Forcing and Combinatorics, 3.

Lajos Soukup

MTA Alfréd Rényi Institute of Mathematics

Erdős-Rado Theorem

$$\kappa \to (\lambda)^n_{\sigma}$$
 iff for all $f: [\kappa]^n \to \sigma$ there is $A \in [\kappa]^{\lambda}$ s.t. $|f''[A]^n| = 1$

Theorem (Erdős-Rado)

$$(2^{\kappa})^+ \to (\kappa^+)^2_{\kappa}$$
. $(2^{2^{\kappa}})^+ \to (\kappa^+)^3_{\kappa}$ $(exp_n(\kappa))^+ \to (\kappa^+)^{n+1}_{\kappa}$

Almost disjoint families

- ullet there is an almost disjoint family $\mathcal{A}\subset \left[\omega
 ight]^\omega$ of cardinality 2^ω
- ullet Is there an almost disjoint family $\mathcal{B}\subset \left[\omega_1
 ight]^{\omega_1}$ of size 2^{ω_1} ?
- almost disjoint: $B \cap B' \leq \omega$ for $B \neq B' \in \mathcal{B}$.
- ullet there is an almost disjoint family $\mathcal{B}\subset \left[\omega_1
 ight]^{\omega_1}$ of cardinality ω_2
- $2^{\omega_1} \ge \omega_3$.
- $2^\omega=\omega_1\Longrightarrow\exists$ almost disjoint family $\mathcal{B}\subset\left[\omega_1
 ight]^{\omega_1}$ of size 2^{ω_1}
- $2^{\omega} > \omega_1$.
- $\begin{array}{c} \bullet \ \mathsf{Con}(\mathsf{ZFC} \,+\, 2^\omega = 2^{\omega_1} = \omega_3 + \\ \qquad \qquad \text{there is no almost disjoint family } \mathcal{B} \subset \left[\omega_1\right]^{\omega_1} \ \mathsf{of \ size} \ \omega_3) \\ \end{array}$

$2^{\omega_1}=\omega_3+ ot\equiv a.d.$ family $\mathcal{B}\subset \left[\omega_1 ight]^{\omega_1}$ of size ω_3

- \bullet \mathcal{M} c.t.m. $\mathcal{M} \models 2^{\omega_1} = \omega_2$.
- $P = \mathbb{FIN}(\omega_3 \times \omega) \mid \mathbb{P} \mid = \omega_3$, c.c.c.
- $\mathcal{M}[\mathcal{G}] \models 2^{\omega_1} \geq 2^{\omega} \geq \omega_3$.
- $\mathcal{G} \ni p \Vdash \langle A_{\alpha} : \alpha < \check{\omega}_3 \rangle \subset \left[\check{\omega}_1\right]^{\check{\omega}_1}$ is almost disjoint.
- Let $D_{\alpha,\beta} = \{ \xi < \omega_1 : \exists p_{\xi} \in \mathbb{P} \ p_{\xi} \Vdash \check{\xi} = \sup(A_{\check{\alpha}} \cap A_{\check{\beta}}) \}.$
- $\{p_{\xi}: \xi \in D_{\alpha,\beta}\}$ is an antichain: $|D_{\alpha,\beta}| \leq \omega$. $g(\alpha,\beta) = \sup D_{\alpha,\beta}$
- ullet $g:\left[\omega_3
 ight]^2 o\omega_1$. Erdős-Rado: $(2^{\omega_1})^+ o(\omega_2)^2_{\omega_1}$
- $\exists X \in [\omega_3]^{\omega_2} \exists \eta < \omega_1 \ \forall \alpha, \beta \in X \ g(\alpha, \beta) = \eta.$
- $\mathcal{M}[\mathcal{G}] \models \{A_{\alpha} \setminus (\eta + 2) : \alpha \in X\}$ is a disjoint family

- $\mathcal{G} \ni p \Vdash \langle A_{\alpha} : \alpha < \check{\omega}_3 \rangle \subset \left[\check{\omega}_1\right]^{\check{\omega}_1}$ is almost disjoint.
- $\bullet \ \, \mathsf{Let} \, \, {\color{red} D_{\alpha,\beta}} = \{ \xi < \omega_1 : \exists \textit{p}_{\xi} \in \mathbb{P} \, \, \textit{p}_{\xi} \Vdash \check{\xi} = \sup(\textit{A}_{\check{\alpha}} \cap \textit{A}_{\check{\beta}}) \}.$
- $\{p_{\xi}: \xi \in D_{\alpha,\beta}\}$ is an antichain: $|D_{\alpha,\beta}| \leq \omega$. $g(\alpha,\beta) = \sup D_{\alpha,\beta}$
- $g:\left[\omega_3
 ight]^2 o\omega_1$. Erdős-Rado: $(2^{\omega_1})^+ o[\omega_2]_{\omega_1}^2$
- $\exists X \in [\omega_3]^{\omega_2} \exists \eta < \omega_1 \ \forall \alpha, \beta \in X \ g(\alpha, \beta) = \eta.$
- $\mathcal{M}[\mathcal{G}] \models \{A_{\alpha} \setminus (\eta + 2) : \alpha \in X\}$ is a disjoint family
- Assume $\zeta \geq \eta + 1$, $\alpha, \beta \in X$ and $\mathcal{M}[\mathcal{G}] \models \zeta \in A_{\alpha} \cap A_{\beta}$.
- $\mathcal{M}[\mathcal{G}] \models \eta + 1 \leq \zeta \leq \xi = \sup(A_{\alpha} \cap A_{\beta})$
- $\bullet \ \eta + 1 \leq \zeta \leq \xi \ \text{and} \ \exists q \in \mathcal{G} \ (q \leq p) \ q \Vdash \check{\xi} = \sup(A_{\check{\alpha}} \cap A_{\check{\beta}}).$
- $\xi \in D_{\alpha,\beta}$ so $\xi \le g(\alpha,\beta) = \eta < \eta + 1 \le \zeta \le \xi$

How to construct a topological space?

- $X = \langle X, \tau \rangle$ is a topological space
- $\mathcal{N} \subset \mathcal{P}(X)$ is a **network** iff for each $x \in U \in \tau$ there is $N \in \mathcal{N}$ with $x \in N \subset U$.
- $nw(X) = min\{|\mathcal{N}| : \mathcal{N} \text{ is a network}\}.$
- $nw(X) \leq |X|, w(X)$
- $Y \subset X$ is weakly separated iff there is a neighbourhood assignment $f: Y \to \tau$ s.t. for each $x \neq y \in Y$ then either $x \notin f(y)$ or $y \notin f(x)$.
- $R(X) = \sup\{|Y| : Y \subset X \text{ is weakly separated}\}$

How to construct a topological space?

- $\mathcal{N} \subset \mathcal{P}(X)$ is a **network** iff for each $x \in U \in \tau$ there is $N \in \mathcal{N}$ with $x \in N \subset U$.
- $nw(X) = min\{|\mathcal{N}| : \mathcal{N} \text{ is a network}\}.$
- $Y \subset X$ is weakly separated iff there is a neighbourhood assignment $f: Y \to \tau$ s.t. for each $x \neq y \in Y$ then either $x \notin f(y)$ or $y \notin f(x)$.
- $R(X) = \sup\{|Y| : Y \subset X \text{ is weakly separated}\}$
- $R(X) \leq nw(X)$
- There are spaces with nw(X) > R(X) in many models.
- OPEN: Is it consistent that $nw(X) \le R(X)$ for each regular space?

How to approximate a topological space?

 $\mathcal N$ is a **network** iff for each $x\in U\in au$ there is $N\in \mathcal N$ with $x\in N\subset U$. Y is **weakly separated** iff $\exists f:Y\to au$ s.t. $x\notin f(y)$ or $y\notin f(x)$ for $x\neq y\in Y$.

- Con(there is a first countable, 0-dimensional topological space $X = \langle \omega_1, \tau \rangle$ such that $nw(X) = \omega_1$ and $R(X) = \omega$).
- If \mathcal{M} is a ctm, then there is a c.c.c poset P in \mathcal{M} such that if \mathcal{G} is an \mathcal{M} -generic filter in P then in $\mathcal{M}[\mathcal{G}]$ there is a first countable, 0-dimensional topological space $X=\langle \omega_1,\tau\rangle$ such that $nw(X)=\omega_1$ and $R(X)=\omega$.

$$\mathcal{M}[\mathcal{G}]\models X=\langle \omega_1, au
angle$$
, $\chi(X)=\omega$, $\mathit{nw}(X)=\omega_1$, $R(X)=\omega$

 ${\mathcal N}$ is a **network** iff for each $x\in U\in {\tau}$ there is ${\mathcal N}\in {\mathcal N}$ with $x\in {\mathcal N}\subset U$. Y is **weakly separated** iff $\exists f:Y\to {\tau} \text{ s.t. } x\notin f(y) \text{ or } y\notin f(x) \text{ for } x\neq y\in Y$.

- $p = \langle A_p, n_p, \{ U_p(\alpha, i) : \alpha \in A, i \in n \} \rangle \in P$ iff • $A_p \in [\omega_1]^{<\omega}, n_p \in \omega, \alpha \in U_p(\alpha, i) \subset A$
- Idea: $U_{\mathcal{G}}(\alpha, i) = \bigcup \{U_p(\alpha, i) : p \in \mathcal{G}\}.$
- $p \le q$ iff
 - $A_p \supset A_q$, $n_p \ge n_q$ $U_p(\alpha, i) \cap A_q = U_q(\alpha, i)$ for $\langle \alpha, i \rangle \in A_q \times n_q$
 - if $U_q(\alpha, i) \subset U_q(\beta, j)$ then $U_p(\alpha, i) \subset U_p(\beta, j)$
 - if $U_q(\alpha,i) \cap U_q(\beta,j) = \emptyset$ then $U_p(\alpha,i) \cap U_p(\beta,j) = \emptyset$
- $\mathbb{P} = \langle P, \leq \rangle$ satisfies c.c.c.
- $X = \langle \omega_1, \tau \rangle$ is first countable, 0-dimensional.
- $nw(X) = \omega_1$? $R(X) = \omega$?

$$\mathcal{M}[\mathcal{G}]\models X=\langle \omega_1, au
angle$$
 , $\chi(X)=\omega$, $\mathit{nw}(X)=\omega_1$, $\mathit{R}(X)=\omega$

 ${\mathcal N}$ is a **network** iff for each $x\in U\in \tau$ there is $N\in {\mathcal N}$ with $x\in N\subset U$. Y is **weakly separated** iff $\exists f:Y\to \tau$ s.t. $x\notin f(y)$ or $y\notin f(x)$ for $x\neq y\in Y$.

- $X = \langle \omega_1, \tau \rangle$, $\{U(\alpha, i) : \alpha < \omega_1, i < \omega\}$ base
- Need to prove: $nw(X) = \omega_1$ and $R(X) = \omega$
- If X is σ -discrete then $nw(X) = \omega_1$
- If X is σ -second-countable then $R(X) = \omega$
- It is impossible!
- Wait a minute:
 - If $\mathcal{M}[\mathcal{G}][\mathcal{H}_0] \models X$ is σ -discrete then $\mathcal{M}[\mathcal{G}] \models nw(X) = \omega_1$.
 - If $\mathcal{M}[\mathcal{G}][\mathcal{H}_1] \models X$ is σ -second-countable then $\mathcal{M}[\mathcal{G}] \models R(X) = \omega$.

$$\mathcal{M}[\mathcal{G}]\models X=\langle \omega_1, au
angle$$
 , $\chi(X)=\omega$, $\mathit{nw}(X)=\omega_1$, $R(X)=\omega$

- $X = \langle \omega_1, \tau \rangle$, $\{U(\alpha, i) : \alpha < \omega_1, i < \omega\}$ base
- Need to prove: $nw(X) = \omega_1$ and $R(X) = \omega in \mathcal{M}[\mathcal{G}]$
- ullet Find c.c.c posets Q_0 and Q_1 in $\mathcal{M}[\mathcal{G}]$ such that
 - if \mathcal{H}_0 is $\mathcal{M}[\mathcal{G}]$ -generic in Q_0 then $\mathcal{M}[\mathcal{G}][\mathcal{H}_0] \models X$ is σ -discrete
 - if \mathcal{H}_1 is $\mathcal{M}[\mathcal{G}]$ -generic in Q_1 then $\mathcal{M}[\mathcal{G}][\mathcal{H}_1] \models X$ is σ -second-countable
- Let $\langle B, f, g \rangle \in Q_0$ iff
 - $B \in [\omega_1]^{<\omega}, f, g : B \to \omega$
 - if $f(\tilde{\beta}) = n$ then $f(\beta') \neq n$ for each $\beta' \in U(\beta, g(\beta)) \setminus \{\beta\}$
- Ordering: extension
- It works.

$$\mathcal{M}[\mathcal{G}]\models X=\langle \omega_1, au
angle$$
 , $\chi(X)=\omega$, $\mathit{nw}(X)=\omega_1$, $R(X)=\omega$

- $X = \langle \omega_1, \tau \rangle$, $\{U(\alpha, i) : \alpha < \omega_1, i < \omega\}$ base
- Need to prove: $nw(X) = \omega_1$ and $R(X) = \omega$
- ullet Find c.c.c posets Q_0 and Q_1 in $\mathcal{M}[\mathcal{G}]$ such that
 - if \mathcal{H}_0 is $\mathcal{M}[\mathcal{G}]$ -generic in Q_0 then $\mathcal{M}[\mathcal{G}][\mathcal{H}_0] \models X$ is σ -discrete
 - if \mathcal{H}_1 is $\mathcal{M}[\mathcal{G}]$ -generic in Q_1 then $\mathcal{M}[\mathcal{G}][\mathcal{H}_1] \models X$ is σ -second-countable
- Let $\langle B, f, n, g \rangle \in Q_1$ iff
 - $B \in [\omega_1]^{<\omega}$, $f : B \to \omega$, $g : B \times n \to \omega$
 - if $f(\beta) = f(\beta') = n$ and $g(\beta, i) = g(\beta', j)$ then $U(\beta, i) \cap f^{-1}\{n\} = U(\beta', j) \cap f^{-1}\{n\}$
- Ordering: extension
- It works.

Negative partition relations

f establishes $\omega_2 \not\to \left[(\omega_1 : \omega) \right]_{\omega_1}^2$ iff $\forall A \in \left[\omega_2 \right]^{\omega_1} \ \forall B \in \left[\omega_2 \right]^{\omega}$ if $\sup(A) < \min(B)$ then $f''[A, B] = \omega_1$.

Con (GCH + $\exists f \vdash \omega_2 \not\rightarrow [(\omega_1; \omega)]_{\omega_1}^2$).

- Assume CH. Define $\mathcal{P} = \langle P, \preceq \rangle$ σ -complete, ω_2 -c.c.
- Underlying set : $\langle X, c, A, \xi \rangle$
 - $X \in [\omega_2]^{\omega}$, $c : [X]^2 \to \omega_1$
 - $\mathcal{A} \subset P(X)$, $|\mathcal{A}| \leq \omega$,
 - $\xi \in \omega_1$
- $\langle Y, d, \mathcal{B}, \zeta \rangle \leq \langle X, c, \mathcal{A}, \xi \rangle$ iff
 - $Y \supset X, d \supset c, \mathcal{B} \supset \mathcal{A}, \zeta \geq \xi$
 - (1) $\forall A \in \mathcal{A} \quad \forall \beta \in (Y \setminus X) \cap \min A \quad \xi \subset d''[\{\beta\}, A].$

A ZFC theorem

- $\omega \to (\omega)_2^2$
- $\omega_1 \not\rightarrow (\omega_1)_2^2$
- (Baumgartner, Hajnal) $\omega_1 o (\alpha)_2^2$ for $\alpha < \omega_1$
- Step 1: If MA_{\aleph_1} holds then $\omega_1 \to (\alpha)_2^2$ for $\alpha < \omega_1$.
- Fact: In any ctm \mathcal{M} there is a c.c.c poset P s.t. if \mathcal{G} is \mathcal{M} -generic filter then $\mathcal{M}[\mathcal{G}] \models MA_{\aleph_1}$
- Step 2: $\mathcal{M} \models f : [\omega_1]^2 \rightarrow 2$;

- (Baumgartner, Hajnal) $\omega_1 o (lpha)_2^2$ for $lpha < \omega_1$
- Step 1: If MA_{\aleph_1} holds then $\omega_1 \to (\alpha)_2^2$ for $\alpha < \omega_1$.
- Fact: In any ctm \mathcal{M} there is a c.c.c poset P s.t. if \mathcal{G} is \mathcal{M} -generic filter then $\mathcal{M}[\mathcal{G}] \models MA_{\aleph_1}$
- Step 2: $\mathcal{M} \models f : [\omega_1]^2 \rightarrow 2$;
- Define $Q = \langle Q, \leq \rangle$ as follows. $\sigma \in Q$ iff
 - σ is an injective function, $dom(\sigma) = \{\alpha_0, \dots, \alpha_n\}$ for some $n < \omega$
 - $ran(\sigma) \subset \omega_1$, σ is order preserving
 - $ran(\sigma)$ is f-homogeneous
- Q is ill founded iff $\exists A \subset \omega_1$ f-homogeneoues, $tp(A) = \alpha$
- ullet Q is well-founded in \mathcal{M} iff it is well-founded in $\mathcal{M}[\mathcal{G}]$
- $\exists A \text{ in } \mathcal{M}[\mathcal{G}]$, so Q is ill-founded in $\mathcal{M}[\mathcal{G}]$ so Q is ill-founded in \mathcal{M} , so $\exists A \text{ in } \mathcal{M}$