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1. Introduction

Our aim is to prove theorems stating that certain edge-colored graphs can be
partitioned into monochromatic paths or powers of paths.

Investigations began in the 80s with a results of Rado [5] implying that the
every r-edge colored (r P ω) complete graph on ω can be partitioned into r
monochromatic paths with different colors. Rado’s result extends to finite com-
plete graphs with 2-edge colorings, however by increasing the number of colors
one runs into difficulties. Indeed, Kathy Heinrich constructed colorings of Kn

with r ¥ 3 colors so that there is no r-partition of Kn to paths with different
colors. However, A. Pokrovskiy [3] quite recently proved that one can partition
a 3-colored Kn into 3 monochromatic paths. Again in 1986, Gyárfás [2] showed
that for every r P ω there is fprq P ω so that for any r-edge coloring of Kn there
is a cover of Kn by ¤ fprq monochromatic paths.

We extend these results by proving . . .
Naturally, one would like to extend the above results to graphs with fewer

edges and hence, we turn to complete bipartite graphs. Pokrovskiy [3] proves
(also follows from Gyárfás, Lehel ???, see [3]) that for every 2-edge coloring of
Kn,n there is a 3-partition to monochromatic paths and this result is sharp.
Furthermore, Haxell proved that for all r P ω there is Cr P ω so that every
r-edge colored Kn,n partitions into at most Cr-many monochromatic cycles (in
particular, paths).

Again, we extend this line of research by proving that . . .

2. Preliminaries

NGpvq � tu P VpGq : uv P EpGqu.

NGpAq �
£

vPA
NGpvq.

Definition 2.1. Let G be a graph and c : EpGq Ñ ν a coloring of the edges of
G. We say that the sequence of vertices P � xpα : α   κy of G is a path iff

(1) ppα, pα�1q P EpGq for all α   κ,
(2) suptα   β : ppα, pβq P EpGqu � β for all limit β   κ.
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A path P is monochromatic in some color i   ν (or a path in color i) iff

(11) cppα, pα�1q � i for all α   ν,
(21) suptα   β : ppα, pβq P EpGq and cppα, pβq � iu � β for all limit β   ν.

Definition 2.2. Let G be a graph and c : EpGq Ñ ν a coloring of the edges of
G and κ a cardinal. A subset A � V pGq is κ-connected in color i for some i   ν
iff for every a, b P A and B P rAs κ there is a finite, path P � xpj : j   ky in
pAzBq Y ta, bu in color i with p0 � a and pk�1 � b.

The following lemma is well-known and easy.

lm:ultra Lemma 2.3. If G is a copy of Kω, moreover c : EpGq Ñ r is a coloring of the
edges of G with finitely many colors, then there is a function dc : VpGq Ñ r and
there is a color jc P r such that

p�q for each finite subset U of VpGq there is v P VpGq such that dpvq � jc and
cpu, vq � dcpuq for all u P U .

3. Partitions of hypergraphs

A loose path in a k-uniform hypergraph is a sequence of edges, e1, e2, . . . such
that for |ei X ei�1| � 1 and ei X ej � H for i� 1   j

A tight path is a sequence of distinct vertices where every consecutive set of k
vertices forms an edge.

A. Gyárfás and G.N. Sárközy, [1, Theorem 3.], proved the following result:
Suppose that the edges of a countably infinite complete k-uniform hypergraph are
colored with r colors. Then the vertex set can be partitioned into monochromatic
finite or one-way infinite loose paths of distinct colors.

Theorem 3.1. Suppose that the edges of the countably infinite complete k-
uniform hypergraph on ω are colored with r colors. Then the vertex set can be
partitioned into monochromatic finite or one-way infinite tight paths of distinct
colors.

Proof. The case k � 2 was proved by Rado in [5]. We imitate his proof.

Let c :
�
ω
�k

Ñ r. A set T � r of colors is called prefect iff there are vertex
disjoint finite paths tPt : t P T u and there is an infinite set A such that for all
t P T

(a) Pt is a tight monochromatic path in color t

(b) if 1 ¤ i   k and x is the last i vertices from Pt and y P
�
A
�k�i

, then
cpxY yq � t.

Let T be a perfect set of colors with maximal number of elements.

Claim 3.1.1. If the vertex disjoint finite paths tPt : t P T u and the infinite set A
satisfy (a) and (b), then for all v P ωz

�
iPT Pt there is a color t P T and a finite

sequence v1v2 . . . vk�1 from A, and an infinite set A1 � A such that the paths
 
Ps : s P T zttu

(
Y tP"t v1v2 . . . vk�1vu (3.1)

and A1 satisfy (a) and (b).
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Proof of the Claim. Define a new coloring d :
�
A
�k�1

Ñ r by the formula dpxq �
cpxY tvuq. By Ramsey Theorem, there is an infinite d-homogeneous set B � A
in some color t. Then t P T , otherwise T Y ttu would be a bigger perfect set
witnessed by Pt � tvu and B.

Now pick v1v2 . . . vk�1 from B and let A1 � Bztv0, v1, vk�1, vu. �

The Claim clearly implies the Theorem. �

4. An infinite version of a conjecture of Seymour

Seymour’s Conjecture . Let G be a finite graph of order n ¥ 3, and let k P ω.
If G has minimum degree

δpGq ¥
k

k � 1
n, (4.1) eq:seymour

contains the kth power of a Hamiltonian cycle.

If k � 1 � n, then the assumption p4.1q implies that NGrAs � H for all

A P
�
VpGq

�k�1
.

Theorem 4.1. Let G be a countably infinite graph, and let k P ω. If NGrAs is

infinite for all A P
�
VpGq

�k�1
, then G contains the kth power of a Hamiltonian

path.

Proof.

Claim 4.1.1. If the kth power of a finite path P � x0 . . . xn is in G, then for
all v P VpGqzP there is a a finite sequence v1v2 . . . vk�1 of vertices, such that the
kth power of the finite path P"v1v2 . . . vk�1v is also in G.

Proof of the Claim. By finite induction pick distinct vertices v1, . . . , vk�1 such
that

vi P NGrtxn�k�i, . . . , xnu Y tvu Y tvj : j   ius. (4.2)

�

Using the Claim, we can construct the rewuired Hamiltonian path inductively.
�

5. Covers by `th powers of paths

def:games Definition 5.1. Assume that H is a graph, W � V pHq, and k P ω. The game
GkpH,W q is played by two players, Adam and Bob, as follows. The players
choose pairwise disjoint finite subsets of V pHq alternately:

A0, B0, A1, B1, . . .

Bob wins the game GkpH,W q if

(A) W �
�
iPω Ai YBi, and

(B) Hr
�
iPω Bis contains the kth power of a (finite or one way infinite) Hamil-

tonian path.

winnerpath Claim 5.1.1. If H � pV,Eq and W � V then the following are equivalent:
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(1) for every a, b PW and F P rV zta, bus ω there is a path in from a to b in
V zF .

(2) Bob wins G1pH,W q.

Proof. (1) ñ (2): By our assumption, Bob can always connect an uncovered
point of W to a previously constructed path.

(2) ñ (1): Let Adam start with A0 � F and continue with Ai � H; the
Hamiltonian path constructed by Bob’s strategy will go through a and b. �

We will convert a winning strategy of Bob into a partition by the following

parallel Lemma 5.2. Suppose that H � pV,Eq, V � YtWi : i   Nu with N P ω and
let Hi � pV,Eiq for some Ei � E. If Bob wins GkpHi,Wiq for all i   N then
V can be partitioned into kth powers of paths tPi : i   Nu so that edges between
consecutive vertices of Pi are in Ei.

ctblbipartite Corollary 5.3. Let c : EpKω,ωq Ñ r for some r P ω. Then Kω,ω can be parti-
tioned into at most 2r � 1 monochromatic paths. Furthermore, for every r P ω
there is cr : EpKω,ωq Ñ r so that Kω,ω cannot be covered by less than 2r � 1
monochromatic paths.

Proof. Let us denote the two classes of Kω,ω by A and B. Fix a coloring c and
ultrafilters UA, UB on A,B respectively; now, let Ai � tu P A : tv P B : cpu, vq P
iu P UBu and similarly Bi � tv P B : tu P A : cpu, vq P iu P UAu. Without loss
of generality, we can suppose that A0 P UA. Let Hi denote the graph on AY B
with edges c�1piq.

Claim 5.3.1. Bob wins the games G1pH0, A0 YB0q,G1pHi, Aiq and G1pHi, Biq
for 1 ¤ i   r.

Proof. It is easy to see that Claim 5.1.1 can be applied in each case. �

This finishes the proof of the first part of the theorem by Lemma 5.2.
Next, we will construct our colorings c showing that the above results is sharp.

Let r ¥ 2, let A � YtAi : i   ru with A0 infinite and Ai � taiu for 1 ¤ i   r and
let B � YtBi : i   ru with each Bi infinite. Define the r-coloring cr as follows:
let

cr æ Ai �Bj � i� j mod r for i, j P r.

Note that if P is a monochromatic path which covers some Ai then |tj   r :
P X Bj � Hu| ¤ 1; furthermore P is finite and thus BjzP � H if 1 ¤ i   r
and j   r. Similarly, if P is a monochromatic path which covers some Bi then
|tj   r : P X Aj � Hu| ¤ 1 as well. Now it is easy to see that there is no
cr-monochromatic cover by less than 2r � 1 paths. �

tm:winnig Theorem 5.4. Assume that H is a countably infinite graph, W � V pHq, and
k P ω. If there are subsets W0, . . . ,Wk of W such that W0 �W and

Wj�1 XNH rF s is infinite

for each j   k and for all F P
��

i¤jWi

�2k
, then Adam wins that game GkpH,W q.
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Proof. Assume that VpHq � ω.
Define the relation � on pk � 1q � ω as follows:

xi, xy � xi, yy and xi, xy � xi� 1, y � 1y for x   y. (5.1)

The �-predecessors of xi, yy are

txi, xy : x   yu Y txi� 1, zy : y   zu. (5.2)

Let txin, xny : n   ωu be an enumeration of k � ω such that

xim, xmy � xin, xny implies m   n. (5.3)

In the stage n, Adam picks axin,xny PWinz
�
i nAi YBi such that

axin,xnyaxim,xmy P EpHq for xim, xmy � xin, xny, (5.4) eq:edge

and

axin,xny � minpW0z
¤

i n

Ai YBiq provided in � 0. (5.5) eq:minchoice

Let An � taxin,xnyu.
Then (A) holds by 5.5.
Let txjn, yny : n   ωu be the lexicographical enumeration of k � ω. Then

taxjn,yny : j   ωu is the kth power of a path. Indeed, assume that 0 ¤ m   n ¤
m� k. Then either xjn, yny � xjm, ymy or xjm, ymy � xjn, yny. Then 5.4 implies
that axin,xnyaxim,xmy P EpHq. �

tm:fonat Theorem 5.5. (1) Given any coloring of the edges of Kω with 2 colors, the
vertices can be partitioned into 5 homogeneous path-square.

(2) For each natural numbers k and r there is a natural number M such that
given any coloring of the edges of Kω with r colors, the vertices can be partitioned
into M homogeneous k-power of a path apart from a finite set.

Proof of theorem 5.5(2). (2) We will use the notation of lemma 2.3. By induction
on the length of sequences, for each finite sequence s P r¤kr�1 define a set
As � VpGq as follows:

 AH � VpGq.
 if As is defined, let

As"i � tu P As : dcæAspuq � iu (5.6)

provided As is infinite. If As is finite, then let

As"0 � As and As"i � H for 1 ¤ i   r . (5.7)

Consider an arbitrary s P rkr�1 such that As is infinite. Then there is a color
is   r and there is a k-element subset Hs � th0 ¡ h1 ¡ � � � ¡ hku of kr� 1 such
that sph0q � sph1q � � � � � is. So, by theorem 5.4, the finite sequence

As, Asæh0 , . . . , Asæhk (5.8)

witnesses that Adam has a winning strategy in the game xGis , Asy, where Gis �@
VpGq, c�1tisu

D
.

Playing the games

txGis , Asy : As is infiniteu (5.9)
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parallel, we can find at most rkr�1-many kth power of vertex disjoint monochro-
matic paths which cover VpGq apart from the finite set

�
tAs : As is finiteu. �

To prove theorem 5.5(1) we need some preparation.
In [4, Corollary 1.10] Pokrovskiy proved the following: Let k ¥ 1. Suppose

that Kn is colored with two colours. Then Kn can be covered with k disjoint red
paths and a disjoint blue kth power of a path.

lm:pa2sqr Lemma 5.6. Assume that P � v0v1 . . . is a path such that

NGrtvi, vi�1, vi�2, vi�3uszP (5.10)

is infinite for all vi P P . Then G contains a 2nd power of a path with covers P .

Proof. Pick pairwise disjoint vertices w0, w1, . . . , from VpGqzP such that wi P
NGrtv2i, v2i�1, v2i�2, v2i�3us.

Then

v0 v1 w0 v2 v3 w1 v4 . . . v2i v2i�1 wi v2i�1 v2i�2 wi�1 . . . (5.11)

is a 2nd power of a path with covers P . �

Proof of theorem 5.5(1). (1) Fix a coloring c :
�
ω
�2
Ñ 2. Let Gi �

@
ω, c�1tiu

D

for i   2.
We will use the notation of lemma 2.3.
Let c0 � c and

A0 � tv P ω : dc0pvq � jc0u, and B0 � ωzA0. (5.12)

Let c1 � c0æB0 and

A1 � tv P B0 : dc1pvq � jc1u, and B1 � B0zA1. (5.13)

Let c2 � c1æB0 and

A2 � tv P B1 : dc2pvq � jc2u, and B2 � B1zA2. (5.14)

We can assuem that jc0 � 0.

Case 1. B0 is finite
GrB0s can be covered by two 0-paths P0 and P1 and a 1 square path Q1. by

[4, Corollary 1.10].
So by lemma 5.6 P0 and P1 can be covered by two 0-homogeneous squares of

some paths R0 and R1. We can guarantee that R0, R1, Q1 are vertex disjoint.
Since Adam wins G2pG0, A0q, so GrωzR0 Y R1 Y Q1s can be covered by one

0-homogeneous square of paths.
So G can be covered by 4 squares of paths.

Case 2. B0 is infinite, jc1 � 0

Case 3. B0 is infinite, jc1 � 1, B1 is finite

Case 4. jc1 � 1 and B1 is infinite
Assume that jc2 � 1
Adam wins G2pG0, A0q, G2pG1, A1q and G2pGjc2 , A2q.
Moreover Adam also wins G2pG1�jc2

, B2q witnesses by

 pB2, A2, A1q if jc2 � 1, and by
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 pB2, A2, A0q if jc2 � 0.

So G can be covered by 4 squares of paths.
�

6. Partitioning the 2-edge colored Kω1,ω1

Theorem 6.1. Given any coloring of the edges of Kω1,ω1
with 2 colors, the

vertices can be partitioned into finitely many (¤ 11 ??) monochromatic paths.

Let us fix a coloring c for the rest of this section, and let Kω1,ω1
� AYB the

two classes.

Claim 6.1.1. If there is a i-monochromatic copy of Kω1,ω1 in A Y B for some
i   2 then AYB can be partitioned into 3 monochromatic paths.

Proof. Let A0 YB0 denote the monochromatic Kω1,ω1 and extend A0 YB0 to Z
which is a maximal ω1-connected set in color i. Clearly, Z is a path in color i.

Now, it is easy to see that there is A1 � A0 and B1 � B0 so that

(1) ZzpA1 YB1q is a path in i,
(2) AzZ YB1 and BzZ YA1 are paths in color 0.

�

Hence, we can suppose that there is no monochromatic copy of Kω1,ω1
in

AYB. Let

Γi � tα P A : |Npα, iq| ¤ ωu

and

∆i � tβ P B : |Npβ, iq| ¤ ωu.

initialobs Observation 6.2. For all A1 P rAsω1 and B1 P rBsω1 there are ω1 independent
edges of color i between A1 and B1 (for i   2). Hence

(1) mint|Γi|, |∆i|u ¤ ω if i   2,
(2) if α P AzΓi and β P Bz∆i then there are ω1 many vertex disjoint paths

in color i between α and β.

Without loss of generality, we can suppose that |Γ0| ¤ ω and hence it suffices
to consider the case when Γ0 � H by Theorem 5.3.

Claim 6.2.1. If Γ1 is uncountable then there is an uncountable B1 � B so
that Γ1 Y B1 is a path in color 0 and |Npα, iqzB1| � ω1 if α P A, i   2 and
|Npα, iq| � ω1.

Therefore, we can further suppose that Γ1 is empty as well. We need to
consider 3 cases as follows:

Case 1: |∆0|, |∆1| ¤ ω,
Case 2: |∆0| � ω1 while |∆1| ¤ ω,
Case 3: |∆0| � |∆1| � ω1.
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In Case 1, we can suppose that |∆i| � H by Theorem 5.3. Now AYB is ω1

connected in both colors by Observation 6.2 (2). Also, if A Y B is not a 0-trail
then it is clearly a 1-trail (as shown many times before).

Second, in Case 2, we can suppose that |∆1| � H by Theorem 5.3. Now
|∆0| � ω1 implies that A Y B is a 1-trail while it is clearly 1-connected by
|∆1| � |Γ1| � H; hence AYB is a path.

Finally, we consider Case 3. We inductively build P0, P1 partitioning AYB to
monochromatic paths (Pi to be p1� iq-homogeneous) so that Pi � YtPi,α : α  
ω1u and ∆i is cofinal in Pi,α. Limits points are easy to choose by the definition of
∆i and in successor steps we can cover the remaining points using connectedness
ensured by Observation 6.2 (2).

Problem 6.3. Given an edge coloring of Kω1,ω1
with finitely many colors is

there a partition of the vertices into finitely many monochromatic paths?

7. Finitely many colors and finite partitions on ω1

Let Hω1,ω1 denote the balanced bipartite graph with classes A � taξ : ξ  
ω1u, B � tbξ : ξ   ω1u of size ω1 such that

paξ, bζq P EpHω1,ω1
q iff ξ ¤ ζ.

We will call A the main class of Hω1,ω1 .
The following lemma will be of surprising relevance:

halfcover Lemma 7.1. Let r P ω and c : EpHω1,ω1
q Ñ r. Then there are finitely many

monochromatic and disjoint paths tPi : i   Nu covering the main class of Hω1,ω1
.

Proof. We prove by induction on r. Note that a monochromatic Hω1,ω1
is a paths

which concludes the r � 1 case. Now, in general, it suffices to see that there are
disjoint tQj : j  Mu such that Qj is either countable or a monochromatic path
or a copy of Hω1,ω1 colored with ¤ r� 1 colors. Fix a uniform ultrafilter U on B
and let Aj � ta P A : Npa, jq P Uu for j   r. We can disregard those Ajs which
are countable; see theorem on countable bipartite partitions.

Claim 7.1.1. If |Aj | � ω1 then one of the following holds

(1) there is a club C so that for all α P C there is Bα P rNpxα, jqs
ω1 (where

xα � minAzα)such that suptδ P α : aδ P Aj , cpaδ, bq � ju � α for all
b P Bα, or

(2) there is a countable E � A and uncountable Bj so that c colors Hω1,ω1
rAjzEY

Bjs with rztju.

Now an easy induction shows that there are disjoint sets Qj so that Aj �
Qj XA and either Qj has properties

(1) there is a club C so that for all α P C there is bα P Npxα, jqXQj (where
xα � minAzα) such that suptδ P α : aδ P Aj , cpaδ, bαq � ju � α, and

(2) for all a, a1 P Aj there are ω1-many vertex disjoint paths from a to a1

inside Qj

or Qj is a copy of Hω1,ω1
colored with ¤ r � 1 colors (Case (1) and Case (2)

respectively from above). In the first case, Qj is not necessarily a path but we
can cover Aj inside Qj with a j-monochromatic path. �
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halfcor Corollary 7.2. Suppose that the edges of a complete balanced bipartite graph are
colored with finitely many colors. Then

(1) the vertices can be covered by finitely many monochromatic paths,
(2) the vertices can be partitioned into countably many monochromatic paths.

Theorem 7.3. Suppose that G � pV,Eq satisfies |V | � ω1 and |V zNGpvq| ¤ ω
for all v P V . Given an edge coloring of G with finitely many colors the vertices
of G can be partitioned into finitely many monochromatic paths.

Proof. We prove by induction on r. Fix a coloring c with r P ω colors, wlog
r ¥ 2. Naturally ω1 � V .

Case 1: suppose that there is A � ω1which is a copy of Kω1
colored only

by ¤ r � 1 colors. Pick A1 � A so that |A1| � |ω1zA| and ω1zA Y A1 forms a
copy of Hω1,ω1

with main class ω1zA. By Lemma 7.1 there are finitely many
disjoint paths tPi : i   nu inside ω1zA Y A1 covering ω1zA. Finally, note that
W � ω1zYPi � A hence the edges of W are only r�1-colored; by our inductional
hypothesis, we can cover W by finitely many disjoint paths.

Case 2: suppose that there is no A � ω1which is a copy of Kω1
colored only

by ¤ r � 1 colors.

Observation 7.4. If A P rω1s
ω1 and i   r then A must be an i-trail.

Proof. Otherwise, there is a uncountable S � ω1, a 1-1 increasing sequence taα :
α P Su � A and λ P ω1 so that c æ pAzλ X α � taαuq � i and α   aα   β and
paα, aβq P E if α   β P S. Clearly taα : α P Su would be a copy of Kω1

colored
with ¤ r � 1 colors. �

Now find an uncountable A � ω1 so that A is ω1-connected in some color,
wlog in 0. Pick A1 � A so that |A1| � |ω1zA|, AzA

1 is uncountable and for all
x, y P A there are ω1-many vertex disjoint xÑ y 0-monochromatic paths P with
P ztx, yu � AzA1.

Observation 7.5. Suppose that W satisfies AzA1 � W � A. Then W is ω1-
connected in color 0.

There is A2 � A1 so that ω1zA Y A2 forms a copy of Hω1,ω1
with main class

ω1zA. By Lemma 7.1 there are finitely many disjoint paths tPi : i   nu inside
ω1zAY A1 covering ω1zA. Finally note that W � ω1z Y Pi is both a 0-trail and
ω1-connected in color 0 by the last two Observations. Hence W is a path in color
0.

�

Corollary 7.6. Given an edge coloring of Kω1 with finitely many colors the
vertices of Kω1 can be partitioned into finitely many monochromatic paths.

We will see in the next section that actually every 2-edge coloring of Kω1

actually admits a 2-partition into monochromatic paths. However, the following
is not known:

Problem 7.7. Given a r-edge coloring of Kω1
is there a partition of the vertices

into ¤ r many monochromatic paths (of different colors)?
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8. Neighbors from the club filter

Naturally, one would like to have an answer for the following:

Problem 8.1. Suppose that the graph G � pω1, Eq satisfies that NGpvq is a club
for all v P ω1 and E is colored by finitely many colors. Is there a partition of ω1

into finitely many monochromatic paths?

We have two partial answers:

Claim 8.1.1. Suppose that the graph G � pω1, Eq satisfies that NGpvq is a club
for all v P ω1 and E is colored by finitely many colors. Then we can

(1) partition ω1 into countably many monochromatic paths,
(2) cover ω1 by finitely many monochromatic paths.

Proof. First, we prove (1): let ω1 � YtSn : n P ωu so that Sn are disjoint and
stationary. We can inductively define a sequence Pn so that

(1) each P P Pn is a monochromatic path,
(2) P X P 1 � H if P P Pn, P 1 P Pm,
(3) YPn covers Sn.

If Pk is constructed for k   n and SnzY tP : P P Pk, k   nu is uncountable then
there is a copy of Hω1,ω1

inside SnYSn�1 with main class SnzYtP : P P Pk, k  
nu. Now apply Lemma 7.1 to get Pn.

Second, we prove (2): let ω1 � S0 Y S1 with Si disjoint stationary. There are
two copies of Hω1,ω1

, say Xi inside ω1 so that the main class of Xi is Si (and
second class contained in S1�i). Apply Lemma 7.1 for Xi to finish the proof. �

Theorem 8.2. Suppose that G � pω1, Eq is a graph so that NGpvq is a club
for all v P ω1. If c is a 2-edge coloring of G then ω1 can be partitioned into 2
monochromatic paths.

Proof. We distinguish two cases as follows:
Case 1: there is a monochromatic (say in color 0) copy pA,Bq of Hω1,ω1

in G
so that AYB is stationary. If so, then extend AYB to a maximal ω1-connected
C. Note that there is D � C so that pω1zpA Y Bq, Dq is a 1-monochromatic
copy of Hω1,ω1

while and A Y BzD is still a 0-connected and still contains a 0-
monochromatic copy of Hω1,ω1

. Observe that AYBzD is a 0-path while ω1zpAY
Bq YD is a 1-path.

Case 2: there is no monochromatic copy pA,Bq of Hω1,ω1 in G so that AYB
is stationary. The standard argument shows that every stationary S � ω1 is a
trail in both colors. Pick an ultrafilter containing all clubs and using that find
a stationary S � ω1 so that S is ω1-connected in some color, say 0. Without
loss of generality, it can be supposed that S is maximal with respect to being
ω1-connected in 0. Now, there is a non stationary S0 � S so that ω1zS Y S0

is a 1-monochromatic copy of Hω1,ω1 and so that SzS0 is ω1-connected in 0.
Note that ω1zS Y S0 is a 1-path and SzS0 is a 0-path (as ω1-connected in 0 and
stationary, so a 0-trail). �

Corollary 8.3. Given any coloring of the edges of Kω1 with 2 colors, the vertices
can be partitioned into 2 monochromatic paths.
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Clearly, if tNGpvq : v P V u forms a uniform filter on ω1 then G is ω1-connected.
The following examples shows that being ω1-connected is nowhere near enough
to admit monochromatic partitions for arbitrary 2-edge colorings.

Example 8.4. There is an ω1-connected graph pV,Eq with an 2-edge coloring
so that there are no monochromatic cycles (of length ¥ 3); in particular, there is
no monochromatic path of size ω� 1 and so there is no cover by countably many
monochromatic paths.

Proof. Let ω1 � YtSn : n P ωu so that Sn are pairwise disjoint and uncountable.
Furthermore, let Sn �

�
tTnx,y : x � y P YtSk : k   nuu with Tnx,y pairwise

disjoint uncountable. Let E0 � H and

En � En�1 Y
¤
ttx, yu � Tnx,y : x � y P YtSk : k   nuu

and let E � YEn.
Clearly, pω1, Eq is ω1-connected. Now, define c æ EnzEn�1 so that if x  

y P YtSk : k   nu and z P Tx,y then cpx, zq � 0 and cpy, zq � 1. It is not
hard to see that there are no monochromatic cycles; if C is a cycle consider
N � maxtn : C X EnzEn�1 � Hu and let z P C X ENzEN�1. By the definition
of the coloring, the two edges in C on z are colored with different colours. �

9. Path decompositions on higher cardinals

Definition 9.1. A graph G � pV,Eq is called κ-complete iff |V | ¥ κ and

|V zNGpxq|   κ

for all x P V .

Our final goal is to prove Corollary 9.10, that every finite-edge coloured κ-
complete graph can be partitioned into finitely many monochromatic paths.

9.1. Preliminaries. We will make use of the following definition:

Definition 9.2. A graph G � pV,Eq is of type Hκ,κ iff V � A Y B where
A � taξ : ξ   κu, B � tbξ : ξ   κu and

paξ, bζq P EpGq iff ξ ¤ ζ   κ.

We will call A the main class and pA,Bq with the inherited ordering is called the
Hκ,κ-decomposition of G.

Note that A,B in the Hκ,κ-decomposition are not necessarily disjoint.
We will prove in Theorem 9.9 that every finite-edge coloured graph of type

Hκ,κ contains a monochromatic path of size κ; furthermore, if the two classes are
disjoint then the main class is covered by finitely many disjoint monochromatic
paths. This result will be used in the proof of Corollary 9.10.

type Observation 9.3. Suppose that G � pV,Eq is κ-complete (for an arbitrary in-
finite κ) and let X,Y P rV sκ. Then there is F � E so that pX Y Y, F q is of type
Hκ,κ and there is a Hκ,κ-decomposition AYB so that X � A and B � Y .
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Proof. If κ is regular then we can take an arbitrary enumeration X � taξ : ξ   κu
and tbξ : ξ   κu � Y are easily constructed by induction so that paξ, bζq P E for
ξ ¤ ζ   κ.

If kappa is singular then let µ � cfpκq and let pκαqα µ increase to κ. Let
Xα � tx P X : |V zNpxq|   καu and list X as taξ : ξ   κu so that for all λ   κ
there is α   µ with taξ : ξ   λu � Xα. That is,

|Y X
£
tNpaξq : ξ   λu| � κ

for all λ   κ. Now tbξ : ξ   κu � Y is easily constructed by induction so that
paξ, bζq P E for ξ ¤ ζ   κ. �

comptype Observation 9.4. Suppose that G � pV,Eq is of type Hκ,κ with main class V .
Then there is a κ-complete graph embedded in G.

Proof. If A,B is the Hκ,κ decomposition then we have B � A � V and B is the
κ-complete subgraph. �

For a path P and x  P y P P let P æ rx, yq denote the segment of P from x
to y (excluding y itself). For a set A and i-monochromatic path P we say that
P is concentrated on A iff

Npx, iq XAX P æ ry, xq � H

for all limit element x P P and y below x in P . Clearly, if P is concentrated on
A then for every x P P there is x1 P P XA above x so that P æ rx, x1q is finite.

Observation 9.5. Suppose that G is of type Hκ,κ. Then there is a path of order
type κ which is concentrated on the main class of G.

An elementary submodel M is covering iff for all A �M with |A|   |M | there
is A1 P M so that A � A1. If M � YtMξ : ξ   µ�u where tMξ : ξ   µ�u is an
ε-chain of elementary submodels, |Mξ| � µ then M is covering.

Observation 9.6. Suppose that the graph A � V pGq is κ-saturated in some
color i with respect to a coloring c. If M � YtMξ : ξ   νu where tMξ : ξ   νu is
an ε-chain of covering elementary submodels and |M | � λ ¤ κ so that G, c PM0

then M XA is λ-saturated in color i inside M X V pGq.

Proof. If |M | � λ� with |Mξ| ¤ λ then the claim is trivial. If |M | � λ with
|Mξ| � λ then it suffices to prove that N X A is λ-saturated in color i inside N
for all covering submodels N of size λ, which is easy to see.

Otherwise, we can suppose that |Mξ| ¡ |M ξ| where M ξ � YtMζ : ζ   ξu.

Take a, a1 P A XM and Ã P rAs λ. There is ν0   ν so that |Mξ| ¡ |Ã| for all
ξ P νzν0. There is Xξ PMξ of size   |Mξ| so that

M ξ Y pÃXMξq � X

by covering; so we can find |Mξ|-many disjoint i-monochromatic paths in MξzX
connecting a to a1. This holds for all for all ξ P νzν0 so we found λ many �
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9.2. Outline of the proof. Let pIHqκ,r denote the statement that for any r-
edge colouring of a graph G of type Hκ,κ with main class A, we can find a
monochromatic paths concentrated on A of size κ. Let pIHqκ denote pIHqκ,r
for all r P ω; we will prove that pIHqκ holds for all κ which will imply the
decomposition theorem for κ-complete graphs.

ml1 Lemma 9.7. Let κ be infinite with µ � cfpκq. Suppose that c is an r-edge
coloring of a graph G � pV,Eq where G is of type Hκ,κ with Hκ,κ-decomposition

A,B. Suppose that A is κ-saturated in a color i   r and for all Ã P rAs κ and

λ   κ there is an i-monochromatic path P of size at least λ disjoint from Ã which
is concentrated on A. Then either

(a) A is covered by an i-monochromatic path concentrated on A, or

(b) there is Ã P rAs κ so that AzÃ is covered by a graph H of type Hκ,κ with

main class AzÃ so that c æ EpHq � i.

ml2 Lemma 9.8. Let κ be infinite. Suppose that c is an r-edge coloring of a graph
G � pV,Eq where G is of type Hκ,κ with Hκ,κ-decomposition A,B and I P rrs r.
Suppose A is κ-saturated in all colors i P I. If pIHqκ,r�1 then either

(a) there is an i P I such that for all Ã P rAs κ and λ   κ there is an i-

monochromatic path P of size at least λ disjoint from Ã which is concentrated
on A, or

(b) there is Ã P rAs κ so that there is a partition AzÃ � YtAj : j P rzIu where
|Npx, jq XNpx1, jq| � κ for all x, x1 P Aj and j P rzI.

Before proving the lemmas, let us show that they imply our main results.

halff Theorem 9.9. pIHqκ holds for all infinite κ, i.e. if G is a graph of type Hκ,κ

with a finite-edge colouring then we can find a monochromatic path of size κ
concentrated on the main class of G.

Moreover, for any r-edge colouring of the graph Hκ,κ we can cover the main
class by finitely many disjoint monochromatic paths.

Proof. We prove pIHqκ by induction on κ. We can suppose that κ ¡ ω by
previous results. Now we prove pIHqκ,r by induction on r. Note that r � 1 is
trivial so let r ¡ 1.

Fix an r-edge colouring and start applying Lemma 9.8 to find a decreasing
sequence A0 � A1 � ... and a 1-1 sequence i0, i1, ... from r so that Aj is κ-
saturated in color ij . If Aj satisfies (a) of Lemma 9.8 with I � ti0, ..., iju then
applying Lemma 9.7 finishes the proof (either by finding a j-monochromatic
path or by invoking the inductional hypothesis). If Aj satisfies (b) of Lemma 9.7
then one piece of the given partition defines Aj�1. If this induction goes on to
define Ar then we have a set of size κ which is κ-saturated in all colors. By the
inductional hypothesis for smaller graphs, we certainly have i P r so that for all
Ã P rAs κ and λ   κ there is an i-monochromatic path P of size at least λ which
is concentrated on A. Thus applying Lemma 9.7 finishes the proof as before.

We prove the second statement by induction on κ and r as well; note that
κ � ω or κ ¡ ω and r � 1 are trivial. We will construct a finite tree T � ω ω

and subsets tQt : t P T u of V � V pHκ,κq so that every branch of tree has length
r � 1 and
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(1) A � 9YtAXQt : t P T, |t| � ku for all k   htpT q,
(2) Qt is a copy of Hλ,λ for some λ ¤ κ for all t P T

and for all t P T we have either

(3) AXQt is covered by finitely many disjoint monochromatic paths inside
Qt, or

(4) t is injective with ranptq � r and Qt X A is κ-saturated in color i inside
Qt for all i P ranptq.

We will prove that such a construction can be carried out and so (3) must hold
for every t P T with |t| � r � 1; this finishes the proof.

We start by setting QH � V . Suppose Qt is constructed with |t| ¤ r. If
(3) holds then set Qta0 � Qt; note that (3) holds whenever |Qt|   κ by induc-
tion. Otherwise, suppose that (4) holds and we distinguish two cases: suppose

that there is an i P ranptq so that for all Ã P rAs κ and λ   κ there is an

i-monochromatic path P of size at least λ in QtzÃ which is concentrated on A.
Note that this is the case if |t| � r by the inductional hypothesis. Then Lemma
9.7 gives that A X Qt is either a single path or covered by an ¤ r � 1 coloured
copy of Hκ,κ modulo a set of size   κ. In the latter case, we can clearly partition
Qt � Qta0 YQta1 so that

(i) Qta0 is a copy of Hλ,λ with λ   κ,
(ii) Qta1 is a copy of Hκ,κ so that c admits only ¤ r � 1 coulours.

Note that Qta0 and Qta1 both satisfy (3) by induction.

In the second case there is no i P ranptq so that for all Ã P rAs κ and λ   κ

there is an i-monochromatic path P of size at least λ in QtzÃ which is concen-
trated on A; in particular, |t|   r. Apply Lemma 9.8 with I � ranptq and get

a decomposition Qt X A � YtAj : j P rzIu Y Ã so that Ã has size   κ and Aj
is κ-saturated in color j inside Qt for all j P rzI. It is clear that we can find a
partition

Qt � YtQtaj : j P rzIu YQtar

so that Aj � Qtaj XA for j P rzI and Ã � Qtar XA which satisfies (1),(2) and
(3) or (4) respectively; note that we would run into trouble finding this partition
if the two classes are not disjoint.

�

complete Corollary 9.10. Suppose that c is a finite-edge colouring of a κ-complete graph
G � pV,Eq on κ vertices. Then there is a partition of the vertices into finitely
many disjoint monochromatic paths.

Proof. We prove by induction on κ and r as before; we can suppose that κ ¡ ω
and r ¡ 1.

Case 1: there is a κ-complete subgraph W � V which is only coloured by
¤ r� 1 colours. Find a subset U �W so that V zW YU is covered by a copy of
Hλ,λ with λ ¤ κ and main class V zW while W zU still has size κ; in particular,
W zU 1 is still κ-complete for all U 1 � U . Apply Theorem 9.9 to cover V zW
inside V zW Y U with finitely many disjoint monochromatic paths P and apply
the inductional hypothesis to partition W z Y P.
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Case 2: not Case 1. We construct Aj � V , tj P r
j and finite sets of disjoint

monochromatic paths Pj for j ¤ r � 1 so that

(1) Aj � Aj�1, Pj � Pj�1 and tj � tj�1,
(2) Aj is either κ-complete (equivalenty, has size κ) or empty,
(3) Aj is κ-saturated in color tpj1q inside Aj1 for all j1 ¤ j,
(4) V zAj is covered by Pj .

It suffices to have Aj � H for some j. We will see that this happens for some
j ¤ r � 1. Let AH � V and P0 � I0 � H. Suppose we constructed Aj for some
j   r and Aj � H. Note that Aj is of type Hκ,κ by Observation 9.3 and we can
have a Hκ,κ-decomposition with main class Aj . Let Ij � ranptjq P rrs

 r.

Case 2/a: there is an i P Ij so that for all Ã P rAs κ and λ   κ there is

an i-monochromatic path P of size at least λ in AjzÃ which is concentrated on
Aj . We claim that Aj is covered by a single i-monochromatic path P , i.e. let
Aj�1 � H and Pj�1 � PjYtP u. Otherwise, we apply Lemma 9.7 to find a graph
H in Aj of type Hκ,κ which is coloured only by ¤ r � 1 colours. This cannot
happen by our assumption (that Case 1 fails) and Observation 9.4.

Case 2/b: not Case 2/a. Note that Aj is of type Hκ,κ with main class Aj
so Lemma 9.8 implies that we can find A P rAjs

κ which is κ-connected in some
color i P rzIj . We can select U � A so that AjzA Y U is of type Hλ,λ with
λ ¤ κ and main class AjzU while AjzU

1 is κ-connected in colour i for all U 1 � U .
Now apply Lemma 9.7 to cover AjzA with finitely many disjoint monochromatic
paths P inside AjzA Y U . Let Aj�1 � Ajz Y P, Pj�1 � Pj Y P and tj�1 � tj
with tj�1pjq � i.

If Ar � H then note that Case 2/a must have failed at all previous steps so
by induction Ar must satisfy Case 2/a with the last colour i � trprq. Thus we
have Ar�1 � H which finishes the proof.

�

9.3. Proving the main lemmas. Our first goal is to prove Lemma 9.8.

wml2 Lemma 9.11. Suppose that ω ¤ λ ¤ cfκ and pIHqλ,r�1 holds. Suppose that c
is an r-edge coloring of a graph G � pV,Eq where G is of type Hκ,κ with Hκ,κ-
decomposition A,B. Let I P rrs r and suppose that A is λ-saturated in all colours
i P I. Then either

(a) there is an i P I and an i-monochromatic path of size λ concentrated on A,
or

(b) there is Ã P rAs λ so that

|BzNpa, Iq| � κ

for all a P rAzÃs ω.

Moreover, (b) implies that AzÃ can be partitioned into AzÃ � YtAj : j P rzIu
where |Npx, jq XNpx1, jq| � κ for all x, x1 P Aj and j P rzI.

Proof. Suppose (b) fails. Then inductively build a sequence of pairwise disjoint
finite sets taξ : ξ   λu � rAs ω and sequence of points Y � tyξ : ξ   λu so that

yζ P Npaξ, Iq
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for all ξ ¤ ζ   λ. Now let a1ξ � Ytaξ�i : i   |I| � 1u and y1ξ � yξ�|I|�1 for ξ   λ
limit. Note that for all limit ordinals ξ ¤ ζ   λ there is an i P I so that

|tx P a1ξ : cpx, y1ζq � iu| ¥ 2.

By thinning out, we can suppose that for all i P I, ξ   λ and x, x1 P a1ξ
there are λ-many disjoint finite i-monochromatic path from x to x1 which avoid
Y 1 � ty1ξ : ξ   λu and all other points of X � Yta1ξ : ξ   λu.

Define a coloring of Hλ,λ by dpξ, ζq � i iff |tx P a1ξ : cpx, y1ζq � iu| ¥ 2 and i

is minimal such. pIHqλ,r�1 implies the existence of a monochromatic path Q of
size λ concentrated on the main class of Hλ,λ. It is easy to see now that using
Q we can define a monochromatic path of size λ in our original graph which is
concentrated on A.

Finally, let U be a uniform ultrafilter on B containing the filter tBzNpa, Iq :

a P rAzÃs ωu. Define Aj � tx P AzÃ : Npx, jq P Uu for j P r. Clerly AzÃ is
partitioned into YtAj : j P ru but note that Ai � H if i P I.

�

Proof of Lemma 9.8. Note that if κ is regular then applying Lemma 9.11 to λ � κ
gives us Lemma 9.8.

Suppose that κ is singular with cfpκq � µ and pick a sequence of regular
cardinals κα increasing to κ. We can suppose that (a) fails so say that there
are no i-monochromatic paths of size κ0. Write Hκ,κ as an increasing union
YtVα : α   µu so that Vα is of type Hκα,κα so that A X Vα is κα-saturated
in all colours i P I. Apply Lemma 9.11 to each Vα with λ � κ0 and select
Ãα P rVα XAs κ0 so that

|BzNpa, Iq| ¥ κα

for all a P rAXVαzÃαs
 ω. Note that Ã � YtÃα : α   µu has size µ �κ0 less than

κ and that
|BzNpa, Iq| ¥ suptκα : α   µu � κ

for all a P rAzÃs ω. The ultrafilter trick described at the end of Lemma 9.11
finishes the proof.

�

We now turn our attention to proving Lemma 9.7. We need to prove some
claims first:

largecofclaim Claim 9.11.1. Suppose that κ ¥ cfpκq ¡ ω, c is an r-edge coloring of a graph
G � pκ,Eq where G is of type Hκ,κ with Hκ,κ-decomposition A,B. Suppose that
tMα : α   µu is a continuous ε-chain of elementary submodels with |Mα| � κα  
κ so that κα is a subset and element of Mα. If i P r then either

(a) there is club C � µ so that for every α P C there is x P AzMα, y P BzMα

with cpx, yq � i and

|Npy, iq XAXMαzMα1 | ¥ ω

for all α1   α, or
(b) there is Ã P rAs κ so that AzÃ is covered by the main class of an ¤ r � 1-

coloured graph H of type Hκ,κ.
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Proof. Suppose that (a) fails; i.e. there is a stationary set S � µ so that for all
x P AzMα, y P BzMα with cpx, yq � i we have

|Npy, iq XAXMαzMα1 |   ω

for some α1   α.
Note that

obss Observation 9.12. If there is an α P S and λ   κ so that

|Npx, iq| ¤ λ

for every x P AzMα then (b) holds with Ã � AXMα.

Otherwise, we distinguish two cases:
Case 1: κ is regular. Note that there is a club D � κ so that Mα X κ P κ if

α P D and so we can suppose that S � D. Also, note that tMα X κ : α P Su is
stationary in κ.

Select yα P BzMα so that

|Npyα, iq XAXMαzMα1 |   ω

for some α1   α. That is, there is δα  Mα X κ so that

Npyα, iq XAXMα � δα.

Apply Fodor’s pressing down lemma to the regressive function Mα X κ Ñ δα
and find stationary T � S and δ P κ so that δα � δ for all α P T . It is easy to
see that (b) is satisfied with Ã � δ.

Case 2: κ is singular. Without loss of generality κα ¡ µ if α P S. Select

Yα P rBzMαs
κ�α so that there is finite Fα and δα   α with

Fα � Npy, iq XAXMαzMδα

for all y P Yα. The importance here is that δα and Npy, iq X A XMαzMδα does
not depend on y P Yα which can be done as there are only |α| choices for δα and
κα choices for Fα while κ�α choices for y.

Apply Fodor’s pressing down lemma to the regressive function α Ñ δα and
find stationary T � S and δ P µ so that δα � δ for all α P T . It is easy to see
that Ã �Mδ Y

�
tFα : α P T u P rAs κ satisfies (b).

�

ctblesingclaim Claim 9.12.1. Suppose that κ ¡ ω has countable cofinality, c is an r-edge color-
ing of a graph G � pκ,Eq where G is of type Hκ,κ with Hκ,κ-decomposition A,B.
If i P r and pMnqnPω is an ε-chain of covering elementary submodels of regular
size   κ with κ � YMn then either

(a) there are infinitely many n P ω such that there is x P AzMn, y P BzMn with
cpx, yq � i and

|Npy, iq XAXMn| ¥ ω,

or
(b) there is Ã P rκs κ so that AzÃ is covered by an ¤ r � 1-coloured H of type

Hκ,κ.
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Proof. Pick any ε-chain of covering elementary submodels pMnqnPω as above
and suppose that (a) fails. Without loss of generality, we can suppose that if
x P AzMn, y P BzMn with cpx, yq � i then Npy, iq XMn is finite for all n P ω.

Observation 9.13. If there is n P ω and λ   κ so that Npx, iq ¤ λ for all

x P AzMn then (b) holds with Ã � AXMn.

Otherwise, we can select Yn P rMn�1zMns
|Mn|

�

and finite an � AXMn so that

Npy, iqXMn � an for all y P Yn. Let Ã � Ytan : n P ωu and Y � YtYn : n P ωu.

It easy to see now that AzÃ is covered by H of type Hκ,κ so that V pHqXB � Y .
�

Before proving Lemma 9.7 we need the following

lego Lemma 9.14. Suppose that c is an r-edge colouring of a graph G � pV,Eq, i P r
and A � V is κ-saturated in a color i with a P A. Furthermore, suppose that
there is an i-monochromatic path P of order type κ so that P is concentrated
on A. Then A is actually covered by an i-monochromatic path Q so that Q is
concentrated on A, has order type κ and first point a. Moreover, for any given
K P rAscfpκq we can construct Q with the above properties so that K is cofinal in
Q.

Proof. We prove by induction on κ; the result clearly holds for κ � ω so suppose
that κ ¡ ω and we proved for cardinals   κ. Also, fix a P A, K P rAscfpκq and
i-monochromatic path P concentrated on A; note that we don’t need to worry
about K if κ is regular as every subset of A of size κ will be cofinal in Q.

Find a continuous ε-chain of elementary submodels pMαqα µ with µ � cfpκq
so that

(i) M0 � H, κα � |Mα|   κ and Mα�1 is covering for all α   µ,
(ii) if κ is a limit then make κα strictly increasing with κα�1 regular,

(iii) if κ � λ� then let κα � λ,
(iv) let Mα X κ P κ if κ is regular,
(v) κα is an element and subset of Mα for α ¡ 0,
(vi) P,A, a and everything relevant is in M1.

Let us enumerate K as tkα : α   µu if κ is singular.

Observation 9.15. There is a sequence tRα : α   µu of disjoint, finite i-
monochromatic paths with union R so that

(1) R0 � tau,
(2) Rα is a path from a point xα which terminates in an element of A and

Rα �Mα�1,
(3) |Npxα, iq XAXMαzMα1 | ¥ cfpκαq for all α1   α   µ.
(4) kα P Rα for α   µ if κ is singular.
(5) AXMα�1zMα is κα-saturated even in V XMα�1zpMα YRq,
(6) Mα�1zMα XR is finite for all α   κ if κ is regular.

Proof. First, suppose that κ is regular. Let xα � minP zMα and x1α � minP X
AzMα with Rα � P æ rxα, x

1
αs for limit α   µ. Let xα�1 P Mα�1zpMα Y Rαq

be a κα�1-limit of P and x1α�1 be the first element of P X A above xα�1. (1)
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and (2) are clearly satisfied; it suffices to check (3) which will be satisfied by our
choices of xα and the fact that Mα1 XP is an initial segment of P below xα. (4)
and (5) holds as the Rα’s are separated by the models.

Now, suppose that κ ¡ µ. Select κ�α -limit xα of P and let x1α be the first
element of PXA above xα; extend P æ rxα, x

1
αs into a finite i-monochromatic path

Rα which terminates in kα. Note that we can actually suppose that tRα : α   µu
is a subset and element of M1. Now (3) is satisfied by the fact that |Mα1 |   κα
and (5) holds as YtRα : α   µu has size less than κ. �

Let R � YtRα : α   µu as above. We construct a continuous increasing
sequence pQαqα µ of i-monochromatic paths so that

(a) Qα covers AXMαzR inside Mα,
(b) Qα is of order type κα and is concentrated on A,
(c) Qα end extends Qα1 for all α1   α   µ,
(d) the first element of Q0 is a,
(e) Npxα, iq XAXMα�1zMα is cofinal in Qα�1,
(f) Rα is an initial segment of Qα�1zQα while Rα XQα1 � H for all α1   α.

Clearly, Q � YtQα : α   µu will be an i-monochromatic path that covers A
and is concentrated on A.

Let Q0 � H. If α   µ is limit and we constructed Qα1 for α1   α then let
Qα � YtQα1 : α1   αu. Suppose we constructed Qα and we wish to extend it
into Qα�1.

Observation 9.16. Qα
aRα is an i-monochromatic path concentrated on A.

Proof. Recall that xα was the first element of Rα so we need to check that

Npxα, iq XAXQα

is cofinal in Qα. First, if α is a limit this amounts to checking that

Npxα, iq XAXMαzMα1 � H for all α1   α

as any selection from tAXMαzMα1u is cofinal in Qα. This clearly holds by the
choice of xα.

Second, if α � α1 � 1 then property (e) from above ensures that xα is a valid
continuation of Qα1 .

�

Therefore, our goal now is to cover AXMα�1zpMα YRq by a path Pα inside
V XMα�1zpMα YRq where Pα is concentrated on A, starts at x1α (the endpoint
of Rα), has order tpye κα�1 and Npxα�1, iqXAXMα�1zMα is cofinal in Pα. We
then define

Qα�1 � Qα
aRα

aPα

which will finish the induction and our proof. Naturally, we will apply the
inductional hypothesis on κα�1   κ to conctruct Pα with cofinal set Kα P
rNpxα�1, iq X A XMα�1zMαs

cfpκα�1q. Note that A XMα�1zpMα Y Rq is κα�1-
saturated in the graph V XMα�1zpMα Y Rq and x1α P A by the construction of
the R.
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Hence, it suffice to show that there is a path P 1 inside V XMα�1zpMα Y Rq
which is concentrated on A and has order type κα�1. If κ is regular then P XMα

is an initial segment of P defined in Mα�1 and hence we can select a κα�1-limit z
of our original path P above Mα that is in Mα�1 and note P æ z �Mα�1. Also,
P X pMα Y Rq must be bounded below z in P by point (5) in our construction
of R. Hence, there is w P P æ z so that

P 1 � P æ rw, zq �Mα�1zpMα YRq

which we wanted to show. If κ is singular then the first κα�1-limit z of P is in
Mα�1 and the same argument works.

�

Finally we arrive at the

Proof of Lemma 9.7. We start by assuming that (b) fails.
We distinguish 2 cases depending on the value of cfpκq.
Case 1: suppose that κ ¡ cfpκq � ω. Recall Claim 9.12.1 and take an ε-

chain of covering elementary submodels pMnqnPω of uncountable regular size   κ
with κ � YMn so that there is an infinite N � ω so that for all n P N there is
xn P AzMn, yn P BzMn with cpxn, ynq � i and

|Npyn, iq XAXMn| ¥ ω.

Without loss of generality N � ω and xn, yn PMn�1.

Observation 9.17. There is a sequence tRn : n P ωu of pairwise disjoint finite
i-monochromatic path so that

(1) Rn is a path from a point un PMn with last two points yn, xn,
(2) |Npun, iq XAXMn| � κn.

Proof. First, find distinct zn P Npyn, iq X A X Mn for n P N . We build Rn
inductively on n P N . Now, in each model Mn we can find an i-monochromatic
path Qn concentrated on A, of order type κn � ω � 1 and disjoint from YtRk :
k   nu; we can take un to be its κn-limit point. Find vn P Qn X A above un.
We can extend Qn æ run, vns into a path Rn terminating in yn, xn and avoiding
YtRk : k   nu. This is done using saturation. �

Let R � YtRn : n P Nu. If Pn � Mn is an i-monochromatic path of order
type κn which covers AXMnzR and is disjoint from Rn then Pn

aRn is still an
i-monochromatic path; also, if Pn is concentrated on A then so does Pn

aRn.
Hence it suffice to find Pn as above so that Pn�1 starts from txnu (the terminal
point of Rn). Then P � YtPn

aRn : n P Nu is a path as desired.
It is easy to see that Lemma 9.14 can be applied to the construction of Pn.
Case 2: κ ¥ µ � cfpκq. By Claim 9.11.1 and the failure of (b) we can find a

continuous ε-chain of elementary submodels pMαqα µ so that

(i) M0 � H, and Mα is the limit of covering elementary submodels for all
α P µz1,

(ii) if κ � λ� then let κα � |Mα| � λ,
(iii) if κ is a limit then let κα strictly increasing,
(iv) let Mα X κ P κ for all α   κ if κ � µ
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(v) κα is an element and subset of Mα for α ¡ 0,
(vi) P,A, a, C and everything relevant is in M1,
(vii) for every α P µ there is x P AzMα, y P BzMα with cpx, yq � i and

|Npy, iq XAXMαzMα1 | ¥ ω

for all α1   α

We construct a continuous increasing sequence pQαqα µ of i-monochromatic
paths and finite i-monochromatic paths pRαqα µ so that

(a) Qα is inside Mα and Qα YRα covers covers AXMα,
(b) Qα is of order type κα and is concentrated on A,
(c) Qα end extends Qα1 for all α1   α   µ,
(d) Rα starts with a point yα and terminates in an element of A,
(e) |Npyα, iq XAXMαzMα1 | ¥ cfpκαq if α1   α   κ,
(f) Rα is an initial segment of Qα�1zQα.

Let Q0 � H and R0 a single element of A XM1. For limit α simply let Qα �
YtQα1 : α1   αu. By (vii) above, we can find xα P A XMα�1zMα, yα P B X
Mα�1zMα connected by an edge coloured i so that Rα � pyα, xαq satisfies the
above conditions.

Suppose we constructed Qα and Rα and we wish to extend it into Qα�1. Let
us define Rα�1 first, i.e. the end of the new extension.

Observation 9.18. There is a finite i-monochromatic path Rα�1 � V zpMα Y
Rαq from an element u PMα�1 into a v P AXMα�2zMα�1 so that Npu.iqXAX
Mα�1zMα has size at least cfpκα�1q.

Proof. If κ is limit then pick an i-monochromatic path P of order type κα�1 �
ω � 1 in Mα�1 which is inside Mα�1zMα; this can be done as κ�α�1 is still less
than κ. Let u be the κα�1-limit of P and v1 the first element of P X A above
u. Pick arbitrary v P A X Mα�2zMα�1 and extend P æ ru, v1s into a finite
i-monochromatic path Rα�1 � V zpMα YRαq terminating in v.

Now, suppose that κ � λ�. There is a chain of elementary submodels tNξ :
ξ   λu P Mα�1 with N � YtNξ : ξ   λu so that Mα � N0 and there is
x P AzN, y P BzN with cpx, yq � i and

|Npy, iq XAXNzNξ| ¥ ω.

Cleary, N � Mα�1 as N has size λ and also we can take x, y as above in
Mα�1. Note that we have

|Npy, iq XAXNzMα| ¥ cfpλq

so we can extend the path py, xq into Rα terminating in an arbitrary element of
AXMα�2zMα�1.

�

Now use Lemma 9.14 to cover the rest ofAXMα�1 by an i-monochromatic path
P 1 concentrated on A, of order type κα�1 so that there is Kα P rNpyα, iq X AX
Mα�1zMαs

cfpκα�1q cofinal in P 1;note that PaR1
α�1 is also an i-monochromatic

path concentrated on A.
�
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