BETWEEN COUNTABLY COMPACT AND ω -BOUNDED

ISTVÁN JUHÁSZ, LAJOS SOUKUP, AND ZOLTÁN SZENTMIKLÓSSY

ABSTRACT.

1. INTRODUCTION

Definition 1.1. Given a topological property P we say that a space X is **P**bounded iff each subspace Y with property P has compact closure.

2. Preliminary results

Fact 2.1. If X is a regular space, and $\chi(p, X) > \omega$ for all $p \in X$, then every subspace Y with $w(Y) = \omega$ is nowhere dense.

Definition 2.2. Given a topological space X, for $Y \subset X$ let

$$\operatorname{cl}_X^{\omega D}(Y) = \bigcup \{ \overline{A}^A : A \in [Y]^\omega \text{ is discrete}, \}$$

and

$$\operatorname{cl}_X^{\omega nwd}(Y) = \bigcup \{\overline{A}^X : A \in [Y]^{\omega} \text{ is nowhere dense in } X\}$$

We say that $Y \subset X$ is ω -D-closed (ω -nwd-closed) iff $Y = cl_X^{\omega D}(Y)$ (Y = $\operatorname{cl}_{X}^{\omega nwd}(Y)$ respectively.

Lemma 2.3. If Z is regular space, and $D \subset Z$ dense, then for each countable, discrete $S \subset \operatorname{cl}_Z^{\omega D}(D)$ there is a countable, discrete $A \subset D$ with $S \subset \overline{A}$. In particular, $cl_Z^{\omega D}(D)$ is ω -D-closed.

Proof of the lemma. Let $S = \{s_n : n \in w\} \subset cl_Z^{\omega D}(D)$ be discrete in Z, and for all $s_n \in S$ fix a countable, discrete $A_n \subset D$ with $s_n \in \overline{A_n}$.

For each $n \in \omega$ fix an open set $U_n \ni s_n$ such that $s_i \notin \overline{U_n}$ for $i \neq n$. Let

$$A = \bigcup_{n \in \omega} ((A_n \cap U_n) \setminus \bigcup_{m \le n} \overline{U}_m).$$

Clearly $A \subset D$ is countable.

If $x \in A_n \cap A$ then $x \in U_n \setminus \bigcup_{m \le n} \overline{U}_m$ and $(U_n \setminus \bigcup_{m \le n} \overline{U}_m) \cap A = (U_n \setminus \bigcup_{m \le n} \overline{U}_m)$ $\bigcup_{m \le n} \overline{U}_m$ $\cap A_n$, so x has a neighborhood U with $A \cap A = \{x\}$.

Finally $S \subset \overline{A}$, which was to be proved.

Date: February 25, 2014.

²⁰¹⁰ Mathematics Subject Classification. ????

Key words and phrases. ω -bounded, countably compact, P-bounded, ω -D-bounded, ω -nwdbounded,

Lemma 2.4. If Z is regular c.c.c space, and $D \subset Z$ dense, then for each countable, nowhere dense $S \subset \operatorname{cl}_Z^{\omega nwd}(D)$ there is a countable, nowhere dense $A \subset D$ with $S \subset \overline{A}$. In particular, $\operatorname{cl}_Z^{\omega nwd}(D)$ is ω -nwd-closed.

Proof of the lemma. Let $S = \{s_n : n \in w\} \subset \operatorname{cl}_Z^{\omega nwd}(D)$ be nowhere dense in Z, and for all $s_n \in S$ fix a countable, nowhere dense $A_n \subset D$ with $s_n \in \overline{A_n}$.

Next fix a maximal family $\{U_m : m \in \omega\}$ of pairwise disjoint open sets in Z such that $\overline{U_m} \cap S = 0$ for all $m \in \omega$.

Let

$$A = \bigcup_{n \in \omega} (A_n \setminus \bigcup_{m \le n} U_m).$$

Clearly $A \subset D$ is countable. Since $A \cap U_m \subset \bigcup_{n < m} A_n$, we have that $A \cap U_m$ is nowhere dense. Since $U = \bigcup_{n \in \omega} U_n$ is dense open in Z, it follows that A is nowhere dense in Z.

Finally $s_n \notin \bigcup_{m \leq n} \overline{U_m}$, so $s_n \in \overline{(A_n \setminus \bigcup_{m \leq n} U_m)}$. Thus $S \subset \overline{A}$, which was to be proved.

Theorem 2.5. Every completely regular space X has an embeddings into a space F_X such that

(1) $|F_X| = |X| + 2^{\omega}$.

(2) X is a closed and nowhere in F_X

(3) $F_X \setminus X$ is ω -bounded.

(4) if X is locally compact, then so is F_X .

Moreover,

(i) If X was not ω -bounded, then F_X is not ω -nwd-bounded.

(ii) If X was not M_2 -bounded, then F_X is not M_2 -nwd-bounded.

(iii) If X was D-bounded, then F_X is also D-bounded.

(iv) If X was M_2 -bounded, then F_X is also M_2 -bounded.

Proof. Let cX be a compactification of X. If X is locally compact, jet cX be the one-point compactification αX of X Let Y be a compact space which contains a weak P-point y with $|Y| = 2^{\omega}$. Then the space

$$F_X = (cX \times (Y \setminus \{y\})) \cup X \times \{y\}.$$
(2.1)

works.

If X is locally compact, then $F_x = (\alpha X \times Y) \setminus \{(\alpha, y)\}.$

3. Positive theorems

Lemma 3.1. Let X be a T_1 space, U be a family of pairwise disjoint open sets, and S be a dense subset of the open set $G = \bigcup \mathcal{U}$. We say that $D \subset S$ is diagonal iff $D \cap U$ is finite for all $U \in \mathcal{U}$. Let

$$I(\mathcal{U}, S) = \{ D \in [S]^{\omega} : D \text{ is diagonal} \}$$

$$(3.1)$$

and

$$\mathcal{H}(\mathcal{U},S) = \{D' : D \in I(U,S)\} \text{ and } H(\mathcal{U},S) = \bigcup \mathcal{H}(\mathcal{U},S)$$
(3.2)

(1) The family $I(\mathcal{U}, S)$ is a P-ideal. $\mathcal{H}(\mathcal{U}, S)$ is σ -directed. So for each $P \in$ $\left[H(\mathcal{U},S)\right]^{\omega}$ there is a diagonal set D with $P \subset D'$. (2) If X is locally compact and regular, then

$$\overline{G} \setminus \bigcup \{ \overline{U} : U \in \mathcal{U} \} \subset \overline{H(\mathcal{U}, S)}.$$

Moreover

$$\left\{p\in\overline{G}\setminus\bigcup\{\overline{U}:U\in\mathcal{U}\}:t(p,X)=\omega\right\}\subset H(\mathcal{U},S).$$

Proof. (1) Assume that $\{D_n : n \in \omega\} \subset I(\mathcal{U}, S)$. Let

$$\mathcal{U}' = \{ U \in \mathcal{U} : U \cap D_n \neq \emptyset \text{ some } n \in \omega \}.$$

Enumerate \mathcal{U}' as $\{U_n : n < \omega\}$, and put

$$D = \bigcup_{n \in \omega} \left(D_n \setminus \bigcup_{m \le n} U_m \right).$$

Then $U_m \cap D \subset \bigcup_{k < m} D_k$, so $D \in \mathcal{D}$. Moreover $D_n \setminus D \subset \bigcup_{k < n} U_k$, so $D_n \setminus D$ is finite.

(2) Write $H = \overline{G} \setminus \bigcup \{\overline{U} : U \in \mathcal{U}\}$. Let $p \in H$. Consider an arbitrary open set $V \ni p$. Since X is regular, there is an open set W such that $p \in W \subset \overline{W} \subset V$. Since $p \notin \overline{U}$ for $U \in \mathcal{U}$, there are infinitely many $U \in \mathcal{U}$ with $W \cap U \neq \emptyset$. Thus there is $D \in \mathcal{D}$ with $D \subset W$. Since X is countably compact, we have $\emptyset \neq D' \subset H \cap \overline{W} \subset V$, which proves $H \subset \overline{H(\mathcal{U}, S)}$.

Assume that $p \in H$ with $t(p, X) = \omega$. Then $p \in \overline{H(\mathcal{U}, S)}$ implies that there is $P \in [H(\mathcal{U}, S)]^{\omega}$ with $p \in \overline{P}$. Then $P \subset D'$ for some diagonal set D by (1). Thus $p \in D'$, and so $p \in H(\mathcal{U}, S)$.

Lemma 3.2. If X is a countably compact regular space, $S \subset X$ is dense, $P \in$ $[S']^{\omega}$ is nowhere dense, and $t(p, X) = \omega$ for all $p \in P$, then there is a countable discrete set $D \subset S$ with $P \subset D'$.

Proof. Choose a maximal family \mathcal{U} pairwise disjoint open subsets of X such that $p \notin \overline{U}$ for all $U \in \mathcal{U}$. Then $P \subset \overline{G} \setminus \bigcup \{\overline{U} : U \in \mathcal{U}\}$, so we can apply the previous lemma (2)

Corollary 3.3. An ω -D-bounded regular, countable tight space is ω -nwd-bounded.

Corollary 3.4. An countably compact regular, countable tight space is D-generated.

T2. Legyen X megsz. kpt T_3 , U és S mint fent és U erősen diszj. is. Ekkor H(U,S) sűrű X G-ben.

Köv. Ha még t(X) = w is, akkor minden S sűrűhöz és A megsz. sss-höz van $D \in [S]^w$ diszkrét, melyre $A \subset cl(D)$.

Ebből trivi, h w-D-bdd = w-nwd-bdd megsz. szűk T_3 X-re, de az is hogy megsz. kpt. és megsz. szűk T_3 X D-generált.

Problem 1. (a) Is there a Frechet (or first countable or sequential or ω -D-sequential) ω -D-bounded, but not M_2 -bounded (not ω -bounded) space? (b) Is there a sequential ω -D-bounded, but not ω -nwd-bounded space?

Theorem 3.5. (1) A countably compact, separable, regular space X with $w(X) < \mathfrak{p}$ is compact.

(2) An ω -D-bounded, separable, regular space X with $w(X) < cov(\mathcal{M})$ is compact.

Problem 2. Is there a non-compact (not ω -nwd-compact) ω -D-bounded, separable, regular space X with $w(X) = cov(\mathcal{M})$?

(1) nyilvan ismert reg. De ki csinalta?

Proof. Assume that X is a non-compact, separable, regular space. Then there is an open cover \mathcal{U} of X such that $|\mathcal{U}| \leq w(X)$ and even the cover $\overline{\mathcal{U}} = \{\overline{U} : U \in \mathcal{U}\}$ does not have a finite subcover.

Let D be a countable dense subset of X.

(1) Assume on the contrary that X is countably compact with $w(X) < \mathfrak{p}$, and we derive a contradiction. Let

$$\mathcal{F} = \{ D \cap (X \setminus \bigcup \mathcal{U}') : \mathcal{U}' \in \left[\overline{\mathcal{U}}\right]^{<\omega} \}$$
(3.3)

Since $X \setminus \bigcup \mathcal{U}' \neq \emptyset$ is open and D is dense, the family $\mathcal{F} \subset [D]^{\omega}$ is a filter, so $|\mathcal{F}| < \mathfrak{p}$ implies that \mathcal{F} has a pseudointersection $F \in [D]^{\omega}$. Since X is countably compact, F has an accumulation point x. If $U \in \mathcal{U}$, then $F \subset^* X \setminus U$, so $x \in \overline{X \setminus U} = X \setminus U$. So $x \notin \bigcup U$. Contradiction.

(2) Assume on the contrary that X is ω -D-bounded with $w(X) < cov(\mathcal{M})$, and we derive a contradiction.

 $E_{D'} = \{ \langle d_0, \dots, d_n \rangle \in P : d_i \in D' \text{ for some } i \leq n \}.$

For each $d \in D$ pick $U_d \in \mathcal{U}$ with $d \in U_d$.

Let

$$P = \{ \langle d_0, \dots, d_n \rangle \in [D]^{<\omega} : \forall i < n \ d_{i+1} \notin U_{d_i} \}$$
(3.4)
Let $\mathcal{P} = \langle P, \supset \rangle$. For $D' \subset D$ let

Let

$$\mathcal{E} = \{ E_{D \cap (X \setminus \bigcup \mathcal{U}')} : \mathcal{U}' \in \left[\overline{\mathcal{U}} \right]^{<\omega} \}.$$
(3.6)

(3.5)

Claim 3.5.1. Every $E \in \mathcal{E}$ is dense in \mathcal{P} .

Proof of the claim. Assume $E = E_{D \cap (X \setminus \bigcup U')}$. Let $\langle s_0, \ldots, s_k \rangle \in P$. Since

$$\bigcup_{0 \le i < k} \overline{U}_{s_i} \cup \bigcup \mathcal{U}' \ne X, \tag{3.7}$$

so we can pick

$$d' \in D \cap (X \setminus \bigcup_{0 \le i < k} \overline{U}_{s_i} \cup \bigcup \mathcal{U}')$$
(3.8)

Then $\langle s_0, \ldots, s_k, d \rangle \in E_{D \cap (X \setminus \bigcup \mathcal{U}')}$.

Since $|\mathcal{E}| \leq |\mathcal{U}| + \omega < \operatorname{cov}(\mathcal{M})$, there is an \mathcal{E} -generic filter \mathcal{G} . Let

$$d_i: i < \omega \rangle = \bigcup D. \tag{3.9}$$

Then $U_{d_i} \cap D \subset \{d_0, \ldots, d_i\}$, so $D' = \{d_i : i \in \omega\}$ is right separated, so it is discrete.

On the other hand, $\overline{D'}$ is not compact. Indeed, assume on the contrary that $\overline{D'}$ is compact. Then $\overline{D'} \subset \bigcup \mathcal{U'}$ for some $\mathcal{U'} \in [\mathcal{U}]^{<\omega}$. Then $E_{D \setminus \bigcup \{\overline{U}: U \in \mathcal{U'}\}}$ and \mathcal{G} are disjoint, so \mathcal{G} was not \mathcal{E} -generic. Contradiction.

4. \mathcal{D} -forced like construction

Theorem 4.1. There is a space X such that X is ω -nwd-bounded, M_2 -bounded, but not ω -bounded.

Proof. By [10], the space $\mathbf{2}^{2^{\omega}}$ has a countable, dense, submaximal subset S. Pick $a \in S$, let $Y = S \setminus \{a\}$, and put $X = \operatorname{cl}_{\mathbf{2}^{2^{\omega}}}^{\omega nwd}(Y)$. Since S is nodec, $a \notin X$, so X is not ω -bounded.

By Lemma 2.4, X is ω -nwd-bounded.

By Fact 2.1, every subset $A \in [\mathbf{2}^{2^{\omega}}]^{\omega}$ with countable weight is nowhere dense. So X is M_2 -bounded, as well.

Theorem 4.2. There is a space Y such that Y is M_2 -bounded, but not ω -nwd-bounded.

Proof. Let X be the a not ω -bounded, but ω -nwd-bounded and M_2 -bounded space from theorem 4.1. Apply Theorem 2.5 to get the space F_X . By 2.5(i), F_X is not ω -nwd-bounded. By 2.5(i), F_X is M_2 -nwd-bounded.

Theorem 4.3. Assume that κ is an infinite cardinal and $X = \{x_{\alpha} : \alpha < 2^{\kappa}\} \subset \mathbf{2}^{2^{\kappa}}$ is dense. Then there is a space $Y = \{y_{\alpha} : \alpha < 2^{\kappa}\} \subset \mathbf{2}^{2^{\kappa}}$ such that for each $I \in [2^{\kappa}]^{\kappa}$

(1) if $\{x_i : i \in I\}$ is nowhere dense , then $\{y_i : i \in I\}$ is nowhere dense.

(2) if $\{x_i : i \in I\}$ is crowded, then

$$\overline{\{x_i: i \in I\}}^{\mathbf{2}^{2^{\kappa}}} \subseteq \overline{\{y_i: i \in I\}}^{\mathbf{2}^{2^{\kappa}}}.$$
(4.1)

(3) Disjoint discrete subsets of Y with cardinalities ≤ κ has disjoint closure in 2^{2^κ}. In particular, every discrete subspace of Y with cardinality ≤ κ is closed in Y.

Proof. Let $\{\langle I_{\zeta}, J_{\zeta} \rangle : \zeta < 2^{\nu}\}$ be a 2^{κ} -abundant enumeration of the set $[2^{\kappa}]^{\leq \kappa} \times [2^{\kappa}]^{\leq \kappa}$.

By transfinite induction on $\xi \leq 2^{\kappa}$ we define sets

$$X^{\xi} = \{x^{\xi}_{\alpha} : \alpha < 2^{\kappa}\} \subset \mathbf{2}^{2^{\kappa}}$$

$$(4.2)$$

and an increasing sequence $\{\delta_{\xi} : \xi \leq 2^{\kappa}\}$ ordinals as follows: Let $x_{\alpha}^{0} = x_{\alpha}$ for $\alpha < 2^{\kappa}$, and let $\delta_0 = 0$.

If ξ is limit, let $\delta_{\xi} = \sup_{\zeta < \xi} \delta_{\zeta}$ and let

$$x_{\alpha}^{\xi}(\nu) = \lim_{\zeta \to \xi} x_{\alpha}^{\zeta}(\nu). \tag{4.3}$$

Assume that $\xi = \zeta + 1$. If $I_{\zeta} \cap J_{\zeta} \neq \emptyset$, or $\{x_i^{\zeta} : i \in I_{\zeta}\}$ or $\{x_i^{\zeta} : i \in J_{\zeta}\}$ are not discrete, then let $\delta_{\xi} = \delta_{\zeta}$ and $X_{\alpha}^{\xi} = x_{\alpha}^{\zeta}$ for all $\alpha < 2^{\kappa}$.

Assume that $I_{\zeta} \cap J_{\zeta} = \emptyset$, $\{x_i^{\zeta} : i \in I_{\zeta}\}$ and $\{x_i^{\zeta} : i \in J_{\zeta}\}$ are discrete. Let $\delta_{\zeta} < \delta'_{\xi} < 2^{\kappa}$ such that

$$\{x_i^{\zeta} \upharpoonright \delta_{\xi}' : i \in I_{\zeta}\} \text{ and } \{x_i^{\zeta} \upharpoonright \delta_{\xi}' : i \in J_{\zeta}\} \text{ are discrete in } \mathbf{2}^{\delta_{\xi}'}.$$
(4.4)

If

$$\overline{\{x_i^{\zeta}: i \in I_{\zeta}\}} \cap \overline{\{x_i^{\zeta}: i \in J_{\zeta}\}} = \emptyset,$$

then pick a finite family $S_{\zeta} \in [Fn(2^{\kappa},2)]^{<\omega}$ of finite function $s_{\zeta} \in Fn(2^{\kappa},2)$ such that the basic open sets $\{[s]: s \in S_{\zeta}\}$ separate $\overline{\{x_i^{\zeta}: i \in I_{\zeta}\}}$ and $\overline{\{x_i^{\zeta}: i \in J_{\zeta}\}}$. Let $\delta'_{\xi} \leq \delta_{\xi} < 2^{\kappa}$ such that dom $(s) \subset \delta_{\xi}$ for $s \in S_{\zeta}$.

Assume that

$$\{x_i^{\zeta}: i \in I_{\zeta}\} \cap \{x_i^{\zeta}: i \in J_{\zeta}\} \neq \emptyset$$

Let $\delta_{\xi} = \delta'_{\xi} + 1$ and for $\alpha < 2^{\kappa}$ let

$$x_{\alpha}^{\xi}(\nu) = \begin{cases} x_{\alpha}^{\zeta}(\nu) & \text{if } \nu \neq \delta_{\xi}' \text{ or } \alpha \notin I_{\zeta}, \\ 0 & \text{if } \nu = \delta_{\xi}' \text{ and } \alpha \in I_{\zeta}. \\ 1 & \text{if } \nu = \delta_{\xi}' \text{ and } \alpha \in J_{\zeta}. \end{cases}$$
(4.5)

Let $y_{\alpha} = x_{\alpha}^{2^{\kappa}}$ for $\alpha < 2^{\kappa}$. We show that $Y = \{y_{\alpha} : \alpha < 2^{\kappa}\}$ satisfies the requirements.

Claim 4.3.1. If $I \in [2^{\kappa}]^{\leq \kappa}$, $s \in Fin(2^{\kappa}, 2)$, $\nu \in dom(s)$, $[s] \cap \{x_i^{\nu} : i \in I\} = \emptyset$, then there is $t \in Fin(2^{\kappa}, 2)$ such that

(a) $t \supset s$ and $\operatorname{dom}(t) \setminus \operatorname{dom}(s) \subset \nu$, (b) $[t] \cap \{x_i^{\nu+1} : i \in I\} = \emptyset.$

Proof of the Claim. We can assume that $X^{\nu} \neq X^{\nu+1}$.

So there is $\zeta < 2^{\kappa}$ such that

- (i) $\nu = \delta'_{\zeta+1}$, and so $\nu + 1 = \delta_{\zeta+1}$.
- (ii) $\{x_i^{\zeta} \mid \nu : i \in I_{\zeta}\} \{x_i^{\zeta} \mid \nu : i \in J_{\zeta}\}$ are discrete in $\mathbf{2}^{\nu}$.

By (ii), there is $r \in Fin(\nu, 2)$ such that $r \supset s \upharpoonright \nu$ and $[r] \cap \{x_i^{\zeta} \upharpoonright \nu : i \in I_{\zeta} \cup J_{\zeta}\} = \emptyset$. Then $[r] \cap \{x_i^{\zeta+1} \upharpoonright \nu : i \in I_{\zeta} \cup J_{\zeta}\} = \emptyset$ because $x_i^{\zeta+1} \upharpoonright \nu = x_i^{\zeta} \upharpoonright \nu$. Thus $t = r \cup s$ satisfies the requirements.

Claim 4.3.2. If $I \in [2^{\kappa}]^{\leq \kappa}$, $s \in Fin(2^{\kappa}, 2)$, $[s] \cap \{x_i : i \in I\} = \emptyset$, then there is $t \in Fin(2^{\kappa}, 2)$ such that $t \supset s$ and $[t] \cap \{x_i^{2^{\kappa}} : i \in I\} = \emptyset$.

Proof of the Claim. Write dom $(s) = \{\nu_0 < \cdots < \nu_n\}$. Let

 $J = \{ \zeta < 2^{\kappa} : \delta_{\zeta+1} = \nu + 1 \text{ for some } \nu \in \operatorname{dom}(s) \}.$

Write $J = \{\zeta_1 < \cdots < \zeta_m\}$. Using Claim 4.3.1 we can define a finite sequence $t_0, t_1, \ldots, t_m \in Fin(2^{\kappa}, 2)$ such that

(a) $s = t_0 \subset \ldots \subset t_m$, (b) $\operatorname{dom}(t) \to \operatorname{dom}(t)$

(b) $\operatorname{dom}(t_{k+1}) \setminus \operatorname{dom}(t_k) \subset \delta'_{\zeta_{k+1}}.$

(c) $[t_{k+1}] \cap \{x_i^{\delta_{\zeta_{k+1}}} : i \in I\} = \emptyset.$

Then $t = t_m$ satisfies the requirements.

By Claim 4.3.2 we have

Claim 4.3.3. If $\{x_i : i \in I\}$ is nowhere dense for some $I \in [2^{\kappa}]^{\leq \kappa}$, then $\{y_i : i \in I\}$ is nowhere dense.

So we verified (1).

Claim 4.3.4. If $I \in [2^{\kappa}]^{\leq \kappa}$, $s \in Fin(2^{\kappa}, 2)$ and $\nu \in dom(s)$ such that $\{x_i^{\nu} : i \in I\}$ is crowded, then there is $t \in Fin(2^{\kappa}, 2)$ such that

(a) $t \supset s$ and $\operatorname{dom}(t) \setminus \operatorname{dom}(s) \subset \nu$, (b) $[t] \cap \{x_i^{\nu+1} : i \in I\} \neq \emptyset$ is crowded.

Proof of the Claim. We can assume that $X^{\nu} \neq X^{\nu+1}$. So there is $\zeta < 2^{\kappa}$ such that

(i) $\nu = \delta'_{\zeta+1}$, and so $\nu + 1 = \delta_{\zeta+1}$.

(ii) $\{x_i^{\zeta} \mid \nu : i \in I_{\zeta}\}$ and $\{x_i^{\zeta} \mid \nu : i \in J_{\zeta}\}$ are discrete in $\mathbf{2}^{\nu}$.

Since $\{x_i^{\nu} : i \in I\}$ is crowded, by (ii) there is $r \in Fin(\nu, 2)$ such that (a) $r \supset s \upharpoonright \nu$

(b) $[r] \cap \{x_i^{\zeta} \upharpoonright \nu : i \in I_{\zeta} \cup J_{\zeta}\} = \emptyset.$

(c) $[r] \cap \{x_i^{\check{\nu}} : i \in I\}$ is crowded.

Then $[r] \cap \{x_i^{\zeta+1} \upharpoonright \nu : i \in I_{\zeta} \cup J_{\zeta}\} = \emptyset$ because $x_i^{\zeta+1} \upharpoonright \nu = x_i^{\zeta} \upharpoonright \nu$. Thus $t = r \cup s$ satisfies the requirements.

Claim 4.3.5. If $I \in [2^{\kappa}]^{\leq \kappa}$, $s \in Fin(2^{\kappa}, 2)$ such that $\{x_i : i \in I\} \subset [s]$ is crowded, then $\{y_i : i \in I\} \cap [s] \neq \emptyset$.

Proof of the Claim. Write dom $(s) = \{\nu_0 < \cdots < \nu_n\}$. Let

 $J = \{\zeta < 2^{\kappa} : \delta_{\zeta+1} = \nu + 1 \text{ for some } \nu \in \operatorname{dom}(s)\}.$

Write $J = \{\zeta_1 < \cdots < \zeta_m\}$. Using Claim 4.3.4 we can define a finite sequence $t_0, t_1, \ldots, t_m \in Fin(2^{\kappa}, 2)$ such that

(a) $s = t_0 \subset \ldots \subset t_m$,

(b) $\operatorname{dom}(t_{k+1}) \setminus \operatorname{dom}(t_k) \subset \delta'_{\zeta_{k+1}}.$

(c) $[t_{k+1}] \cap \{x_i^{\delta_{\zeta_{k+1}}} : i \in I\}$ is non-empty crowded.

Then $t = t_m$ satisfies the requirements.

By Claim 4.3.5 we have

 \square

Claim 4.3.6. If $\{x_i : i \in I\}$ is crowded, then $\overline{\{x_i : i \in I\}}^{2^{2^{\kappa}}} \subset \overline{\{y_i : i \in I\}}^{2^{2^{\kappa}}}$.

So we verified (2).

If $I, J \in [2^{\kappa}]^{\leq \kappa}$, $I \cap J = \emptyset$, $\{y_i : i \in I\}$ and $\{y_i : i \in J\}$ are discrete, then there is $\nu < 2^{\kappa}$ such that $\{y_i \mid \nu : i \in I\}$ and $\{y_i \mid \nu : i \in J\}$ are discrete in 2^{ν} . So, by the construction, there is a $\nu < 2^{\kappa}$ such that $y_i(\nu) = 0$ for all $i \in I$, and $y_i(\nu) = 1$ for all $i \in J$. Thus $\overline{\{y_i : i \in I\}} \cap \overline{\{y_i : i \in J\}} = \emptyset$. So we have (3). So we proved Theorem 4.3. \square

Theorem 4.4. There is a dense subspace Y of $2^{2^{\kappa}}$ with size 2^{κ} such that (1) Every discrete subset of Z of size $\leq \kappa$ is closed in Z. (2) for each $f \in \mathbf{2}^{2^{\kappa}}$ there is a nowhere dense $X_f \in [Z]^{\kappa}$ such that $f \in D'_f$.

Proof. The Cantor cube $\mathbf{2}^{2^{\kappa}}$ contains a dense subspace T of size κ . Put $X = \mathbf{2}^{\kappa} \times T \subset \mathbf{2}^{\kappa} \times \mathbf{2}^{2^{\kappa}} \approx \mathbf{2}^{2^{\kappa}}$. Write $X = \{x_{\alpha} : \alpha < 2^{\kappa}\}$

If $f \in \mathbf{2}^{2^{\kappa}}$, then f is an accumulation point of the nowhere dense crowded set $D_f = \{f \upharpoonright \kappa\} \times T.$ Write $D_f = \{x_\alpha : \alpha \in I_f\}$

Apply Theorem 4.3 for X to obtain a space $Y \subset \mathbf{2}^{2^{\kappa}}$.

Then $\{y_{\alpha} : \alpha \in I_f\}$ is nowhere dense and f is an accumulation point of $\{y_{\alpha}: \alpha \in I_f\}.$ \square

So Y satisfies the requirements.

Theorem 4.5. There is a dense, separable, non-compact topological space $X \subset$ $2^{2^{\omega}}$ such that

$$X = \operatorname{cl}_{\mathbf{2}^{2^{\omega}}}^{\omega D}(X) = \bigcup \left\{ \overline{E}^{\mathbf{2}^{2^{\omega}}} : E \in \left[X \right]^{\omega} \text{ is discrete} \right\},$$
(4.6)

but

$$\mathbf{2}^{2^{\omega}} = \operatorname{cl}_{\mathbf{2}^{2^{\omega}}}^{\omega nwd}(X) = \bigcup \left\{ \overline{F}^{\mathbf{2}^{2^{\omega}}} : F \in \left[X \right]^{\omega} \text{ is nowhere dense} \right\}.$$
(4.7)

So X is ω -D-bounded, but not ω -nwd-bounded. Moreover there is no convergent sequence in X, so X is M_2 -bounded.

Proof. Using Theorem 4.4 fix a dense subspace Y of $2^{2^{\omega}}$ with size 2^{ω} such that (1) Every closed subset of Z of size $\leq \omega$ is closed discrete in Y.

(2) for each $f \in \mathbf{2}^{2^{\omega}}$ there is a nowhere dense $X_f \in [Y]^{\omega}$ such that $f \in D'_f$. Pick $y \in Y$ and let $Z = Y \setminus \{z\}$ Let

 $X = \bigcup \{ \overline{D} : D \subset Z \text{ is discrete} \}.$ (4.8)

Then $y \notin X$, but y is an accumulation point of a countable nowhere dense subset of $Y \subset X$, so X is not compact.

The following claim is straightforward:

Claim 4.5.1. If $E \subset X$ is a countable discrete set, then there is a countable discrete $D \subset Y \cup Y'$ with $E \subset \overline{D}$.

Thus if $E \subset X$ is a countable discrete set, then E is contained in some compact set $\overline{D}^{\mathbf{2}(2)^{2^{\omega}}} \subset X$, so \overline{E} is compact. Thus X is ω -D-bounded. The cardinal invariant $\bar{\mathfrak{o}}$ was introduced by Leathrum [6] as follows: $\bar{\mathfrak{o}}$ is the minimal size of a maximal almost disjoint family of antichains in the Cantor tree.

Theorem 4.6. If $\bar{\mathfrak{o}} = \mathfrak{s} = \mathrm{cof}(\mathcal{M}) = \omega_1$, then there is a countable dense set D

in 2^{ω_1} such that D is nodec and there is no convergent sequence in $cl_{2\omega_1}^{\omega nwd}(D)$. So, if $d \in D$, then $X = cl_{2\omega_1}^{\omega D}(D \setminus \{d\})$ is not ω -bounded, but ω -nwd-bounded and M_2 -bounded.

Proof. $2^{\omega} = 2^{\omega_1}$ is the ground model.

Lemma 4.7. If $\bar{\mathfrak{o}} = \mathfrak{s} = \omega_1$, then there is a sequence $\langle (\mathcal{U}_{\alpha}, \mathcal{V}_{\alpha}) : \alpha < \omega_1 \rangle$ such that $\mathcal{U}_{\alpha} \cap \mathcal{V}_{\alpha} = \emptyset$ and $\mathcal{U}_{\alpha} \cup \mathcal{V}_{\alpha} \subset 2^{<\omega}$ is a family of pairwise disjoint basic open subset of 2^{ω} such that if $\mathcal{W} \subset 2^{<\omega}$ is an arbitrary infinite family of pairwise disjoint basic open sets then there is $\alpha < \omega_1$ such that $|\mathcal{W} \cap \mathcal{U}_{\alpha}| = |\mathcal{W} \cap \mathcal{V}_{\alpha}| = \omega$.

Proof. $\bar{\mathfrak{o}} = \omega_1$ implies that there is a maximal almost disojoint family $\langle (\mathcal{T}_{\alpha} : \alpha < \omega_1 \rangle$ of antichains in $2^{<\omega}$. For each antichain \mathcal{T}_{α} let $S_{\alpha,i} : i < \omega_1$ be a splitting family in \mathcal{T}_{α} . Let $\langle (\mathcal{U}_{\alpha}, \mathcal{V}_{\alpha}) : \alpha < \omega_1 \rangle$ be an enumeration of $(S_{\alpha,i}, \mathcal{T}_{\alpha} \setminus S_{\alpha,i})$.

For \mathcal{W} there is α such that $\mathcal{W} \cap T_{\alpha}$ is infinite. Now some $S_{\alpha,i}$ splits $\mathcal{W} \cap T_{\alpha}$. \Box

Induction in ω_1 steps:

 $D_0 \subset 2^{\omega_1}$ is countable dense.

In general: modify S up to $\omega(1+\alpha)$.

 $D_{\alpha} \subset 2^{\omega(1+\alpha)}$ is countable dense

We will guarantee: Enumerate a codinal subset of the nowhere dense subsets of D_{α} in ω_1 type: $\{E_i^{\alpha} : i < \omega_1\}$.

We also have $\left\langle (\mathcal{U}_{j}^{\alpha}, \mathcal{V}_{j}^{\alpha}) : j < \omega_{1} \right\rangle$

We guarantee in some step later:

(1) E_i^{α} is closed discrete in D_{β}

(2) there is a coordinate ζ such that $\mathcal{U}_{i}^{\alpha} \cap E_{i}^{\alpha}(\zeta) \equiv 0$ and $\mathcal{V}_{i}^{\alpha} \cap E_{i}^{\alpha}(\zeta) \equiv 1$.

Claim 4.7.1. $D = D_{\omega_1}$ is nodec.

Indeed, every nowhere dense appear in some intermediate steps, so it will be closed disrete later.

Claim 4.7.2. There is no convergent sequence in $cl_{2\omega_1}^{\omega nwd}(D)$.

Proof. Assume that $\{x_n\} \to x$.

Let $x_n \in \overline{S_n}$, S_n is nowhere dense, so S_n is discrete. By thinning out we can assume that there are $x_n \in W_n \in 2^{<\omega}$ basic open. We can assume $S_n \subset W_n$.

Then $S = \bigcup S_n$.

Then $S \subset E_i^{\alpha}(\zeta)$.

There are j both U_j^{α} and V_j^{α} contains infinitely many W_n .

Then is some step ζ we have $\mathcal{U}_{j}^{\alpha} \cap E_{i}^{\alpha}(\zeta) \equiv 0$ and $\mathcal{V}_{j}^{\alpha} \cap E_{i}^{\alpha}(\zeta) \equiv 1$. So for infinitely many n we have $S_{n}(\zeta) \equiv 0$, so $s_{n}(\zeta) = 0$.

Similarly for infinitely many n we have $S_n(\zeta) \equiv 1$, so $s_n(\zeta) = 1$. So the sequence $\{s_n\}$ can not convege.

Theorem 4.8. It is consistent that $2^{\omega} = 2^{\omega_1}$ is large and there is M_2 -bounded, but not ω -nwd-bounded space

Proof. Let X be the ω -bounded, but ω -nwd-bounded and M_2 -bounded space of size 2^{ω} from theorem 4.6 Apply Theorem 2.5 to get the space F_X . By 2.5(i), F_X is not ω -nwd-bounded. By 2.5(iv), F_X is M_2 -nwd-bounded.

5. Examples from special points in Cech-Stone compactifications

A point is ω -far if it is not in the closure of a countable discrete subset of X. A point is remote if it is not in the closure of any nwd subset of X.

A point $p \in \beta X \setminus X$ is a remote point of X if p is not the limit of any nowhere dense subset of X. Remote points were introduced by Fine and Gillman [7].

Theorem 5.1 (Dow,[3]). Every nonpseudocompact ccc space of π -weight ω_1 has a remote point.

Theorem 5.2. Let X be a completely regular space.

(1) The space $\operatorname{cl}_{\beta X}^{\omega D} X$ is ω -D-bounded.

(2) If X is ccc then the space $\operatorname{cl}_{\beta X}^{\omega nwd} X$ is ω -nwd-bounded.

(3) If $\chi(x,\beta X) > \omega$ for all $x \in \beta X$, then $\operatorname{cl}_{\beta X}^{\omega nwd} X$ is M_2 -bounded.

(4) If X is separable and X has an ω -far point, then $\operatorname{cl}_{\beta X}^{\omega D} X$ is not ω -bounded. (5) If X is separable and X has a remote point, then $\operatorname{cl}_{\beta X}^{\omega nwd} X$ is not ω -bounded.

- (6) If X is M_2 and X has a remote point, then $\operatorname{cl}_{\beta X}^{\omega nwd} X$ is not ω - M_2 -bounded.
- (7) If X is not pseurocompact and $\pi w(X) \leq \omega_1$, then X has a remote point.

Theorem 5.3. There is a locally compact NEM space X such that X is ω nwd-bounded, M_2 -bounded, but not ω -bounded.

Proof. Let $Y = \omega \times 2^{\omega_1}$

By Theorem 5.1, there is a remote point x in $\beta Y \setminus Y$.

[8, Corollary 1.5.] : there is a remote point x in $\beta Y \setminus Y$

Let $X = \beta Y \setminus \{x\}.$

Let $D \subset Y$ be a countable dense set. By the lemma, X is nwd-bounded, and not ω -bounded, because $x \notin X$.

 $X = \operatorname{cl}_{\beta Y}^{\omega nwd} Y$

Since $\chi(y, \beta Y) \geq \omega_1$ for all $y \in \beta Y$, a countable set is nowhere dense in βY by fact 2.1.

So X is M2 bounded, nwd-bounded, but not omega bounded because $D \subset X$ is dense.

Need: there is no first countable point in βY .

Theorem 5.4. There is a locally compact space $X = \omega^* \setminus \{x\}$ such that X is not ω -nwd-bounded, but M_2 -bounded.

 \square

Proof. By vanMill, Handbook, or in [8] There is a point $x \in \omega^*$ such that

• x is not a weak P-point,

• $x \notin D'$ for all countable discrete $D \subset \omega^*$

Then $\omega^* \setminus \{x\}$ is an example.

Theorem 5.5. There is a 0-dimensional separable, <u>NEM locally compact</u> ω -nwd-bounded, but not M_2 -bounded space X.

Proof. Consider the space

$$X = \operatorname{cl}_{\beta \mathbb{O}}^{\omega nwd} \mathbb{Q}.$$

By [2, Thm 1.5] a topological space has remote points if it has countable π -weight is not pseudocompact. Hence there is a point $\beta \mathbb{Q} \neq \operatorname{cl}_{\beta \mathbb{Q}}^{\omega nwd} \mathbb{Q}$. Since \mathbb{Q} is M_2 , Xis not M_2 -bounded.

However, by Lemma 2.4, Y is ω -nwd-bounded.

Theorem 5.6. There is an 0-dimensional, ω -D-bounded, but not M_2 -nwd-bounded space X.

Proof. Let X be an ω -D-bounded space which is not M_2 -bounded from Theorem 5.5

Apply Theorem 2.5 to get the space F_X . By 2.5(ii), F_X is not M_2 -nwd-bounded. By 2.5(iii), F_X is *D*-nwd-bounded.

Theorem 5.7. If $\mathfrak{p} = cof(\mathcal{M})$, then there is a 0-dimensional locally compact separable non-compact topological space $X = \langle \mathbb{C} \setminus \{0\} \cup \mathfrak{p}, \tau \rangle$ such that

- the subspace topologies on (C \ {0}) and on p are the natural euclidean and ordinal topologies, respectively,
- (2) $(\mathbb{C} \setminus \{0\})$ is dense open in (so X is not compact),
- (3) X is ω -nwd-bounded.

(4) $\chi(\alpha, X) \leq |\alpha| + \omega$ for $\alpha < \mathfrak{p}$.

In particular, if $\mathfrak{p} = \operatorname{cof}(\mathcal{M}) = \omega_1$, then X is first countable.

Theorem 5.8. It is consistent that there is an 0-dimensional, ω -D-bounded, but not M_2 -nwd-bounded space X of size 2^{ω} .

Proof. Plug the space from Theorem 5.7 into the previous proof. \Box

Proof. Let X be the D-bounded, but not M_2 -bounded space of size 2^{ω} from theorem 5.7 Apply Theorem 2.5 to get the space F_X . By 2.5(ii), F_X is not M_2 -nwd-bounded. By 2.5(iii), F_X is D-nwd-bounded.

Proposition 5.9. There is a countably compact, non-compact, locally compact, separable space X with w(X) = t.

Proof. Let $\mathcal{A} = \{A_{\alpha} : \alpha < \mathfrak{t}\}$ be a tower, and let X be the $\gamma \mathbb{N}$ -space created from \mathcal{A} .

Replace the isolated points with copies of [0, 1].

The following example is well-known:

Proposition 5.10. There is a crowded, dense, countably compact subspace X of ω^* with $|X| = 2^{\omega}$.

11

FIGURE 2. Consistent examples

6. Separation of boundedness properties

Problem 3. Is there ZFC examples of cardinalities $< 2^{2^{\omega}}$, $or \le 2^{\omega_1}$, $or \le 2^{\omega}$? **Problem 4.** We have locally compact example only for (2): theorem 5.4. Recall Problem 1: (a) Is there a Frechet (or first countable) ω -D-bounded, but not M_2 -bounded (not ω -bounded) space?

(b) Is there a sequential ω -D-bounded, but not ω -nwd-bounded space?

7. Products

Theorem 7.1. If X and Y are not ω -bounded, then $X \times Y$ is not ω -D-bounded.

Proof. We can assume that $D = \{d_n : n \in \omega\} \in [X]^{\omega}$ and $E \in [Y]^{\omega}$ are countable, and \mathcal{U} and \mathcal{V} witness that \overline{D} and \overline{E} are not compact.

We construct $e_n \in E$ and $d_n \in U_n \in \mathcal{U}$ $e_n \in V_n \in \mathcal{V}$ such that $\langle d_n, e_n \rangle \in U_m \times V_m$ implies n = m.

Choose $e_n \in E \setminus \bigcup \{\overline{V_m} : m < n\}$ Then pick V_n and U_n such that $\langle d_i, e_i \rangle \notin U_n \times V_n$ for n < i.

Thus $\{\langle d_n, e_n \rangle\}$ is compact, so its projection to X is also compact, but it contains D, so \overline{D} is also compact. Contradiction.

Theorem 7.2. If X is ω -D-bounded and Y is countably compact, then $X \times Y$ is countably compact.

So if X is ω -D-bounded, then X^n is countably compact for all $n \in \omega$.

References

- [1] B. Balcar, F. Hernández-Hernández,
- [2] E. K. van Douwen . *Remote points*, Diss. Math., 188 (1980).
- [3] Dow, Alan Remote points in spaces with π -weight ω 1. Fund. Math. 124 (1984), no. 3, 197–205.
- [4] N. J. Fine ; L. Gillman. Extensions of Continuous Functions in $\beta\mathbb{N}$. Bull. Amer. Math. Soc., 66:376–381, 1960.
- [5] M. Hrušak, Combinatorics of dense subsets of the rationals, Fund. Math 183 (2004)
- [6] T. Leathrum, A special class of almost disjoint families, J. Symb. Log. **60** (1995), 879–891.
- [7] van Mill, Jan Weak P-points in Čech-Stone compactifications. Trans. Amer. Math. Soc. 273 (1982), no. 2, 657–678.
- [8] Jan van Mill, Sixteen types in $\beta \omega \omega$, Topology Appl. 13 (1982), 43–57.
- [9] handbook
- [10] Juhász, István; Soukup, Lajos; Szentmiklóssy, Zoltán *D*-forced spaces: a new approach to resolvability. Topology Appl. 153 (2006), no. 11, 1800–1824.

Theorem 7.3 (vanMill, [7, Theorem 9.1]). Let X be nonpseudocompact. Assuming $\mathfrak{b} = \mathfrak{c}$, $\beta X \setminus X$ contains a point x such that if $F \subset \beta X \setminus x$ is countable and nowhere dense, then $x \notin cl\beta XF$.

Theorem 7.4. Under $\mathfrak{b} = \mathbf{c}$ there is a locally compact space X such that X is ω -nwd-bounded, M_2 -bounded, but not ω -bounded.

Proof. Let $Y = \omega \times 2^{\omega_1}$

By Theorem 4.1, there is a point x such that if $F \subset \beta Y \setminus Y$ is countable and nowhere dense, then $x \notin cl\beta YF$.

Since Y is nowhere M2, a countable set is nowhere dense in βY .

So $\beta Y \setminus \{x\}$ is M2 bounded, nwd-bounded, but not omega bounded because Y is separable.

Need: there is no first countable point in βY .

Theorem 7.5. If X is ω -D-bounded and $s(X) = \omega$, then X is a compact.

Proof. A space X is compact iff the closure of any discrete space is compact. If $s(X) = \omega$, then there is no uncountable discrete subspace.

Problem 5. Is there a ω -D-bounded, but not ω -bounded space with $t(X) = \omega$?

It is consistent that there is a countably compact HFD. This space can not be ω -D-bounded.

Is there in ZFC a countably tight, countably compact, but not ω -bounded (ω -D-bounded space)

Consistently there is a first countable example (mexico)

Lemma 7.6. If X is countably compact $t(X) = \omega$, $\chi(p, X) \leq \omega_1$, T_3 , then there is a countable discrete D with $p \in D'$

Proof. countably compact implies $\chi(p, X) = \psi \chi(p, X) = \omega_1$ cobnstruct a free sequence converge to pShould stop in countably many steps.

Theorem 7.7. If CH + (t) then there is a locally compact, first countable, separable, not ω -D-bounded crowed space.

Proof. locally compact, first countable, non-compact separable scattered space. osztasweski times [0,1]

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF SCIENCES *E-mail address*: juhasz@renyi.hu

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, HUNGARIAN ACADEMY OF SCIENCES *E-mail address*: soukup@renyi.hu *URL*: http://www.renyi.hu/soukup

EÖTVÖS UNIVERSITY OF BUDAPEST E-mail address: szentmiklossyz@gmail.com

14