BETWEEN COUNTABLY COMPACT AND w-BOUNDED

ISTVAN JUHASZ, LAJOS SOUKUP, AND ZOLTAN SZENTMIKLOSSY

ABSTRACT.

1. INTRODUCTION

Definition 1.1. Given a topological property P we say that a space X is P-
bounded iff each subspace Y with property P has compact closure.

2. PRELIMINARY RESULTS

Fact 2.1. If X is a regular space, and x(p,X) > w for all p € X, then every
subspace Y with w(Y') = w is nowhere dense.

Definition 2.2. Given a topological space X, for Y C X let
AP (V) = (A" : A€ [Y]” is discrete,}

and
dgmd(y) = U{ZX : A € [Y]” is nowhere dense in X}
We say that ¥ C X is w-D-closed (w-nwd-closed) iff Y = clgP (V) (v =
cl‘}}"wd(Y)) respectively.
Lemma 2.3. If Z is regular space, and D C Z dense, then for each countable,

discrete S C clg” (D) there is a countable, discrete A C D with S C A. In
particular, 14 (D) is w-D-closed.

Proof of the lemma. Let S = {s, : n € w} C cl4” (D) be discrete in Z, and for
all s,, € S fix a countable, discrete A,, C D with s,, € Aini
For each n € w fix an open set U,, 3 s, such that s; ¢ U, for i # n.

Let
A= J(AnnU)\ | Tm).
new m<n
Clearly A C D is countable.
Ife e A,NAthen z € Uy \ U, <, Um and (Uy, \ U,,,<,, Um) N A = (Up \
Uyner Um) N Ay, so @ has a neighborhood U with AN A zi{x}.
F_inally S C A, which was to be proved. O
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Lemma 2.4. If Z is reqular c.c.c space, and D C Z dense, then for each count-
able, nowhere dense S C clg"™*(D) there is a countable, nowhere dense A C D
with S € A. In particular, c1g"™*(D) is w-nwd-closed.

Proof of the lemma. Let S = {s, : n € w} C cI4™%(D) be nowhere dense in Z,
and for all s, € S fix a countable, nowhere dense A,, C D with s, € A,,.

Next fix a maximal family {U,, : m € w} of pairwise disjoint open sets in Z
such that U,,, NS = 0 for all m € w.

Let
A=A\ | Un).
new m<n
Clearly A C D is countable. Since ANU,, C |J
is nowhere dense. Since U = |J
nowhere dense in Z.
Finally s, € U,,<,, Um, 50 sn € (4, \ U,,,<,, Um). Thus S C A, which was to
be proved. B B O

nem An, we have that AN U,
U, is dense open in Z, it follows that A is

new

Theorem 2.5. Fvery completely regular space X has an embeddings into a space
Fx such that

(1) |Fx| = [X]+2.

(2) X is a closed and nowhere in Fx

(8) Fx \ X is w-bounded.

(4) if X is locally comppact, then so is Fx.

Moreover,

(i) If X was not w-bounded, then Fx is not w-nwd-bounded.
(ii) If X was not Ma-bounded, then Fx is not Ms-nwd-bounded.
(iii) If X was D-bounded, then Fx is also D-bounded.

(iv) If X was Ms-bounded, then Fx is also My-bounded.

Proof. Let cX be a compactification of X. If X is locally compact, jet cX be the
one-point compactification aX of X Let Y be a compact space which contains a
weak P-point y with |Y'| = 2. Then the space

Fy = (X x (¥ \ {y}) UX x {y}. (2.1)
works.
If X is locally compact, then F, = (X x YY)\ {(c,y)}. O
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3. POSITIVE THEOREMS

Lemma 3.1. Let X be a T1 space, U be a family of pairwise disjoint open sets,
and S be a dense subset of the open set G =\ JU. We say that D C S is diagonal
iff DNU is finite for allU € U. Let

IU,S)={D € [S]” : D is diagonal} (3.1)

and
HWU,S)={D": D eI(U,S)]} and HU,S) = | JHWU, 3) (3.2)

(1) The family I(U,S) is a P-ideal. H(U,S) is o-directed. So for each P €
[H(U, S)]w there is a diagonal set D with P C D'.
(2) If X is locally compact and regular, then

G\ JT:Ueuy c HU,S).

Moreover
{peé\U{U: U el t(p, X) :w} c HU,S).
Proof. (1) Assume that {D,, : n € w} C I(U,S5). Let
U ={UelU:UND, #(somen¢cw}.

Enumerate U’ as {U,, : n < w}, and put

D= U(Dn\ U Um).
new m<n

Then Uy, N D C Upcp Dr, s0 D € D.

Moreover D,, \ D C |, Uk, so Dy, \ D is finite.
(2) Write H = G\ |J{U : U € U}. Let p € H. Consider an arbitrary open set
V > p. Since X is regular , there is an open set W such that p € W Cc W C V.
Since p ¢ U for U € U, there are infinitely many U € U with W N U # 0.
Thus there is D € D with D C W. Since X is countably compact, we have
) £ D' Cc HNW C V, which proves H C H(U, S).

Assume that p € H with ¢(p, X) = w. Then p € H(U, S) implies that there is
Pe [HU, S)]w with p € P. Then P C D’ for some diagonal set D by (1). Thus
pe D' andsope HU,S). ]

Lemma 3.2. If X is a countably compact regular space, S C X is dense, P €
[S’]w is nowhere dense, and t(p, X) = w for all p € P, then there is a countable
discrete set D C S with P C D'.

Proof. Choose a maximal family U pairwise disjoint open subsets of X such that
p¢ Uforall U elUd. Then P C G\ J{U : U € U}, so we can apply the previous
lemma .(2) O

Corollary 3.3. An w-D-bounded regular, countable tight space is w-nwd-bounded.

Corollary 3.4. An countably compact reqular, countable tight space is D-generated.
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T2. Legyen X megsz. kpt T3, U és S mint fent és U erGsen diszj. is.
Ekkor H(U,S) siirti X G-ben.

Ko6v. Ha még t(X) = w is, akkor minden S siiriih6z és A megsz.
sss-ho6z van D € [S]Y diszkrét, melyre A C cl(D).

Ebbdl trivi, h w-D-bdd = w-nwd-bdd megsz. sziik T3 X-re, de az is
hogy megsz. kpt. és megsz. sziik T35 X D-generalt.

Problem 1. (a) Is there a Frechet (or first countable or sequential or w-D-
sequential ) w-D-bounded, but not Ms-bounded (not w-bounded) space?
(b) Is there a sequential w-D-bounded, but not w-nwd-bounded space?

Theorem 3.5. (1) A countably compact, separable, reqular space X with w(X) <
p 15 compact.
(2) An w-D-bounded, separable, reqular space X with w(X) < cov(M) is compact.

Problem 2. Is there a non-compact (not w-nwd-compact) w-D-bounded, separa-
ble, reqular space X with w(X) = cov(M)?

(1) nyilvan ismert reg. De ki csinalta? ‘

Proof. Assume that X is a non-compact, separable, regular space. Then there is
an open cover U of X such that /| < w(X) and even the cover Y = {U : U € U}
does not have a finite subcover.

Let D be a countable dense subset of X.
(1) Assume on the contrary that X is countably compact with w(X) < p, and
we derive a contradiction. Let

F=on\Uu) e i) (33

Since X \ JU’ # 0 is open and D is dense, the family F C [D]w is a filter, so
|F| < p implies that F has a pseudointersection F' € [D]w. Since X is countably
compact, F' has an accumulation point z. If U € U, then FF Cc* X \ U, so
xe€X\U=X\U. Sox¢|JU. Contradiction.

(2) Assume on the contrary that X is w-D-bounded with w(X) < cov(M), and

we derive a contradiction.
For each d € D pick Uy € U with d € Uy.

Let
P={(do,...,dn) € [D]™® : Vi<ndiy1 ¢ Uy} (3.4)
Let P = (P,D). For D' C D let
Ep = {{do,...,d,) € P:d; € D' for some i <n }. (3.5)
Let
& = {Epnx\Uury U’ € U]~} (3.6)

Claim 3.5.1. Every E € £ is dense in P.

Proof of the claim. Assume E = Epqx\Ju)-
Let (sg,...,sE) € P. Since

U T.ulJu #x, (3.7)

0<i<k
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so we can pick
depn(x\ |J U, ulJu) (3.8)
0<i<k
Then <So,...,8k,d> GEDQ(X\UL{’)' U

Since |€| < |U| + w < cov(M), there is an E-generic filter G. Let
(di i <w)=|JD. (3.9)

Then Uy, N D C {do,...,d;}, so D' = {d; : i € w} is right separated, so it is
discrete.

On the other hand, D’ is not compact. Indeed, assume on the contrary that
D’ is compact. Then D’ C |JU’ for some U’ € [U] =“_ Then Ep\uw.vewy and
G are disjoint, so G was not £-generic. Contradiction. O

4. D-FORCED LIKE CONSTRUCTION

Theorem 4.1. There is a space X such that X is w-nwd-bounded, Ms-bounded,
but not w-bounded.

Proof. By [10], the space 2%” has a a countable, dense, submaximal subset S.
Pick a € S, let Y = S\ {a}, and put X = clgwad(Y). Since S is nodec, a ¢ X,
so X is not w-bounded.

By Lemma 2.4, X is w-nwd-bounded.

By Fact 2.1, every subset A € [22"]” with countable weight is nowhere dense.
So X is Ms-bounded, as well. O

Theorem 4.2. There is a space Y such that Y is Ms-bounded, but not w-nwd-
bounded.

Proof. Let X be the a not w-bounded, but w-nwd-bounded and Ms-bounded
space from theorem 4.1. Apply Theorem 2.5 to get the space Fx. By 2.5(i), Fix
is not w-nwd-bounded. By 2.5(i), Fx is Ms-nwd-bounded. O

Theorem 4.3. Assume that £ is an infinite cardinal and X = {zq : o < 2"} C
22" is dense. Then there is a space Y = {yo 1 a <25} C 22" such that for each
Ie[2¢]"

(1) if {x; : i € I} is nowhere dense , then {y; : i € I} is nowhere dense.

(2) if {x;:i € I} is crowded, then

22" 22"
{z;:iel} C{y;:iel} . (4.1)

(8) Disjoint discrete subsets of Y with cardinalities < k has disjoint closure in
22" In particular, every discrete subspace of Y with cardinality < k is closed

mY.
Proof. Let {(I¢,J¢) : ¢ < 2"} be a 2"-abundant enumeration of the set [2~] =
2]
By transfinite induction on £ < 2% we define sets

XS ={af:a<2f} c2” (4.2)
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and an increasing sequence {d¢ : & < 2"} ordinals as follows: Let 20 = z, for
a < 27, and let §p = 0.
If € is limit, let ¢ = sup;.¢ ¢ and let

28 (v) = %im 8, (v). (4.3)

—¢

Assume that € = ¢+ 1. If [ N.Je # 0, or {a$ ;i € It} or {a$ :i € J¢} are not
discrete, then let ¢ = d; and X§ = x5, for all v < 2.
Assume that Ic N Je = 0, {25 : i € I} and {z5 : i € J;} are discrete. Let
¢ < 0 < 2" such that
{5 O¢ 21 € I} and {a$ 1 O¢ +1 € J¢} are discrete in 2% | (4.4)
If

(e ielyn{as ieJ} =0,
then pick a finite family S¢ € [Fn(2~,2)] = of finite function s¢ € Fn(2",2) such

that the basic open sets {[s] : s € S¢} separate {zf ti €1} and {xf rie Jet
Let d; < d¢ < 2" such that dom(s) C d¢ for s € S¢.
Assume that

(5 :ielyn{alie ) #0.
Let 55:62+1and for a < 2" let

x5 (v) if v#d; orad I,
28 (v)=¢ 0 if v=0; and a € . (4.5)
1 if v =0; and a € J¢.

Let yo = 22" for a < 2¢. We show that Y = {y, : a < 2"} satisfies the
requirements.

Claim 4.3.1. If I € [QK]SH, s € Fin(2%,2), v € dom(s), [s]N{z :i e I} =10,

then there is t € Fin(2",2) such that
(a) t O s and dom(t) \ dom(s) C v,
(b) fn{zv ™t iel}=0.
Proof of the Claim. We can assume that X # X+,
So there is ¢ < 2" such that
(i) v =001, and so v+ 1 =dcq1.
(it) {as [v:iel} {ab [ v:ie J;} are discrete in 2.
By (ii), thereis r € Fin(v,2) such that r O s [ v and [r]ﬂ{xf lv:iie U} = 0.
Then [r] N {2t [v:ie I UJ} =0 because 25 [ v =2t [ v,
Thus ¢t = r U s satisfies the requirements. [l
Claim 4.3.2. If I € [2"””]9{, s € Fin(2%,2), [s]N{x;:i € I} =0, then there is
t € Fin(2%,2) such thatt O s and [t]N{a?" i I} =0.
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Proof of the Claim. Write dom(s) = {vp < --- <vp}. Let
J={¢<2%:0¢41 =v+1 for some v € dom(s)}.
Write J = {¢1 < -+ < (mn}. Using Claim 4.3.1 we can define a finite sequence
to,t1, ..., tm € Fin(2%,2) such that
(a) s=tog C...Ctp,
(b) dom(tg41) \ dom(ty) C 6

s Cr1”
(c) [thyr) N {z; " cie I} =0.
Then t = t,, satisfies the requirements. (I

By Claim 4.3.2 we have

Claim 4.3.3. If {z; : i € I} is nowhere dense for some I € [2”]§”, then
{y; i € I} is nowhere dense.

So we verified (1).

Claim 4.3.4. If I € [QH}SN, s € Fin(2%,2) and v € dom(s) such that {z¥ : i €
I} is crowded, then there is t € Fin(2%,2) such that
(a) t D s and dom(t) \ dom(s) C v,
(b) [t n{x?tt i€ I} # 0 is crowded.
Proof of the Claim. We can assume that X # XV +1
So there is ¢ < 2% such that

(i) v=0{, and so v + 1 = d¢1.

(ii) {2 |v:ie I} and {2° | v:i € J¢} are discrete in 2 .
Since {z¥ : i € I'} is crowded, by (ii) there is r € Fin(v,2) such that
(a) rDslv
() Fln{ab jviiel Uy =0.
(¢) [r]Nn{z¥ i € I} is crowded.
Then [r] N {x?“ lv:iel.UJ:} =0 because xf“ [v= mf [v.

Thus t = r U s satisfies the requirements. (Il
Claim 4.3.5. If I € [2”]SH, s € Fin(2",2) such that {z; : i € I} C [s] is
crowded, then {y; :i € I} N [s] # 0.

Proof of the Claim. Write dom(s) = {vp < --- <wv,}. Let
J={¢ <2%:9¢41 =v+1 for some v € dom(s)}.
Write J = {¢1 < -+ < {n}. Using Claim 4.3.4 we can define a finite sequence
to,t1,. .., tm € Fin(2"%,2) such that
(a) s=tg C...Ctm,
(b) dom(tk+1)5\ dom(ty) C &, -
(c) [tkqs] N {z; ™" :i € I} is non-empty crowded.
Then t = t,, satisfies the requirements. O

By Claim 4.3.5 we have
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3 K

2 2
Claim 4.3.6. If {z; :i € I} is crowded, then {z; : i € 1}2 C{yi:i € 1}2 .

So we verified (2).

It1,J e [QR]SK, INJ=0,{y;:4 €1} and {y; : i € J} are discrete, then
there is v < 2% such that {y; [ v:i € I} and {y; [ v :i € J} are discrete in 2”.
So, by the construction, there is a v < 2% such that y;(v) = 0 for all ¢ € I, and
yi(v)=1foralli e J. Thus {y; ;1€ I} N{y; :7 € J} = 0. So we have (3).

So we proved Theorem 4.3. O

Theorem 4.4. There is a dense subspace Y of 22" with size 2% such that

(1) Every discrete subset of Z of size < k is closed in Z.
(2) for each f € 22" there is a nowhere dense Xy € [Z]H such that f € D}.

Proof. The Cantor cube 22" contains a dense subspace T' of size .

Put X = 2" xT C 2" x 2?" ~ 2%,

Write X = {z, : @ < 27}

If f € 2%, then f is an accumulation point of the nowhere dense crowded set
Dy ={fIr} xT. Write Dy = {2, : v € Iy}

Apply Theorem 4.3 for X to obtain a space Y C 22",

Then {y, : a € Iy} is nowhere dense and f is an accumulation point of

{Yo ra € Iy}
So Y satisfies the requirements. O

Theorem 4.5. There is a dense, separable, non-compact topological space X C
22" such that

__o2¢ w
X =cl42 (X) = U {E2 1 E e [X]" is discrete}, (4.6)
but »
227 = g (X)) = U {Fz :F e [X]w is nowhere dense}. (4.7
So X is w-D-bounded, but not w-nwd-bounded. Moreover there is no convergent
sequence i X, so X is Ms-bounded.

Proof. Using Theorem 4.4 fix a dense subspace Y of 22° with size 2* such that
(1) Every closed subset of Z of size < w is closed discrete in Y.
(2) for each f € 22” there is a nowhere dense X; € [Y]w such that f € Dj.
Pick ye Y and let Z =Y \ {2}
Let o
X =|J{D: D c 7 is discrete}. (4.8)
Then y ¢ X, but y is an accumulation point of a countable nowhere dense
subset of Y C X, so X is not compact.
The following claim is straightforward:

Claim 4.5.1. If E C X is a countable discrete set, then there is a countable
discrete D C YUY’ with E C D.

Thus if E C X is a countable discrete set, then F is contained in some compact

— QW —
set D2(2) C X, so E is compact. Thus X is w-D-bounded. ([
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The cardinal invariant 6 was introduced by Leathrum [6] as follows: o is the
minimal size of a maximal almost disjoint family of antichains in the Cantor tree.

Theorem 4.6. If 0 = s = cof (M) = wy, then there is a countable dense set D
in 2°v such that D is nodec and there is no convergent sequence in clyr® (D).

So, if d € D, then X = cl$5 (D \ {d}) is not w-bounded, but w-nwd-bounded
and Ms-bounded.

Proof. 2¢ = 21 is the ground model.

Lemma 4.7. If 6 = s = wn, then there is a sequence ((Uy, Vo) 1 @ < wi) such
that Uy, N Ve = 0 and U, UV, C 2<% is a family of pairwise disjoint basic open
subset of 2% such that if W C 2<% is an arbitrary infinite family of pairwise
disjoint basic open sets then there is o < wy such that [WNUy| = W N V| = w.

Proof. 0 = wy implies that there is a maximal almost disojoint family (7, : @ < wy)
of antichains in 2<¥. For each antichain 7T, let S, : i < wy be a splitting family
in 7,. Let (Ua, Vo) : @ < wi) be an enumeration of (Sy 4, T \ Sa,i)-

For W there is a such that WNT, is infinite. Now some S, ; splits WNT,. O

Induction in wy steps:

Dy C 2“1 is countable dense.

In general: modify S up to w(1 + «).

D,, ¢ 2¢(+9) ig countable dense

We will guarantee: Enumerate a codinal subset of the nowhere dense subsets
of D, in wy type: {Ef :i < wi}.

We also have <(Z/IJ‘?‘,VJ‘?‘) i< w1>

We guarantee in some step later:
(1) E¢ is closed discrete in Dg
(2) there is a coordinate ¢ such that U N EF(¢) =0 and V5 N EY(() = 1.

Claim 4.7.1. D = D, 1is nodec.

Indeed, every nowhere denseappear in some intermediate steps, so it will be
closed disrete later.

Claim 4.7.2. There is no convergent sequence in cls? (D).

Proof. Assume that {z,} — =.

Let x, € Sy, S, is nowhere dense, so S, is discrete. By thinning out we can
assume that there are z,, € W,, € 2<% basic open. We can assume S,, C W,,.

Then S = S,.

Then S C E&(().

There are j both U and V* contains infinitely many W,,.

Then is some step ¢ we have U N EX(¢) = 0 and V& N EF(¢) = 1. So for
infinitely many n we have S,,({) =0, so s,(¢) = 0.

Similarly for infinitely many n we have S,(¢) = 1, so s,({) = 1. So the
sequence {s,} can not convege.

O

O
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Theorem 4.8. [t is consistent that 2% = 2“' is large and there is Ms-bounded,
but not w-nwd-bounded space

Proof. Let X be the w-bounded, but w-nwd-bounded and Ms-bounded space of
size 2 from theorem 4.6 Apply Theorem 2.5 to get the space Fx. By 2.5(1), Fx
is not w-nwd-bounded. By 2.5(iv), Fx is Ms-nwd-bounded. O

5. EXAMPLES FROM SPECIAL POINTS IN CECH-STONE COMPACTIFICATIONS

A point is w-far if it is not in the closure of a countable discrete subset of X.

A point is remote if it is not in the closure of any nwd subset of X.

A point p € SX \ X is a remote point of X if p is not the limit of any nowhere
dense subset of X. Remote points were introduced by Fine and Gillman [7].

Theorem 5.1 (Dow,[3]). Every nonpseudocompact ccc space of m-weight wy has
a remote point.

Theorem 5.2. Let X be a completely regular space.

(1) The space Clg)[() X is w-D-bounded.

(2) If X is ccc then the space cl‘g?(“’dX is w-nwd-bounded.

(3) If x(z,8X) > w for all x € BX, then clg}de is Ms-bounded.

(4) If X is separable and X has an w-far point, then CIEJD( X is not w-bounded.
wnwd

(5) If X is separable and X has a remote point, then clgy"* X is not w-bounded.

(6) If X is Ms and X has a remote point, then clgg?”dX is not w-Ma-bounded.
(7) If X is not pseurocompact and mw(X) < wq, then X has a remote point.

Theorem 5.3. There is a ‘ locally compact NEM‘ space X such that X is w-
nwd-bounded, Ms-bounded, but not w-bounded.

Proof. Let Y = w x 2“1

By Theorem 5.1, there is a remote point x in SY\Y.

‘ [8, Corollary 1.5. | : there is a remote point x in SY\Y ‘

Let X = 8Y \ {z}.

Let D C Y be a countable dense set. By the lemma, X is nwd-bounded, and
not w-bounded, because x ¢ X.
X =cgply

Since x(y,BY) > w; for all y € BY, a countable set is nowhere dense in SY
by fact 2.1.

So X is M2 bounded, nwd-bounded, but not omega bounded because D C X
is dense.

Need: there is no first countable point in BY.

O

Theorem 5.4. There is a locally compact space X = w* \ {z} such that X is
not w-nwd-bounded, but Ms-bounded.

Proof. By vanMill, Handbook, or in [8] There is a point x € w* such that
e z is not a weak P-point,
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e © ¢ D’ for all countable discrete D C w*
Then w* \ {z} is an example. O

Theorem 5.5. There is a 0-dimensional separable,
nwd-bounded, but not Ms-bounded space X.

NEM locally compact| w-

Proof. Consider the space
X = 53" Q.
By [2, Thm 1.5] a topological space has remote points if it has countable w-weight
is not pseudocompact. Hence there is a point SQ # cl‘g&wd Q. Since Q is My, X
is not Ms-bounded.
However, by Lemma 2.4, Y is w-nwd-bounded. O

Theorem 5.6. There is an 0-dimensional, w-D-bounded, but not Ms-nwd-bounded
space X.

Proof. Let X be an w-D-bounded space which is not Ms-bounded from Theorem
5.5

Apply Theorem 2.5 to get the space Fx. By 2.5(ii), Fx is not Msy-nwd-
bounded. By 2.5(iii), Fx is D-nwd-bounded. O

Theorem 5.7. If p = cof(M), then there is a 0-dimensional locally compact

separable non-compact topological space X = (C\ {0}) Up,7) such that

(1) the subspace topologies on (C\ {0}) and on p are the natural euclidean and
ordinal topologies, respectively,

(2) (C\ {0}) is dense open in (so X is not compact),

(8) X is w-nwd-bounded.

(4) x(@, X) < |a] +w for a < p.

In particular, if p = cof (M) = wy, then X is first countable.

Theorem 5.8. [t is consisent that there is an 0-dimensional, w-D-bounded, but
not My-nwd-bounded space X of size 2.

Proof. Plug the space from Theorem 5.7 into the previous proof. O

Proof. Let X be the D-bounded, but not Ms-bounded space of size 2“ from
theorem 5.7 Apply Theorem 2.5 to get the space Fx. By 2.5(ii), Fx is not
Ms-nwd-bounded. By 2.5(iii), Fx is D-nwd-bounded. (|

Proposition 5.9. There is a countably compact, non-compact, locally compact,
separable space X with w(X) = t.

Proof. Let A = {A, : a <t} be a tower, and let X be the yN-space created from
A.
Replace the isolated points with copies of [0, 1]. |

The following example is well-known:

Proposition 5.10. There is a crowded, dense, countably compact subspace X of
w* with | X| =2%.
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(1) 4.1; 5.3; Con: 5.8; 4.6

(2) Thm 5.4, Thm 4.5 Con Thm 4.8

(3) Thm 5.5 Con: Thm 5.7
(4)  (2)¥(3) Con (2)¥(3)

Mg-nwd-bounded

(5) Thm 5.6 Con Thm 4.1

Y

w—-D-bounded

(6) ZFC: Prop 5.10
A,

countably compact

FiGUure 1. ZFC examples

(1) sep ¢: 4.6

(2) ¢: Con Thm 4.8

w-nwd-bounded My-bounded

(3) lep M1, sep ¢: Thm 5.7
4) (w3
Ma-nwd-bounded

77777777777777777 (5) lep, ¢: Thm 5.8

(6) lcp, M1, sep, ¢: Thm 7.7

F1GURE 2. Consistent examples

6. SEPARATION OF BOUNDEDNESS PROPERTIES

Problem 3. Is there ZFC examples of cardinalities < 22, or < 291, or < 29 ¢

Problem 4. We have locally compact example only for (2): theorem 5.4.
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Recall Problem 1: (a) Is there a Frechet (or first countable ) w-D-bounded,
but not Ms-bounded (not w-bounded) space?
(b) Is there a sequential w-D-bounded, but not w-nwd-bounded space?

7. PrRoODUCTS

Theorem 7.1. If X and Y are not w-bounded, then X XY is not w-D-bounded.

w

Proof. We can assume that D = {d, : n € w} € [X]” and E € [Y]” are
countable , and & and V witness that D and E are not compact.

We construct e, € E and d,, € U, € U e, € V,, € V such that (d,,e,) €
U,, X V,, implies n = m.

Choose e, € E\ U{V,n : m < n} Then pick V,, and U, such that (d;,e;) ¢
U, xV, for n < i.

Thus {(d,,en)} is compact, so its projection to X is also compact, but it

contains D, so D is also compact. Contradiction.

O

Theorem 7.2. If X is w-D-bounded and Y is countably compact, then X XY is
countably compact.
So if X is w-D-bounded, then X™is countably compact for all n € w.
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Theorem 7.3 (vanMill, [7, Theorem 9.1]). Let X be nonpseudocompact. As-
suming b = ¢, SX\X contains a point x such that if FCBX\xz is countable and
nowhere dense, then x¢clf XF.

Theorem 7.4. Under b = c there is a locally compact space X such that X is
w-nwd-bounded, Ms-bounded, but not w-bounded.

Proof. Let Y = w x 2“1

By Theorem 4.1, there is a point x such that if FCAY\Y is countable and
nowhere dense, then x¢cl3YF.

Since Y is nowhere M2, a countable set is nowhere dense in 5Y.

So BY \ {x} is M2 bounded, nwd-bounded, but not omega bounded because
Y is separable.
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Need: there is no first countable point in BY.

Theorem 7.5. If X is w-D-bounded and s(X) = w, then X is a compact.

Proof. A space X is compact iff the closure of any discrete space is compact. If
$(X) = w, then there is no uncountable discrete subspace. (]

Problem 5. Is there a w-D-bounded, but not w-bounded space with t(X) =w?

It is consistent that there is a countably compact HF D. This space can not
be w-D-bounded.

Is there in ZFC a countablytight, countably compact, but not w-bounded (w-
D-bounded space)

Consistently there is a first countable example (mexico)

Lemma 7.6. If X is countably compact t(X) = w, x(p, X) < w1, T3, then there
is a countable discrete D with p € D’

Proof. countably compact implies x(p, X) = ¥x(p, X) = w1
cobnstruct a free sequence converge to p
Should stop in countably many steps. O

Theorem 7.7. If CH + (t) then there is a locally compact, first countable,
separable, not w-D-bounded crowed space.

Proof. locally compact, first countable, non-compact separable scattered space.
osztasweski times [0,1] O
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