalent:

E
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(1) for every a,be W and F € [V\{a,b}|<% there is a path in from a to b in
V\F.
(2) Bob wins &1(H,W).

Proof. (1) = (2): By our assumption, Bob can always connect an uncovered
point of W to a previously constructed path.

(2) = (1): Let Adam start with Ay = F and continue with A; = ¢J; the
Hamiltonian path constructed by Bob’s strategy will go through a and b. O

We will convert a winning strategy of Bob into a partition by the following

Lemma 5.2. Suppose that H = (V,E), V. = u{W, : i < N} with N € w and
let H; = (V, E;) for some E; ¢ E. If Bob wins &y (H;, W) for all i < N then
V' can be partitioned into kth powers of paths {P; : i < N} so that edges between
consecutive vertices of P; are in E;.

Corollary 5.3. Let ¢ : E(K, o) — r for some r € w. Then K, can be parti-
tioned into at most 2r — 1 monochromatic paths. Furthermore, for every r € w
there is ¢, : E(K, ) — 1 so that K., cannot be covered by less than 2r — 1
monochromatic paths.

Proof. Let us denote the two classes of K, ., by A and B. Fix a coloring ¢ and
ultrafilters Ux, Up on A, B respectively; now, let A; = {ue A: {ve B:c(u,v) €
i} € Up} and similarly B; = {ve B : {u € A : c(u,v) € i} € Us}. Without loss
of generality, we can suppose that Ay € Us. Let H; denote the graph on A u B
with edges c1(i).

Claim 5.3.1. Bob wins the games &1(Hy, Ag v By), ®1(H;, A;) and &1(H;, B;)
forl<i<r.

Proof. 1t is easy to see that Claim 5.1.1 can be applied in each case. O

This finishes the proof of the first part of the theorem by Lemma 5.2.

Next, we will construct our colorings ¢ showing that the above results is sharp.
Let r = 2, let A = U{A; : i < r} with A infinite and 4; = {a;} for 1 < i < r and
let B = u{B; : i < r} with each B; infinite. Define the r-coloring ¢, as follows:
let

¢ | Ay x Bj=i+j modr fori,jer.
Note that if P is a monochromatic path which covers some A; then |{j < r :
P n B; # &} < 1; furthermore P is finite and thus B\P # g if 1 <i <r
and j < r. Similarly, if P is a monochromatic path which covers some B; then
Hi <r:PnA; # &} <1 as well. Now it is easy to see that there is no
c-monochromatic cover by less than 2r — 1 paths. ([l

Theorem 5.4. Assume that H is a countably infinite graph, W < V(H), and
k€ w. If there are subsets Wy, ... , Wy of W such that Wy =W and

W1 n Ng[F] is infinite
foreach j <k and for all F € [Uigj Wi]%, then Adam wins that game G (H,W).
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Proof. Assume that V(H) = w.
Define the relation = on (k + 1) x w as follows:

Gyry = Gyyyand Gy = G+ 1,y + 1) for z < . (5.1)
The =-predecessors of {i,y) are
{ay:x <yu{G+1,2):y <z} (5.2)
Let {{in,2zny : n <w} be an enumeration of k x w such that
(i Ty & i,y Ty implies m < n. (5.3)
In the stage n, Adam picks a;, 2,5 € Wi, \ U, Ai U B; such that
iy 205U iy > € E(H) for (i, Tm) T (in, Tn), (5.4)
and
agi, @,y = min(Wo U A; U B;) provided i, = 0. (5.5)

i<n
Let A, = {a<imr">}.

Then (A) holds by 5.5.

Let {(jn,yny : n < w} be the lexicographical enumeration of k¥ x w. Then
{agj, vy + 7 < w} is the kth power of a path. Indeed, assume that 0 <m <n <
m + k. Then either (n, yn) E Gmy Ymy OF my Ymy E {Jn, Yny- Then 5.4 implies
that i 20y Wi x> € E(H). [l

Theorem 5.5. (1) Given any coloring of the edges of K, with 2 colors, the
vertices can be partitioned into 5 homogeneous path-square.

(2) For each natural numbers k and r there is a natural number M such that
given any coloring of the edges of K, with r colors, the vertices can be partitioned
into M homogeneous k-power of a path apart from a finite set.

Proof of theorem 5.5(2). (2) We will use the notation of lemma 2.3. By induction
on the length of sequences, for each finite sequence s € r<¥"*! define a set
As € V(Q) as follows:

o Ay =V(G).
e if A, is defined, let
As—~i ={ue A; 1 dera, (u) =i} (5.6)
provided Ajg is infinite. If A, is finite, then let
As~o=Asand Ag~;, =Florl <i<r. (5.7)

Consider an arbitrary s € r*"*1 such that A is infinite. Then there is a color

is < r and there is a k-element subset Hy = {hg > h; > --- > hi} of kr + 1 such
that s(hg) = s(h1) = -+ = is. So, by theorem 5.4, the finite sequence

Ag, Asthgs - Astha (5.8)

witnesses that Adam has a winning strategy in the game (G;,, A,), where G;, =
V(G), cHis}).
Playing the games
{(G;,, Asy : Ay is infinite} (5.9)

2] (2]
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parallel, we can find at most 7*"*1-many kth power of vertex disjoint monochro-
matic paths which cover V(G) apart from the finite set | J{As : A is finite}. O

To prove theorem 5.5(1) we need some preparation.

In [4, Corollary 1.10] Pokrovskiy proved the following: Let k > 1. Suppose
that K,, is colored with two colours. Then K, can be covered with k disjoint red
paths and a disjoint blue kth power of a path.

Lemma 5.6. Assume that P = vgvy ... is a path such that
Nea[{vi, vig1, vigo, vips}\P (5.10)
1s infinite for all v; € P. Then G contains a 2nd power of a path with covers P.
Proof. Pick pairwise disjoint vertices wg, w1, ..., from V(G)\P such that w; €
Ne[{vai, voiy1, vaiv2, v2itat].
Then
Vg V1 W V2 V3 Wy V4 ...V2 Vi1 Wy V2441 V242 Wig] - - - (5.11)
is a 2nd power of a path with covers P. ([l

Proof of theorem 5.5(1). (1) Fix a coloring ¢ : [w]2 — 2. Let G; = {w,c'{i})
for i < 2.

We will use the notation of lemma 2.3.

Let ¢g = ¢ and

Ag={vew:de (V) = jeo }, and By = w\Ap. (5.12)

Let ¢1 = ¢o [ By and
Ay ={ve By:d. (v) =j}, and By = Bo\A4;. (5.13)

Let co = ¢4 [ By and
As ={v e By :d,(v) =je,}, and By = B1\As. (5.14)

We can assuem that j., = 0.

Case 1. By is finite

G[By] can be covered by two 0-paths Py and P; and a 1 square path ;. by
[4, Corollary 1.10].

So by lemma 5.6 Py and P; can be covered by two 0-homogeneous squares of
some paths Ry and R;. We can guarantee that Ry, Ry, are vertex disjoint.

Since Adam wins B5(Go, Ap), so G[w\Ro v R; U Q1] can be covered by one
0-homogeneous square of paths.

So G can be covered by 4 squares of paths.

Case 2. By is infinite, jo, =0
Case 3. By is infinite, j., = 1, By is finite
Case 4. j., =1 and B is infinite
Assume that j., =1
Adam wins 62(G0, AQ)7 @Q(Gl, Al) and 62(jS2 s Ag)
Moreover Adam also wins 62(G1_j02 , B2) witnesses by
L] (BQ,A27A1) if jC2 = 1, and by
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° (BQ, AQ,AQ) if jCQ =0.
So G can be covered by 4 squares of paths.

6. PARTITIONING THE 2-EDGE COLORED K|, .,

Theorem 6.1. Given any coloring of the edges of K, ., with 2 colors, the
vertices can be partitioned into finitely many (< 11 22) monochromatic paths.

Let us fix a coloring c for the rest of this section, and let K,,, ., = A U B the
two classes.

Claim 6.1.1. If there is a i-monochromatic copy of K., w, i Au B for some
i < 2 then A U B can be partitioned into 3 monochromatic paths.

Proof. Let Ay U By denote the monochromatic K., ., and extend Ay U By to Z
which is a maximal wy-connected set in color ¢. Clearly, Z is a path in color 3.
Now, it is easy to see that there is A; € Ay and By < By so that
(1) Z\(A1 v By) is a path in i,
(2) A\Z u By and B\Z u A; are paths in color 0.

O

Hence, we can suppose that there is no monochromatic copy of K, in

AU B. Let

1,W1

I' ={aeA:|N(a,i)| < w}
and
Aj={BeB:|N(Bi)| < w}.

Observation 6.2. For all A’ € [A]“* and B’ € [B]“* there are wy independent
edges of color i between A’ and B’ (fori < 2). Hence
(1) min{|T;],|A:;|} Sw if i <2,
(2) if a € A\I'; and B € B\A; then there are w1 many verter disjoint paths
in color i between o and 3.

Without loss of generality, we can suppose that |I'g| < w and hence it suffices
to consider the case when I'y = & by Theorem 5.3.

Claim 6.2.1. If I'; is uncountable then there is an uncountable B’ c B so
that T'y U B’ is a path in color 0 and |N(«,i)\B'| = w1 if a € A, i < 2 and
[N (e, )| = wi.

Therefore, we can further suppose that I'y is empty as well. We need to
consider 3 cases as follows:

Case 1: |Ag|, |A1] € w,
Case 2: |Ag| = wy while |A] < w,
Case 3: |A0| = |A1| = Wi.



ver

8 M. ELEKES, D. T. SOUKUP, L. SOUKUP, AND Z. SZENTMIKLOSSY

In Case 1, we can suppose that |A;| = & by Theorem 5.3. Now A u B is w;
connected in both colors by Observation 6.2 (2). Also, if AU B is not a 0-trail
then it is clearly a 1-trail (as shown many times before).

Second, in Case 2, we can suppose that |A;| = & by Theorem 5.3. Now
|Ao| = wy implies that A U B is a 1-trail while it is clearly 1-connected by
|A1] = |T'1| = &; hence A U B is a path.

Finally, we consider Case 3. We inductively build Py, P; partitioning Au B to
monochromatic paths (P; to be (1 — ¢)-homogeneous) so that P, = U{P; o : o <
w1} and A; is cofinal in P; ,. Limits points are easy to choose by the definition of
A; and in successor steps we can cover the remaining points using connectedness
ensured by Observation 6.2 (2).

Problem 6.3. Given an edge coloring of K., ., with finitely many colors is
there a partition of the vertices into finitely many monochromatic paths?

7. FINITELY MANY COLORS AND FINITE PARTITIONS ON wq

Let H,., ., denote the balanced bipartite graph with classes A = {a¢ : { <
wi}, B ={be : £ <wi} of size w; such that

(afab(:) € E(le,wl) iff £ <.

We will call A the main class of Hy,, o, .
The following lemma will be of surprising relevance:

Lemma 7.1. Let r € w and ¢ : E(H,, «,) — r. Then there are finitely many
monochromatic and disjoint paths {P; : i < N} covering the main class of Hy, w, -

Proof. We prove by induction on r. Note that a monochromatic H,, ., is a paths
which concludes the 7 = 1 case. Now, in general, it suffices to see that there are
disjoint {Q; : j < M} such that @, is either countable or a monochromatic path
or a copy of H,, ., colored with < r —1 colors. Fix a uniform ultrafilter U on B
and let A; = {ae A: N(a,j)e U} for j <r. We can disregard those A;s which
are countable; see theorem on countable bipartite partitions.

Claim 7.1.1. If |A;| = w1 then one of the following holds

(1) there is a club C' so that for all o€ C there is By € [N(zq,j)]“" (where
zo = min A\a)such that sup{d € o : as € A;,c(as,b) = j} = a for all
be B,, or

(2) thereis a countable E C A and uncountable B; so that ¢ colors Hy,, ., [A;\EyU

B,] with r\{j}.
Now an easy induction shows that there are disjoint sets (); so that A; =
Q®; n A and either ); has properties
(1) there is a club C so that for all € C there is by € N(z4,j) N Q; (where
zo = min A\a) such that sup{d € a : as € A;,c(as,bs) = j} = o, and
(2) for all a,a’ € A; there are wy-many vertex disjoint paths from a to o’
inside Q;
or Q; is a copy of Hy, ., colored with < 7 —1 colors (Case (1) and Case (2)
respectively from above). In the first case, @; is not necessarily a path but we
can cover A; inside (); with a j-monochromatic path. ([
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ﬂ Corollary 7.2. Suppose that the edges of a complete balanced bipartite graph are
colored with finitely many colors. Then

(1) the vertices can be covered by finitely many monochromatic paths,
(2) the vertices can be partitioned into countably many monochromatic paths.

Theorem 7.3. Suppose that G = (V, E) satisfies |V| = w1 and |V\Ng(v)| € w
for allv e V. Given an edge coloring of G with finitely many colors the vertices
of G can be partitioned into finitely many monochromatic paths.

Proof. We prove by induction on r. Fix a coloring ¢ with r € w colors, wlog
r = 2. Naturally w; = V.

Case 1: suppose that there is A c w;iwhich is a copy of K, colored only
by < r —1 colors. Pick A" ¢ A so that |A'| = |w1\4| and wi\A U A’ forms a
copy of H,, «, with main class w;\A. By Lemma 7.1 there are finitely many
disjoint paths {P; : i < n} inside wi\A U A’ covering w;\A. Finally, note that
W = w;\UP; c A hence the edges of W are only r— 1-colored; by our inductional
hypothesis, we can cover W by finitely many disjoint paths.

Case 2: suppose that there is no A < wywhich is a copy of K, colored only
by < r — 1 colors.

Observation 7.4. If A€ [w1]“* and i < r then A must be an i-trail.

Proof. Otherwise, there is a uncountable S c wy, a 1-1 increasing sequence {a,, :
aeStc Aand A € wp so that ¢ [ (A\Ana x {a,}) #iand o < aq < S and
(aa,ap) € Eif a < B € S. Clearly {a, : @ € S} would be a copy of K, colored
with < r — 1 colors. O

Now find an uncountable A € w; so that A is wi-connected in some color,
wlog in 0. Pick A’ ¢ A so that |A'| = |wi\A|, A\A’ is uncountable and for all
x,y € A there are wi-many vertex disjoint x — y 0-monochromatic paths P with
P\{z,y} c A\A'".

Observation 7.5. Suppose that W satisfies AANA' ¢ W < A. Then W is wy-
connected in color 0.

There is A” < A’ so that w1\A u A” forms a copy of H,, ., with main class
w1\A. By Lemma 7.1 there are finitely many disjoint paths {P; : i < n} inside
wi\A u A’ covering w1\ A. Finally note that W = w;\ U P; is both a 0-trail and
wi-connected in color 0 by the last two Observations. Hence W is a path in color
0.

]

Corollary 7.6. Given an edge coloring of K., with finitely many colors the
vertices of K, can be partitioned into finitely many monochromatic paths.

We will see in the next section that actually every 2-edge coloring of K,
actually admits a 2-partition into monochromatic paths. However, the following
is not known:

Problem 7.7. Given a r-edge coloring of K., s there a partition of the vertices
into < r many monochromatic paths (of different colors)?



10 M. ELEKES, D. T. SOUKUP, L. SOUKUP, AND Z. SZENTMIKLOSSY

8. NEIGHBORS FROM THE CLUB FILTER
Naturally, one would like to have an answer for the following:

Problem 8.1. Suppose that the graph G = (w1, E) satisfies that Ng(v) is a club
for all v € wy and E is colored by finitely many colors. Is there a partition of wq
into finitely many monochromatic paths?

We have two partial answers:

Claim 8.1.1. Suppose that the graph G = (w1, E) satisfies that Ng(v) is a club
for all v e wy and E is colored by finitely many colors. Then we can

(1) partition wy into countably many monochromatic paths,
(2) cover wy by finitely many monochromatic paths.

Proof. First, we prove (1): let w; = U{S, : n € w} so that S, are disjoint and
stationary. We can inductively define a sequence P,, so that

(1) each P € P, is a monochromatic path,

(2) PAnP' =G if PeP,, P ePp,

(3) UP, covers S,.
If Py, is constructed for k < n and S,\ U {P : P € Py, k < n} is uncountable then
there is a copy of Hy, «, inside S, U S, 1 with main class S,\ U{P : P € Py, k <
n}. Now apply Lemma 7.1 to get P,.

Second, we prove (2): let wy = Sy u Sy with S; disjoint stationary. There are

two copies of H,, .,, say X, inside w; so that the main class of X; is S; (and
second class contained in Sy_;). Apply Lemma 7.1 for X; to finish the proof. O

Theorem 8.2. Suppose that G = (w1, E) is a graph so that Ng(v) is a club
for all v e wy. If ¢ is a 2-edge coloring of G then wi can be partitioned into 2
monochromatic paths.

Proof. We distinguish two cases as follows:

Case 1: there is a monochromatic (say in color 0) copy (4, B) of Hy,, ., in G
so that A U B is stationary. If so, then extend A U B to a maximal w;-connected
C. Note that there is D < C so that (w1\(4 v B),D) is a l-monochromatic
copy of Hy, ., while and A U B\D is still a 0-connected and still contains a 0-
monochromatic copy of H,, .,. Observe that Au B\D is a 0-path while wq\(Au
B) u D is a 1-path.

Case 2: there is no monochromatic copy (A, B) of Hy, ., in G so that Au B
is stationary. The standard argument shows that every stationary S < w; is a
trail in both colors. Pick an ultrafilter containing all clubs and using that find
a stationary S < w; so that S is wi-connected in some color, say 0. Without
loss of generality, it can be supposed that S is maximal with respect to being
wi-connected in 0. Now, there is a non stationary Sp < S so that wi\S u Sy
is a l-monochromatic copy of H,, ., and so that S\Sy is wi-connected in 0.
Note that wi\S u Sy is a 1-path and S\Sy is a O-path (as w;-connected in 0 and
stationary, so a O-trail). O

Corollary 8.3. Given any coloring of the edges of K,, with 2 colors, the vertices
can be partitioned into 2 monochromatic paths.
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Clearly, if {Ng(v) : v € V} forms a uniform filter on wy then G is w;-connected.
The following examples shows that being w;-connected is nowhere near enough
to admit monochromatic partitions for arbitrary 2-edge colorings.

Example 8.4. There is an wy-connected graph (V, E) with an 2-edge coloring
so that there are no monochromatic cycles (of length = 3); in particular, there is
no monochromatic path of size w + 1 and so there is no cover by countably many
momnochromatic paths.

Proof. Let w; = U{S, : n € w} so that S, are pairwise disjoint and uncountable.
Furthermore, let S, = (J{T}, :  # y € U{Sk : k < n}} with T}, pairwise
disjoint uncountable. Let Fy = J and

E,=FE, uU{{x,y} x Ty, cx#yeu{Sy:k<n}}

and let £ = UFE,.

Clearly, (w1, E) is wi-connected. Now, define ¢ | E,\E,_1 so that if z <
y e u{Sy : k <n}and z € T, , then ¢(z,z) = 0 and c(y,z) = 1. It is not
hard to see that there are no monochromatic cycles; if C is a cycle consider
N =max{n:Cn E,\E,_1 # &} and let z € C n EN\En_1. By the definition
of the coloring, the two edges in C' on z are colored with different colours. ]

9. PATH DECOMPOSITIONS ON HIGHER CARDINALS
Definition 9.1. A graph G = (V, E) is called k-complete iff |[V| = k and
V\Ng(@)] < 5
forall ze V.

Our final goal is to prove Corollary 9.10, that every finite-edge coloured k-
complete graph can be partitioned into finitely many monochromatic paths.

9.1. Preliminaries. We will make use of the following definition:

Definition 9.2. A graph G = (V,E) is of type H,, iff V.= A U B where
A={ac:E<k},B={be: & <k} and

(ag,bg) e EG)if £ <(<k.

We will call A the main class and (A, B) with the inherited ordering is called the
H,, ,-decomposition of G.

Note that A, B in the H, .-decomposition are not necessarily disjoint.

We will prove in Theorem 9.9 that every finite-edge coloured graph of type
H, ,, contains a monochromatic path of size x; furthermore, if the two classes are
disjoint then the main class is covered by finitely many disjoint monochromatic
paths. This result will be used in the proof of Corollary 9.10.

Observation 9.3. Suppose that G = (V, E) is k-complete (for an arbitrary in-
finite k) and let X,Y € [V]*. Then there is F  E so that (X Y, F) is of type
H, . and there is a H,, ,.-decomposition Au B so that X = A and BC Y.
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Proof. If k is regular then we can take an arbitrary enumeration X = {a¢ : { < k}
and {b¢ : £ < k} C Y are easily constructed by induction so that (a¢,b¢) € E for
E< (< k.

If kappa is singular then let p = cf(x) and let (ka)a<, increase to k. Let
Xo={ze X :|V\N(z)|] < kq} and list X as {a¢ : £ < k} so that for all A < k
there is o < p with {a¢ : £ < A} € X,. That is,

VA [ ){N(ae) 1 € <A} =5

for all A < k. Now {bs : £ < k} € Y is easily constructed by induction so that
(ag,bc) € E for £ < ¢ < k. O

Observation 9.4. Suppose that G = (V, E) is of type H, ., with main class V.
Then there is a k-complete graph embedded in G.

Proof. If A, B is the H,, ,, decomposition then we have B c A =V and B is the
k-complete subgraph. O

For a path P and  <p y € P let P | [z,y) denote the segment of P from x
to y (excluding y itself). For a set A and i-monochromatic path P we say that
P is concentrated on A iff

N(z,i)nAn P [y,x) # &

for all limit element x € P and y below = in P. Clearly, if P is concentrated on
A then for every x € P there is 2’ € P n A above x so that P | [z, ') is finite.

Observation 9.5. Suppose that G is of type H,. .. Then there is a path of order
type k which is concentrated on the main class of G.

An elementary submodel M is covering iff for all A € M with |A| < |M| there
is A€ M so that A c A" If M = U{M; : £ < p*} where {M¢ : £ < pT} is an
e-chain of elementary submodels, |M¢| = p then M is covering.

Observation 9.6. Suppose that the graph A < V(G) is k-saturated in some
color i with respect to a coloring c. If M = U{M¢ : £ < v} where {M¢ : £ < v} is
an e-chain of covering elementary submodels and |M| = A < K so that G,c e M
then M n A is A\-saturated in color i inside M n V(G).

Proof. If M| = AT with |M¢| < A then the claim is trivial. If |[M| = X with
|M¢| = A then it suffices to prove that N n A is A-saturated in color 7 inside N
for all covering submodels N of size A, which is easy to see.

Otherwise, we can suppose that |[M¢| > |M<¢| where M., = U{M, : { < &}
Take a,a’ € An M and A € [A]<*. There is vy < v so that |M¢| > |A| for all
& e V\1p. There is X¢ € M of size < |M¢| so that

Megu(An M) X

by covering; so we can find |M¢|-many disjoint -monochromatic paths in Mg\X
connecting a to a’. This holds for all for all £ € ¥\ so we found A many O
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9.2. Outline of the proof. Let (/H),,, denote the statement that for any r-
edge colouring of a graph G of type H, , with main class A, we can find a
monochromatic paths concentrated on A of size k. Let (IH), denote (IH)g,
for all r € w; we will prove that (IH), holds for all k which will imply the
decomposition theorem for k-complete graphs.

Lemma 9.7. Let k be infinite with u = cf(k). Suppose that c is an r-edge
coloring of a graph G = (V, E) where G is of type Hy, . with H,, ,.-decomposition
A, B. Suppose that A is k-saturated in a color i < r and for all A € [A]=" and
A < K there is an i-monochromatic path P of size at least \ disjoint from A which
is concentrated on A. Then either

(a) A is covefed by an i—monochmn}atz’c path concentrated on A, or
(b) there is A € [A]™" so that A\A is covered by a graph H of type H,. ,. with
main class A\A so that ¢ | E(H) # i.

Lemma 9.8. Let k be infinite. Suppose that ¢ is an r-edge coloring of a graph
G = (V, E) where G is of type H,, ,, with H,, ,,-decomposition A, B and I € [r]~".
Suppose A is k-saturated in all colors i € I. If (IH)y —1 then either

(a) there is an i € I such that for all A € [A]<* and X\ < k there is an i-
monochromatic path P of size at least \ disjoint from A which is concentrated
on A, or

(b) there is A € [A]<" so that there is a partition A\A = U{A; : j € r\I} where
|N(z,j) n N(z',5)| =k for all z,2" € A; and j e r\l.

Before proving the lemmas, let us show that they imply our main results.

Theorem 9.9. (IH), holds for all infinite k, i.e. if G is a graph of type H,
with a finite-edge colouring then we can find a monochromatic path of size k
concentrated on the main class of G.

Moreover, for any r-edge colouring of the graph H, . we can cover the main
class by finitely many disjoint monochromatic paths.

Proof. We prove (IH), by induction on k. We can suppose that £ > w by
previous results. Now we prove (IH), , by induction on r. Note that r = 1 is
trivial so let r > 1.

Fix an r-edge colouring and start applying Lemma 9.8 to find a decreasing
sequence Ag 2 A; 2 ... and a 1-1 sequence ig,%1,... from r so that A; is s-
saturated in color ¢;. If A; satisfies (a) of Lemma 9.8 with I = {io,...,7;} then
applying Lemma 9.7 finishes the proof (either by finding a j-monochromatic
path or by invoking the inductional hypothesis). If A; satisfies (b) of Lemma 9.7
then one piece of the given partition defines A;;q. If this induction goes on to
define A, then we have a set of size x which is k-saturated in all colors. By the
inductional hypothesis for smaller graphs, we certainly have ¢ € r so that for all
A e [A]<F and A < k there is an --monochromatic path P of size at least A\ which
is concentrated on A. Thus applying Lemma 9.7 finishes the proof as before.

We prove the second statement by induction on x and r as well; note that
k=wor k>wand r =1 are trivial. We will construct a finite tree T' < w<%
and subsets {Q; :t € T} of V = V(H, ) so that every branch of tree has length
r+ 1 and
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(1) A=0{An Qs :teT,|t| =k} for all k < ht(T),
(2) Qqis a copy of Hy » for some A <k forallteT

and for all ¢ € T we have either

(3) AN Q@ is covered by finitely many disjoint monochromatic paths inside
Q¢, or
(4) t is injective with ran(t) < r and Q; N A is k-saturated in color ¢ inside
Q; for all i € ran(t).
We will prove that such a construction can be carried out and so (3) must hold
for every t € T with [t| = r + 1; this finishes the proof.

We start by setting Qg = V. Suppose @, is constructed with |¢| < r. If
(3) holds then set Qy~g = Q:; note that (3) holds whenever |Q:| < x by induc-
tion. Otherwise, suppose that (4) holds and we distinguish two cases: suppose
that there is an ¢ € ran(t) so that for all A € [A]<" and A < k there is an
i-monochromatic path P of size at least A in Qt\fi which is concentrated on A.
Note that this is the case if [¢| = r by the inductional hypothesis. Then Lemma
9.7 gives that A n @ is either a single path or covered by an < r — 1 coloured
copy of H,, , modulo a set of size < k. In the latter case, we can clearly partition
Qt = Qi~o U Q¢~1 so that

(1) Q¢~g is a copy of Hy  with A < &,

(if) Q¢~1 is a copy of Hy, , so that ¢ admits only < r — 1 coulours.
Note that Q;~g and Q;~; both satisfy (3) by induction.

In the second case there is no 4 € ran(t) so that for all A € [A]<* and \ < &
there is an i-monochromatic path P of size at least A in Qt\/i which is concen-
trated on A; in particular, |¢t| < r. Apply Lemma 9.8 with I = ran(t) and get
a decomposition Q; N A = U{A; : j € '\I} U A so that A has size < x and A,
is k-saturated in color j inside @ for all j € r\I. It is clear that we can find a
partition

Qe = u{Qu~j :jer\l} U Qu~,
so that Aj = Q4~; n A for j € r\I and A = Q~, n A which satisfies (1),(2) and
(3) or (4) respectively; note that we would run into trouble finding this partition

if the two classes are not disjoint.
O

Corollary 9.10. Suppose that c is a finite-edge colouring of a k-complete graph
G = (V,E) on k vertices. Then there is a partition of the vertices into finitely
many disjoint monochromatic paths.

Proof. We prove by induction on s and r as before; we can suppose that x > w
and r > 1.

Case 1: there is a k-complete subgraph W < V which is only coloured by
< r —1 colours. Find a subset U ¢ W so that V\W u U is covered by a copy of
H) » with A < x and main class V\W while W\U still has size ; in particular,
WAU’ is still k-complete for all U < U. Apply Theorem 9.9 to cover V\W
inside VAW u U with finitely many disjoint monochromatic paths P and apply
the inductional hypothesis to partition W\ u P.
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Case 2: not Case 1. We construct A; < V, t; € 77 and finite sets of disjoint

monochromatic paths P; for j < r 4 1 so that

(1) Aj =2 Aj_;,_l, Pj C Pj+1 and t;y Ctjsa,

(2) A, is either k-complete (equivalenty, has size k) or empty,

(3) A, is k-saturated in color t(j’) inside A; for all j* < j,

(4) V\A; is covered by P;.
It suffices to have A; = & for some j. We will see that this happens for some
j<r+1 Let Ay =V and Py = Iy = &. Suppose we constructed A; for some
j <rand A; # &. Note that A; is of type H, . by Observation 9.3 and we can
have a H, .-decomposition with main class A;. Let I; = ran(t;) € [r]=".

Case 2/a: there is an i € I; so that for all A € [A]<* and \ < & there is
an i-monochromatic path P of size at least A in A;\A which is concentrated on
Aj;. We claim that A; is covered by a single i-monochromatic path P, i.e. let
Aji1 = and Pj11 = P u{P}. Otherwise, we apply Lemma 9.7 to find a graph
H in Aj of type H, . which is coloured only by < r — 1 colours. This cannot
happen by our assumption (that Case 1 fails) and Observation 9.4.

Case 2/b: not Case 2/a. Note that A; is of type H, , with main class A;
so Lemma 9.8 implies that we can find A € [A;]* which is x-connected in some
color i € r\I;. We can select U < A so that A;\A u U is of type Hy » with
A < k and main class A;\U while A;\U’ is k-connected in colour ¢ for all U’ < U.
Now apply Lemma 9.7 to cover A;\A with finitely many disjoint monochromatic
paths P inside Aj\A U U. Let Aj 1 = A\ UP, Pjy1 =P; UP and t; 1 2t
with tj+1(j) = 1.

If A, # & then note that Case 2/a must have failed at all previous steps so
by induction A, must satisfy Case 2/a with the last colour ¢ = ¢,.(r). Thus we
have A, = & which finishes the proof.

O

9.3. Proving the main lemmas. Our first goal is to prove Lemma 9.8.

Lemma 9.11. Suppose that w < A < ¢fr and (IH)y —1 holds. Suppose that c
is an r-edge coloring of a graph G = (V, E) where G is of type H, ., with H, ,-
decomposition A, B. Let I € [r]<" and suppose that A is A-saturated in all colours
1€ I. Then either

(a) there is an i € I and an i-monochromatic path of size A concentrated on A,
or

(b) there is A e [A]<* so that
|B\N(a, I)| = &
for all a € [A\A]<~.

Moreover, (b) implies that A\A can be partitioned into A\A = U{A; : j € r\I}
where [N(z,j) n N(z',j)| = k for all z,2" € A; and j € r\I.

Proof. Suppose (b) fails. Then inductively build a sequence of pairwise disjoint
finite sets {a¢ : & < A} € [A]<* and sequence of points ¥ = {y¢ : £ < A} so that

Y¢ EN(ava)
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for all § < ¢ < A. Now let ap = U{agyi 4 < |I] + 1} and yi = yey 41 for £ <A
limit. Note that for all limit ordinals & < ( < A there is an 7 € I so that

{z € a; : c(x,yi) =i} = 2.

By thinning out, we can suppose that for all i € I, £ < X\ and z,2’ € a'5
there are A-many disjoint finite -monochromatic path from z to ' which avoid
Y’ = {y; : £ < A} and all other points of X = u{a; : £ <A}

Define a coloring of Hy x by d(&,¢) =i iff [{z € a; : c(z,y}) = i}| = 2 and i
is minimal such. (IH)y —1 implies the existence of a monochromatic path @ of
size A concentrated on the main class of H ). It is easy to see now that using
@ we can define a monochromatic path of size A in our original graph which is
concentrated on A.

Finally, let & be a uniform ultrafilter on B containing the filter {B\N(a,I) :
a € [A\A]<“}. Define A; = {x € A\A : N(x,j) € U} for j € r. Clerly A\A is
partitioned into U{A; : j € r} but note that A, = g if i e I.

O

Proof of Lemma 9.8. Note that if x is regular then applying Lemma 9.11 to A = &
gives us Lemma 9.8.

Suppose that « is singular with ¢f(k) = p and pick a sequence of regular
cardinals k, increasing to k. We can suppose that (a) fails so say that there
are no ¢-monochromatic paths of size xkg. Write H, , as an increasing union
U{Va : @ < p} so that V,, is of type Hy_ ., so that A nV, is k,-saturated
in all colours ¢ € I. Apply Lemma 9.11 to each V, with A = kg and select
A, € [V n Al so that

|B\N(a,I)| = ka
for all @ € [A N V,\Aa]<“. Note that A = U{A, : o < pu} has size - kg less than
k and that
|B\N(a,I)| = sup{kq : @ < pu} =K
for all a € [A\A]<“. The ultrafilter trick described at the end of Lemma 9.11
finishes the proof.
O

We now turn our attention to proving Lemma 9.7. We need to prove some
claims first:

Claim 9.11.1. Suppose that & = cf(k) > w, ¢ is an r-edge coloring of a graph

G = (k, E) where G is of type Hy . with Hy ,.-decomposition A, B. Suppose that

{M,, : o < p} is a continuous e-chain of elementary submodels with |[M,| = ko <

K $o that Ko is a subset and element of M,,. If i € r then either

(a) there is club C < p so that for every a € C there is v € A\My,y € B\M,,
with c(x,y) =i and

IN(y,i) n A M \My| > w
for all o/ < a, or

(b) there is A € [A]<* so that A\A is covered by the main class of an < r — 1-
coloured graph H of type H,, ..
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Proof. Suppose that (a) fails; i.e. there is a stationary set S < u so that for all
x € A\M,,y € B\M,, with c¢(z,y) = i we have

IN(y,i) n An M\My| <w

for some o' < a.
Note that

Observation 9.12. If there is an a« € S and A\ < k so that
|N(z,3)| < A
for every x € A\M, then (b) holds with A = A n M,.

Otherwise, we distinguish two cases:

Case 1: k is regular. Note that there is a club D < k so that M, n k € k if
a € D and so we can suppose that S < D. Also, note that {M, Nk : «a € S} is
stationary in k.

Select y, € B\M,, so that

IN (Yo i) " A M \My| <w
for some o’ < a. That is, there is o, < M, N & so that
N(Ya,i) n A M, C d,.

Apply Fodor’s pressing down lemma to the regressive function M, N k — 4
and find stationary 7' c S and § € k so that §, = d for all « € T. It is easy to
see that (b) is satisfied with A = §.

Case 2: k is singular. Without loss of generality k, > p if @ € S. Select
Y, € [B\Ma]"””;r so that there is finite F,, and d, < o with

F, = N(y,i) n A n M, \Ms,,

for all y € Y,,. The importance here is that d, and N(y,i) n A n M, \M;s,_ does
not depend on y € Y, which can be done as there are only |«| choices for §, and
Ko choices for F, while kF choices for y.

Apply Fodor’s pressing down lemma to the regressive function o — J, and
find stationary T' < S and 6 € p so that d, = J for all a € T. It is easy to see
that A = M5 U | J{F, : a € T} € [A]<" satisfies (b).

O

Claim 9.12.1. Suppose that kK > w has countable cofinality, c is an r-edge color-
ing of a graph G = (k, E) where G is of type H,; ,, with H,; ,,-decomposition A, B.
Ifi e r and (My)new s an e-chain of covering elementary submodels of reqular
size < Kk with kK € UM, then either

(a) there are infinitely many n € w such that there is v € A\M,,,y € B\M,, with
c(z,y) =1 and
IN(y,i) n An M| > w,
or
(b) there is A € [K]<" so that A\A is covered by an < r — 1-coloured H of type
H, ..
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Proof. Pick any e-chain of covering elementary submodels (M,,)ne, as above
and suppose that (a) fails. Without loss of generality, we can suppose that if
x € A\M,,y € B\M,, with ¢(z,y) =i then N(y,i) n M, is finite for all n € w.

Observation 9.13. If there is n € w and A < k so that N(z,i) < A for all
x € A\M,, then (b) holds with A = A n M,

Otherwise, we can select Y,, € [MnJrl\Mn]“”"‘Jr and finite a,, € An M, so that
N(y,i) "M, =ay, forallyeY,. Let A =u{a, :new}andY = u{Y, : new}.
It easy to see now that A\A is covered by H of type H, , so that V(H)nB cC Y.

O

Before proving Lemma 9.7 we need the following

Lemma 9.14. Suppose that ¢ is an r-edge colouring of a graph G = (V,E), i€ r
and A c 'V is k-saturated in a color i with a € A. Furthermore, suppose that
there is an i-monochromatic path P of order type k so that P is concentrated
on A. Then A is actually covered by an i-monochromatic path @Q so that Q is
concentrated on A, has order type k and first point a. Moreover, for any given
K € [A]¢/*) we can construct Q with the above properties so that K is cofinal in

Q.

Proof. We prove by induction on «; the result clearly holds for k = w so suppose
that k > w and we proved for cardinals < k. Also, fix a € A, K € [A]*/(*) and
i-monochromatic path P concentrated on A; note that we don’t need to worry
about K if k is regular as every subset of A of size x will be cofinal in Q.

Find a continuous e-chain of elementary submodels (My)a<, with u = cf(x)
so that
(i) My =, ko = |My| < k and M, is covering for all o < p,
ii) if k is a limit then make x, strictly increasing with k.1 regular,

(ii

)
iii) if Kk = AT then let x, = A,
v) let M, n k€ k if k is regular,
)
)

—

i
(V) Kq is an element and subset of M, for a > 0,
(vi) P, A,a and everything relevant is in Mj.

Let us enumerate K as {k, : o < u} if  is singular.

Observation 9.15. There is a sequence {R, : « < u} of disjoint, finite i-
monochromatic paths with union R so that

(1) Ro = {a},

(2) R, is a path from a point x, which terminates in an element of A and

R, c Ma+17

(3) |IN(zq,i) " A M \My| = cf(ka) for all o < a < p.

(4) ko € Ry for a < u if k is singular.

(5) An Myi1\M, is Kq-saturated even in V- My 41\(My U R),

(6) Moi1\M, n R is finite for all o < k if k is regular.

Proof. First, suppose that k is regular. Let z, = min P\M, and 2/, = min P n
A\M,, with R, = P | [24,}] for limit o < p. Let zq41 € May1\(Mo U Ry)
be a Kq41-limit of P and z/,; be the first element of P n A above zq41. (1)
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and (2) are clearly satisfied; it suffices to check (3) which will be satisfied by our
choices of z, and the fact that M, n P is an initial segment of P below x,. (4)
and (5) holds as the R,’s are separated by the models.

Now, suppose that x > p. Select xF-limit x, of P and let xf, be the first
element of Pn A above z,; extend P | [xa, x!,] into a finite i- Inonochromatlc path
R, which terminates in k.. Note that we can actually suppose that {R, : @ < u}
is a subset and element of M;. Now (3) is satisfied by the fact that |My/| < K
and (5) holds as U{R, : @ < p} has size less than k. O

Let R = U{R, : a < u} as above. We construct a continuous increasing
sequence (Qa)a<p of --monochromatic paths so that

(a) Qq covers A n M,\R inside M,
(b) Q. is of order type ko and is concentrated on A,
(¢) Qq end extends Q for all o' < a < p,
(d) the first element of Qo is a,
() N(za,i) n AN My1\M, is cofinal in Q4 1,
(f) R4 is an initial segment of Q4+1\Qq While Ry N Qo = & for all o < a.
Clearly, Q = U{Q, : @ < p} will be an i-monochromatic path that covers A
and is concentrated on A.

Let Qo = @. If a < p is limit and we constructed Q, for o/ < « then let
Qo = U{Qu : & < a}. Suppose we constructed @, and we wish to extend it

into Qq1-
Observation 9.16. Q. R, is an i-monochromatic path concentrated on A.
Proof. Recall that x, was the first element of R, so we need to check that
N(za,)) n AN Qq
is cofinal in Q. First, if « is a limit this amounts to checking that
N(zo,i) 0 A M \M,y # & for all o/ < «

as any selection from {A n M \M, } is cofinal in Q,. This clearly holds by the
choice of z,.
Second, if @« = o’ + 1 then property (e) from above ensures that z,, is a valid

continuation of Q.
O

Therefore, our goal now is to cover A n My 11\(M, U R) by a path P, inside
V n My 1\(M, U R) where P, is concentrated on A, starts at z/, (the endpoint
of R,), has order tpye kq+1 and N(zq41,i) N AN Ma+1\M is coﬁnal in P,. We
then define

Qa+1 = QaARaAPa

which will finish the induction and our proof. Naturally, we will apply the
inductional hypothesis on ko411 < k to conctruct P, with cofinal set K, €
[N(2ay1,7) 0 A Myy1\My]f5e+1) Note that A A Moy 1\(Ma U R) is Kgp1-
saturated in the graph V n M,41\(M, U R) and z!, € A by the construction of
the R.
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Hence, it suffice to show that there is a path P’ inside V' n My41\(My v R)
which is concentrated on A and has order type kq41. If & is regular then P n M,
is an initial segment of P defined in M, .1 and hence we can select a K,41-limit 2z
of our original path P above M, that is in M, and note P | z € My41. Also,
P n (M, v R) must be bounded below z in P by point (5) in our construction
of R. Hence, there is w € P | z so that

P'= P | [w,2) © May:\(Ma U R)

which we wanted to show. If x is singular then the first x,1-limit z of P is in
M, 1 and the same argument works.
O

Finally we arrive at the

Proof of Lemma 9.7. We start by assuming that (b) fails.

We distinguish 2 cases depending on the value of cf (k).

Case 1: suppose that £ > ¢f(k) = w. Recall Claim 9.12.1 and take an e-
chain of covering elementary submodels (M, ),e., of uncountable regular size < k
with kK € UM, so that there is an infinite N C w so that for all n € N there is
xn € AA\M,,, y, € B\M,, with ¢(z,,y,) = i and

IN(yn, i) n An M,| > w.
Without loss of generality N = w and x,,,yn € Mp11.

Observation 9.17. There is a sequence {R,, : n € w} of pairwise disjoint finite
i-monochromatic path so that

(1) Ry, is a path from a point u,, € M, with last two points yn, Tn,

(2) IN(un,i) n An M| = k.

Proof. First, find distinct z, € N(yn,i) n An M, for n € N. We build R,
inductively on n € N. Now, in each model M,, we can find an i-monochromatic
path @, concentrated on A, of order type &, +w + 1 and disjoint from U{Ry :
k < n}; we can take u, to be its k,-limit point. Find v, € @, n A above u,.
We can extend @, | [un,v,] into a path R, terminating in y,, 2, and avoiding
U{Ry : k < n}. This is done using saturation. O

Let R = U{R, : n € N}. If P, € M, is an i-monochromatic path of order
type kn which covers A n M, \R and is disjoint from R,, then P,” R, is still an
i-monochromatic path; also, if P, is concentrated on A then so does P,” R,.
Hence it suffice to find P, as above so that P,y starts from {z,} (the terminal
point of R,). Then P = U{P,"R,, : n € N} is a path as desired.

It is easy to see that Lemma 9.14 can be applied to the construction of P,.

Case 2: k= = cf(k). By Claim 9.11.1 and the failure of (b) we can find a
continuous e-chain of elementary submodels (M )a<, so that

(i) My = &, and M, is the limit of covering elementary submodels for all
a € p\l,
(ii) if kK = AT then let ko = |My| = A,
(iii) if & is a limit then let k, strictly increasing,
(iv) let My nkertforalla <k if kK =p
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(V) Kq is an element and subset of M, for o > 0,
(vi) P, A, a,C and everything relevant is in My,
(vii) for every « € p there is z € A\M,,y € B\M, with ¢(z,y) =4 and

IN(y,i) n An M \My| 2w
for all o/ < o

We construct a continuous increasing sequence (Qq)a<y of i-monochromatic
paths and finite i-monochromatic paths (Ra)a<y so that

b)
¢) Qq end extends Q. for all &' < a < p,

d) R, starts with a point y, and terminates in an element of A,
(€) IN(Ya, i) n AN M \My| = cf(kq) if & <a <k,

(f) R, is an initial segment of Qu+1\Qa-

(a) Q4 is inside M, and Q. u R, covers covers A n M,
(b) Qo is of order type Kk, and is concentrated on A,

(

(

Let Qo = & and Ry a single element of A n M;. For limit « simply let Q. =
U{Qu : &/ < a}. By (vii) above, we can find 2, € A N My 11\Mas,ya € BN
My +1\M,, connected by an edge coloured i so that R, = (ya, ) satisfies the
above conditions.

Suppose we constructed @), and R, and we wish to extend it into Qn+1. Let
us define R, first, i.e. the end of the new extension.

Observation 9.18. There is a finite i-monochromatic path Ro11 € V\(Ms U
R,) from an element u € My 41 into av € An Myy2\May1 so that N(u.i)n An
My11\My, has size at least cf (Ko+1)-
Proof. If k is limit then pick an i-monochromatic path P of order type kqo+1 +
w+1in M,;1 which is inside M,1\M,; this can be done as n;rﬂ is still less
than k. Let u be the ko, 1-limit of P and v’ the first element of P n A above
u. Pick arbitrary v € A n My 2\My41 and extend P | [u,v’] into a finite
i-monochromatic path Ro4+1 <€ V\(M, U R,) terminating in v.

Now, suppose that x = A*. There is a chain of elementary submodels {Ng :
& < A} € Myyr with N = U{N¢ : £ < A} so that M, < Ny and there is
x € A\N,y € B\N with ¢(z,y) =i and

IN(y,i) n An N\N¢| > w.

Cleary, N © M,+1 as N has size A\ and also we can take z,y as above in
M, 1. Note that we have

IN(y,i) n Av N\Ma| = cf(A)

so we can extend the path (y,z) into R, terminating in an arbitrary element of
An Ma+2\Ma+1~
O

Now use Lemma 9.14 to cover the rest of AnM, 1 by an i-monochromatic path
P’ concentrated on A, of order type kq+1 so that there is K, € [N(ya,i) n AN
MaH\Ma]Cf(”a“) cofinal in P’;note that P™ R, ,, is also an i-monochromatic

path concentrated on A.
O
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