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Proof: Let us first give a definition. A word u€ A* is
unbordered if u+ vwo for any words v, w € 4* with v nonempty.
Let us now consider a regular MSD code X. If X is complete, the
theorem is trivially true. If X is not complete, there exists, by the
definition of completeness, a word v & F(X*). Let a€ 4 be a
letter that is different from the first letter of v (we assume that
card (A4) > 2). Consider the word u = val’. Clearly, u is unbor-
dered and u & F(X*) because v & F(X*). Let Y= {uw,uw, - - -
uw,uln >1, for all i from 1 to n, w, &€ X*U A*ud*}, and let

Z=XUYU{u)}.

We first prove that Z is an MSD code. It suffices to prove
that, given a 'word z€ Z*, any possible parsing of z into ele-

ments of Z° ymlds the same multiset of words. Since u is .

'unbordered z “has 4 -uniqué representauon of “the form 'z =
Zuz,u - (that is, we can uniquely distinguish all occur-
rences. of u m z). “This' represent; s the basis for the
division of z into Z: blocks wh1ch is obtamed as follows.

1) A factor uz;uz uz”ku of:z such that, 2 < Jyj+k

sn=1y 204,24, @ X and z;_y,z; 4,1 € X*, consti-
tutes a Z- block ’

2) All.occurrences of u not: mvolved in blocks of type 1 are
- also: Z-blocks. -

3) ‘All z; which are not mvolved in blocks of type 1 must be
m X* and constrtute Z- blocks. -

The defrmtron of Y and the fact that uéF(X*) and u is

‘unbordered: ‘guarantee that z admits a unique parsing into Z-°

blocks. Z:-blocks corresponding to:cases 1 and 2 are elements of
Z. Z-blocks: corresponding to case ‘3-are elements-of X*. Since X
is an MSD. code, any parsing of these Z- blocks into elements of
X yields thie same multiset of words: Thus Z'is-an. MSD code.

We now prove that Z is complete -Given an arbitrary word
w € A*, one easily denves by using the same:argiument.as above,
that the Word uwu has : actonzatlon into- elements of Z, i e, w

We can now state the main results of this correspondence. The
followmg theorem grves a pos1t1ve .answer 'to [3, conjecture 21

Theorem_ 3. No finite MSD code contains a maximal UD code
as a proper subcode.

Proof: 'We will prove the result by contradiction. Let X be a
finite MSD code over .the alphabet A; assume that a maximal
UD code Yexists such that Y is'a proper subset of X. Then there
exists a word s € X— Y. We will prove that there exist a-word
m € Y* and an integer p>1 such that (msm)? € Y*; this contra-
dicts the hypothe51s that X is an MSD code. In fact in the
equahty

E (msm)p=Y1)’2 Y
= y* Y, 91 Yar7 > Yo € Y, the left side contains-a
codeword, say s, whrch does not appear on the right side.

<Im the proof we use some techmquesfrom alitomata theory. As_

a:finite maxrmal D-code,
mplete Smce Y finite, T*i ds a regular set; i.e.,

cognizable by a finite (detenmmstxc) automaton & =
‘ [ i; F).. For any set of states S € Q and for any word
u e A* denote by Su the set {8(q, u)[q =) S} of states reached
by paths having label u and starting at any state of S. Let n=
Inf card (Qu) with u. rangmg over A*, and choose u such that
n = card (Qu). Sinice Y is complete, we have vuw =m € Y* for
some v, w € A4*. Since QuuC Qu, it follows that card (Om) <
card. (Qu). Thus, by mlmmahty, card (Qm) =mn. Let. Q’ Qm

“At every new usage"the content of the memory can be rewritten:b
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Since Q’m = Qmm C Om = Q’, it follows from the minimality of
n that Q’m = Q' and thus m defines a permutation of Q’. Thus
replacing m by a suitable power of m, we may assume that
q¢'m=q’ for all ¢’€Q’. Let us now consider a word s€ X -7,
and let 1 = msm. Again we have Qt C Om, and thus Qt = Q' = Q’s.
Thus again, for some power 7, p >1, we have ¢'t” = ¢’ for all
q' € Q’. To prove that

t? = (msm)’ €Y*,

it suffices to show that gt = gm for all g € Q. Since gmm = gm,
it follows that gt = gmsm = gmmsm = qgmt and therefore that
qt?' = gmt?. Since Qm = Q’, we have gmt? = gm. Thus qt? = qm,
as required. This completes the proof: '

The next theorem g1ves a negatlve answer to [3 conjecture 3].

Theorem 4: There ex1sts ‘a fm.lte MSD code X such that
MS( X ) >1.°

Proof A MSD code is. proper 1f 1t is not a UD code In
is- shown that:there exist. finite proper MSD codes By. ‘Thei
2, there exist regular MSD codes that are proper and complete.
Let Z be such a.code. Since Z is- complete by Theorem 1,
MS(Z ) >1. If MS(Z) =1, the fact that Z is complete 1mp11es, by
using again Theorem 1, that Z ‘is a UD code, which is a
contradiction, Thus: MS(. Z ) >1. There exists; then, a finite subset

Xcz such that MS(X) > 1. This concludes the proof.

Remark: The completion procedure in the proof of Theorem 2
also “gives ‘an  explicit - construction for MSD codes ‘whose
McMillan sum exceeds unity. Consider indeed a finite and proper
MSD .code X. Take the set Y U{u}, as in Theorem 2, in some
gwen order (for instance, the lexicographic order):

YU{“} {“1»“2,“3v"' b
The proof ‘of Theorem 4 guarantees that a positive mteger k

. ex1sts such that the fmrte MSD code

L o Z= XU{uI,uz, U}
' -“sausﬁes the mequahty MS(Z) >1.
: REFERENCES _
[1] J Berstel and D. Perrin, The Theory of Codes. New York: Academic,

1985.

2] A. Ehrenfeucht and G. Rozenberg, “Each regular code is mcluded in'a
maximal regular code,” RATRO Inform. Théor. Appl., vol. 20, pp. 89~96,

: 1986.

[3] A. Lempel, “On multiset decipherable codes,”. IEEE Trans. Inform.
Theory, vol. IT-32, pp. 714-716, 1986.

On Write-Unidirectional Memory Codes
‘GABOR SIMONYI'

Abstract —Write-unidirectional memories generalize write-once 1
ries. storing binary seéquences-of some- fixed length in-a- réusable i

changmg some of the zeroes to ones, or by changmg some:of the one o(_

Manuscnpt received June 12, 1987; revised July 18, 1988. This. work was
supported in part by the Hungarian Nauonal Foundation for Scientific Re-
search Grant 1806 (OTKA). This correspondence was présented at the Third
Soviet-Swedish Workshop on Information Theory, Sochi, USSR, May 24-30,
1987, and presented in part at the IEEE Information Theory Workshop,
Bellagio, Italy, June 21-25, 1987.

The author is with the Mathematical Institute of the Hungarian Academy of
Sciences, Budapest P.O.B: 127, H-1364, Hungary

IEEE Log Number 8927897.

0018 9448 7/ 89/0500-0663$01 00 ©1989 IEEE -




SEGR T T

zeroes, but. not both; Improvmg on.the resnlts of Willems- and 'Vinek, we |
construct. codes of rate: 0.5325: We discuss. the: four: cases: that . arise
according to-whether or not the encoder and/or the decoder-is informed of
the previous state of the memory. Borden s converse bound ‘is rederived
using Fibonacci sequences.

I. INTRODUCTION

Write-unidirectional memories (WUM’s) were recently intro-
duced by Borden [1] and by Willems and Vinck [2]. They are
closely related. to write-once memories (WOM’s) defined by Rivest
and Shamir in: 1982 [3] (cf. 41 and: [5]). 'WUM’s are binary
storage media for multiple uses in which- n binary:symbols.can be
... -stored - at every single: usage. The memory- can. be reused. (up-
- dated) with the restriction that the encoder is allowed either to
in"some chosen positions and skip ‘all others ‘or to' write

',0’s ‘in, some; positions and skip all others. This means that 0’s and

“1’s cannot be written at the same updatmg

The motivation for studying such a device comes from the
updatlng process for rewritable optical disks. Here the choice of 0
or 1'as the binary digitstored depends on the oriéntation of the
magnetic field generated: by an_electromagnet. The change of
orientation of the magnetic field is a slow procedure. This is why
the WUM is-a preferable model for such a device.

Unlike in & WOM the role of 0’s and 1’s is symmetric, and a
WUM can be used an arbitrary number of times. Accordingly,
the effectiveness of 2 WUM will be measured by the quantity of
stored information per updating, (In what follows an updatmg

process: will also.be called a, generation.) The main problem is
* code of length  ng; then we can: construct an alternatmg WUM

how to construct good codes in this sense.
In Sect10n II we. give. the basic defmmons and discuss’ prev10us
work. ‘In Section III we- generahze the construction of Willems

and Vinck to a family of WUM codes having some better»

members than the Willems-Vinck code:

In Sectiont IV, we consider the four cases that arise “according
to whether or not the encoder and/ or the decoder is informed of
the previous state of the memory. This parallels the four cases

investigated by Wolf e al. for WOM’s [4].' One of these cases is
closely related to-an unsolved conjecture of Erdds and Katona -

[8]. In Section V we preserit a new proof of Theorem 1 of Borden
[1] based on Fibonacci sequences.

II. ' PRELIMINARIES

Borden [1] (and also Willems and.Vinck 2D mtroduced WUM’s
‘under the assumption that the encoder knows. the previous state
of the memory before writing new information, while the decoder
has no -information about the previous state. We shall initially
restrict attention to this case.

Definition 1: Let x={x,---,x,} and y={y, -, ,} be
binary vectors of length n. We say that x and y are comparable
(x~ y)if
' for-all i or for all-i- y,

" The technical condition that the encoder should not change the
rorientation. of the magnet during a rewriting-means:formally that
“.a state x can bé rewritten into a. y only if they. are comparable.
.- For-an error-free decoding we have to be able to partition the
_possible states of the WUM (these are binary. n-vectors) into
disjoint sets correspondmg to the different messages, i.e., each
element of a set S; will be decoded as message m,. Given a state
of the WUM, the condition for being able to update it is the
existence for every i of at least one element in §; comparable to
the given state. More formally, we have the following.

Definition 2: A family C= {§,,---,S,,} of subsets of {0,1}"
is a WUM code if

1 SnNnS =2,
2) forall i+ j forall x&§; Iy S,

x!=1=>)1,=1 =l=>xi=1.

if i+ j
such that x ~ p.

1

Every set: S, is- assoc1ated with 4. different message, and is
called 1ts codeset ‘The rate of a WUM—code is

; _RAlogM

n,

where, - herein; -all ‘the logarithms are to thé base 2. We are
interested in construeting WUM codes: with high ‘rates for large
n. The larger the rate the more efficient the WUM code is. For
each n the largest poss1b1e Ris denoted by R(n):

In what follows we define a special class of WUM codes. This
class is important ‘because its elements of .any lengthi can be
expanded with the same, ‘rate for. arbitrarily large n,

Defmmon 3: The welght of a binary n-vector x, denoted by
w(x);:is- the: number of 1’s: among its. coordinates. If u~p and
w(u).= w(v), we write a2 0. .

Defmmon 4: A fatmly C={S, "
is an alternating WUM code it

1) §nS;=42,if i+ j;
2) for every i there exist two sets 7, and T, with the
following properties:

S; =T,o UT,;, and for all i, all x €T},, and all -, there exists
yeT suchthaty>x For all i, all x €T, and all j,there
exists Y €T, such that y<x.

The WUM codes introduced in [2] are alternating WUM
codes. It is easy tosee that if we construct an alternating WUM

. SM,} of subsets of {0,, 1}

-code with the :same rate .and length Ino ‘(1 -is :some - positive
1nteger) by snnple concatenatlon Thls is: not: true, for ‘general
WUM codes::. JoE

Let ¥ denote the componentwme complement of the bmary

n-vectot x: For 1€ (0,1}, weset T=1—1. -

Defmz\izon 5 An alternatmg WUM code i is symmetnc 1f

for allz T1 whereT {x]xeT}

,0’ N
Theorem ! (Bora'en) Tt holds that R(n) <y& log((l +/5 )/2)
~0.6942if n2 5.

Theorem' 2 (Borden): We have hm,,_,wR(n) y:

These are proved ‘in [1]:" the latter -is proved by a random
coding argument;. ie.; it is nonconstructive. The best eXp]icit
construction in [1] for arbitrarily large n yields R=1/2 and is
the followmg ,

Assume that n.is even, and let

s,={(1, x';)"(‘i;;O)}

1 is the all 1 vector, 0 is the all 0 vector, and x; is an a.rb1trary
n /2 vector. Less formally, the memory is d1v1ded into two ‘equal
parts and an arbitrary. n/2. vector is written on the left (right)
half while the all 0 (al] Dn /2 vector is written on the right (left)

‘ 'where'0‘,l, € {OV 1}'"/2 '

‘half. Tt is' €asy o -see that this is really a ‘WUM code with

R=1/2. -

A ‘more refined  construction was given by Willems and Vinck
in [2] (They also state without proof a result implying Theorem
1.) The code of Willems and Vinck achieves a rate of (log6)/5 =
0.517. In Section III we generalize this construction describing a
family of WUM codes. The best member of this family yields the
rate (log58)/11 = 0.5325.

III. A FamMiry oF WUM-coDES YIELDING R = 0.5325

In this section we construct a family of WUM codes all of
which are alternating and symmetric. Because of the alternating
property, our construction can be used for arbitrarily large mem-
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ories. As usual we will identify a binary »n vector with that subset
of {1,2,---,n}, of which it is the characteristic vector.

Baranyai’s Theorem [6]: 1f k divides m, then the k sets of an
m set can be partitioned into (’::11) classes so that for any class
its elements give a disjoint covering of the m set.

Now write m = k(k +1). The foregoing theorem claims that
there exist (':_‘11 different families U = { 4,;}i2} of k-element

j=1
subsets of {1,---, m} with the following properties:

1) for every i: j#=l=>A ﬁA =g
D UNU=2,ifi*.

T*UTl,z =1,2,

Let x;; denote the charactenstic vector of 4; i Then x;; is an
m vector with we1ght k.Let T¥ = {x;;, j=1,."%, k+1},and so
={X, j=1, k+1} We clatm thatm thrs way we obtain
a WUM code.
Lemma 1 The famrly of sets ,
C*= m—1
< { ( gl
is an alternatmg WUM—code
Proof: By the definition, §* N S* =g if i+ J is obvious.
Consider an arbitrary u € T;* (I € {0 1)} and j# i. We have to
prove that there exists. o € Tf, v~ u. Since the construction is
symmetric'in 0 and 1, we can assume # € T;§. Then w(u) k.
Consider the elements v € Tt. ‘Note that
u( Uy, U,,) io( ULyt Uy )=3r u,=1,0,=0.

However, it follows 1mmed1ately from the constructlon that if o,
v € T, then the sets

‘z(v) = {rlv =0} and z(v) = {r|v —0}

are disjoint.

Suppose indirectly. that u j v for each vETHF. *, Then it follows
that for'eachv €T 3r u, =1, v,=0and’ because of ‘the previ-
* ous consequence of the constructlon this » must be different.for
each v € T, However, |T#|=k +1 n:nphes w(u) > > k+1;a con-
tradiction. Th1s completes the proof

Remark: The idea of Willems and Vinck was to construct a
symmetric WUM code. where max, .. w(x) <|T;| -and some
structural property will guarantee that the code is a WUM code.
The novelty here is the recognition: of the relevance of Baranyar s
theorem which gives us the ﬂexrbrhty to construct such codes for
many different valies of the parameters In the next lemma we
shghtly modrfy the. previous code, thereby i ’

droppmg its last brt It is 1 £

uSv=>u sv

Denote by S the set obtamed from S* of ic*. Tt follows from
Lemma 1 and ‘the foregoing fact that for any HE J and w' €Ty,
there exists v/ € T such that v'> u".

- It only remains to prove that 5, N S; =2 for each i#.j. Note
that all thejcodewords in' C*-had-a. werght :of k-or:m — k. Then it
is clear that the last bit is determined ‘by: the previous m —1 ones.
Hence S* n:S* =g implies §;N.S;=@. This completes  the
proof , LT

than k=1 (T;y will be. T, as before) while keeping 't
»'property of ‘our construction that Vi [T,,| =% +1
disioi

(1,2,

IS;l=a; andeach i€ {1,2,-
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(k and [/ are positive integers):

ne=[k(k+1)-1]-1

/
Mk‘(k—ll
ny
. log(k_l)
o k(k+1)-17

The foregoing construction already achieves R =~0.522 for
k=4 and R =0.525 for k=3. We can, however, u:nprove our -
codes by adding further code sets to them. :

Until now the code sets of C include all the codewo(
weight k and k —1, their- complements, and nothmg else.
can construct some further T, “with codewords of ‘

words in-a T}, are characteristic: vectors of ¢
+, ), then the obtained codewill ‘remain
(and symthetric) WUM code ‘with an’ obv10usly bette
proof of the last statement is similar to'‘that of L
Furthermore, note that the all-0 and all-1 vectors are cornparable
with all others; thus these two vectors can form'a separate code
set of cardinality two. (In fact; we could usé the all-0 and the
all-1 vectors as two separate code seéts of cardinality one. In this
way, however, we could get a nona]ternatmg code, and the
possibility of concatenation would be’lost.)

The maximum number of new code sets constructed by the
above method is'at most

k=2,
()

———— |+1.
k+1

This is - always achrevable as one can . easﬂy venfy using the
followmg

General Form' of Baraqyazs Theorem [6]: Let -ay,:--,a, be
natural numbers such that X%_;a, = ) ‘Then -the -sets of an
n-set can be partitioned’ mtodi'sjoi‘nt*families 'S;,+++, 8, such that

+,n} is included in exactly [a h/n)
or la; h/nJ elements of S :

For our purposes we use this theorem with % running over the
set {1;2,-- -, k =2}. For every fixed h we choose a,(h)=--- =

a,_y(h)= Py Forh>1a1(h) k+1—a,(h—1) a1y =k +1

while g, (h) —( )—-E' 1a,;(h). In this way it is easy to.get such
families of subsets of {1,2,-:-,n} the charactensuc vectors of
which define codesets of the desxred type:

This completesthe descnptron ‘of ‘our construction. The new
code has the followmg parameters (k.and /-are posmve mtegers)

(k(k+1) 1)1




Ve are: rnter'ested'm ‘the’ behavror of R fo "’dlfferent‘ 28 Tt i

Ve good rates for small ‘& ’s. The parameters of the codes we
obtain for d_tfferent k’sand /=1 given in TableI. -~

v TABLE I
- 'PARAMETERS OF THE CODES OBTAINED FOR DIFFERENT k’S AND /=1

k ny Mk Rk

6 (log6)/5.~0.517 (Willems—Vinck code)

g 58 (log 58)/11 0 5315 “(the best code in thrs farmly)
* 1008..0:525

24433 0. 503‘, ‘

,gl/n-lf

construcnon glves the code. of Wﬂlems and Vmck as‘a
case for k= 2. The best.code we obtain has. k= 3 The Tj,
:of some of its code sets are-as follows. (for i=1,2,- 35T

Baranyats theorem ensures. that this is possible while T, N
‘@ remains true for i # j):

11100000000°

T, = { 00011100000
107"} 00000011100
00000000011/

, 100000000001 e
_ } 01000000000
} 00100000000
00010000000'

Ts70=4

G0 = (00000000000}, Ty =T, fori=1,2,--+,58.

: IV. GENERAL CASES
In this section we will consider the followmg four cases:

Case 1: both encoder and decoder are informed about the
-previous: state of the memeory;

iCase 2: encoder informed, decoder unmformed about the pre-

~ vious state of the memory; <

-~ Case 3: encoder uninformed,. decoder informed: about. the pre-

: . .vious. state of: the' memiory;

~vious state of the memory. -

:now we have considered WUM’s in Case 2. For the more
al d1scuss1on we mtroduce a néw. formulation. Instead of set
tems we will now define WUM codes as mappings.

et M ={my,: - -, my } be the set of all possible messages.

oices: write a 1, write a0, or leave the content of the cell

ribed by an n vector over-the alphabet {0,1,0} where O
s to the case when the content of the cell is left unchanged.
et F = {1,0)" F,={0,0}" F=F,UF, Then the elements
'F represent the possible actions of the encoder, while the
ments of {0,1}" are the possible states of the memory.

- To formalize, we introduce a function ¢: {0,1,0} X {0,1} -
{0,1} as follows:

o(e,x)=x, ife=DO

p(e, x) =¢,

With a slight abuse of notation we denote by ¢: {0,1,0}" X
{0,1}" = {0,1}" the obvious extension of the function. Notice,
however, that we shall be dealing with the restriction of the
former to F X {0,1}".

else.

-easy to check that fork = o0, Rk =0 and- thus: we can hope to .

“the’ memory-

se 4: both ‘encoder and. .decoder umnformed about the pre-

2 message, for every. cell of the memory, the encoder. has .

ed. Hence- given a message, the action of the encoder can

actions of - the & and’ the ‘decoder’ are descnbed by the
functions fi, g where  refers to.the generation number. The
problems connected with the generation number are discussed in
[7); ‘Heére we assuine that both the encoder and the decoder know
enough about the generation. number to: be able to- functlon as
described: Conmdermg the. different cases. -~

Casé 1 (Encoder and Decoder Informed) For every t the encod-

.ing function f* 1s a mappmg

f5 M X A0, 1} >F
while the decodmg functron s
g4 {0,1}" x {0, 1" S
An error-free decodmg is guaranteed if and on]y if
(S (%), %), x) =
holds for every m € # and every x which is a possible state of
the memory at generation ¢ —1.
Case 2 (Encoder Informed, Deécoder Uninformed): For every t
the encoding function f’is a mapping
f': #x{0,1)" > F
while the -decoding function is: ‘
g " {0,1)" > A.

. An error-free decoding is guaranteed if and only'if

(<P(f‘(m x); x))

hold for: every me Jl and every x whrch isa poss1b1e state of
at’ eneratron e

.- Noteé that this formulation is shghtly more general than the one
used m\Sectlon L If f{(m,x).and g'(x) depend. on 1 only
through x, then setting

S, = {;r|g(x) m;}

we obtam the prewous formulation. For alternatmg codes we can

set

To={ x|EIy possible codeword with > x, x= q;(f( m;,y), y)}
while '

Ty = {xlEly possible codeword w1th ysxx= (p(f(m,,y) y)}

',Cases 3 and 4 can be descnbed ina srmﬂar way w1th an encoding
function f": M —>F and decoding functions g': {0,1)" X {0,1}"

— # and g {O 1y - A, respecuvely We “now redefme ‘the
alternatmg property.

ion.6: A WUM code (m al] four cases) is alternatmg 1f
e. encod.mg:functton 1 isa subset of F, or, of B

N y .
rk: It Stlll remams true that by concatenatmg alternatmg
WUM codes we ‘obtain alternatmg WUM codes-of the same rate
and double, triple, etc., length. One can easily check that defini-
tion 6 is really a generahzat.lon of Definition 4.

Definition 7: An alternating WUM code is said to be symmet-
ric (in-all four cases) if there are only two different pairs (f7, g°)
and : ‘

fi=f
where the complementation is understood componentwise as
before and the complement of O is 0.

We now consider the four cases separately and state some
basic facts for each one of them.

Case 1 (Encoder and Decoder Informed): It is easy to check
that Borden’s proof of Theorem 1 remains true in this case. Thus
R(n) <y for nz>35 (from Borden’s Theorem 1), and
lim R(n) =y (from Borden’s Theorem 2).

H = 00
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Using the decoder’s knowledge we can use a nonrandomized
version of Borden’s random code (which helped prove his Theo-
rem 2, see [1]). This achieves the asymptotic optimum. For a
detailed description see [7].

Case 2 (Encoder Informed, Decoder Uninformed): This case was
considered in Section IIL. Borden’s Theorems 1 and 2 give the
best possible asymptotic upper and lower bounds for R(xn), The
best known construction is the one described in Sectlon 111,
yielding a rate of (log58)/11 =.0.5325.

For Cases 3 and 4 we have the following.

Theorem 3: In Cases 3 and 4 for every WUM code of rate R,
there exists an alternating - WUM code having exactly the same
rate. Our proof of this- theorem actually ylelds a constructmn
(cf. [7]).

Consider now Cases 3 and 4 separately

Case -3 (Encoder Unmformed, Decoder Informed) The only
upper bound we know for R{(n)in this casé is that of Theorem 1.
The 'best lower bound - we have derives from the following con-
struction. We construct an alternating and symmetnc WUM code
with léngth n=3, and M =3, yleldmg the ‘rate’.of (10g3)/ 3=
0.528. Because of the alternatmg property thrs rate is achleved
asymptotlcally Set - .

f‘(ml) Dli fl(mz) 101 fl(m3) 110

ff1

Lemma 3: There exist decoding functlons g+ and g? “such
that, together with the above encodmg functions, they yield an
error—free WUM—code -

Proof Set g! and g% as fo]lows
S(111, 100) =y
UL =my

& (011 x)=m
g.z,(l()l,x) -m,
£(110,x) =m,  g4(111,001).=m,

£(x,9) =8(%,5).

It is easy to see that g, g defme ‘an error-free WUM

code.
~ Lemma 4: The followmg two questtons are eqmvalent

1) for Case 3, what is the maximum number ‘M{(n) for which
" there exists an alternating and symmetnc error-free WUM
code of’ length n? '
2) what is the maximum cardmallty of a family & of subsets
of an n' set with the followmg property |

F = {A,|A,C {1,---,n}: there exists no triple A, A A
such that 4, A4, and A;0A4;C A, }, where 4,4 4; denotes
the symmetnc dtfference of A and A4;.

" Proof: Consider a famrly Fy= {A |4; € {1, - -, n}}. Define
the function f* as follows: ‘
fl(mi) =a;= (a_il" : -,a;;), “where ¢, € |
and ‘
{0, if je4,
AT\, dfjed,.
Then f2? is defined to be symmetric with f2, i.e.,
f(m,) =b=(bi, sb4)s  bEER
o, o ijed
YUl0, i jed)

-Summary of our knowledge about lim,,
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Note that the correspondence between the families H, and the
(symmetric) pairs of functions f!, f2 1s one to one.

Suppose that there exist functions g', g? which form a WUM
code with /' and f2. If there exist A, A, A, € % for which
A6 A, C Ay, then consider the two series of messages for an
arbltrary state x° of the WUM:

m=m; m-=m, m—m]- m'=m, m’ =m;
Al . AD PR A4 A5
Al =m, " =my A =m, mt=m, w=m;.

Then it is easy to check that x* and 4lso x° (i.e., the state of
the. memory in generations 4 and.5) will be the same for the two
series. ‘This implies 1mmed1ate1y that it is 1mp0551ble to.find
decodmg functions that, can decide if the. Tifth message was' m; or
m;, a contradiction. On the ‘other hand, if the family % has 'the
property ‘described in 2): then the foregomg ambiguity-can never

‘arise, so’'we- always fmd g -and- g to. form an error-free WUM

code wnh Y and f2.
Now consrder a fannly
K ={ 4,14, ¢ {1,- ~,m}, Mo pairm'se different’sets
o 4, j,Ak y1e1dAAA A}

It is conJectured by Erdos and Katona (8, p. 27] that the max1-
mum cardinality of such %" is obtained by the followmg con-
structlon _Divide {1 ,n} into [n /3] claSses of 3 and 2 ele-

each class r R
Note that this constructton sati! ]

: condmons for % inLemma'4. T :
- of 'Erdés and Katona is- true, then the sa.me is true for such a

famﬂy F descnbed in Lemma 4:

- Finally, note- that the conjectured opnma] constmctmn corre-
sponds (in the sense of Lemma 4) to the WUM code construction
we.gave for Case 3. Thén the Erdos—Katona conJecture implies
the followmg (only slightly weaker) o

Conjecturew For an alternating ‘and symmetnc WUM—code in
Case 3; R(n) £ (log3)/3= 0.528.

Case 4: We know that R(n) <1y as in all other cases. . We
know R(n) 2172 (for every ‘éven n, and R(n) 3 1/2 1/2n for
odd.n) from the construction of Borden described in Section IL.
dtis easy to-check that this construétion is good even in Case 4.)
We conjecture that in Casé 4 this construction is the best possi-
ble, ie, _the best ach1evab1e rate for large n is 1 /2 in Case 4. A
R(n)in the four cases

n—o0
is glven in Table IL
TABLE II B
OUR KNOWLEDGE ABOUT R(n) IN THE FOUR CASES INVESTIGATED B
i ’ " Best Rate Achieved
Encoder Decoder lim R‘(") (For. Arbitrarily Large n)
.Case Informed Informed ‘n—o0 . By Construcnon C
1 _yes - yes Y y=0.694 .
2 yes 10 ¥ (fog58)/11 = 0. 5325
3 no yes ? (10g3)/ 3~0.528
4 no no 0.5?

V. A NEw PROOF OF BORDEN’S RESULT R(7) < Y
In conclusron we present a new proof of the asymptotic upper

bound ‘of Borden’s theorem. This proof, partially: due to-Tatdos,
explams the cOnnectron between WUM. codes and ‘the F1bonaca
sequence S ; R



Proof of Borden’s- theorem
- Case A: We ¢laim- that for alternatmg WUM codes of
length n. ) S .

R(n)q_]og(“f) )

Consider the ith cell in the WUM. Without loss of generahty,
we can assume that i =1. Its staté in the jth generation is x/, We
now shall count the numbeér of all the possible “fates” of this cell
durmg t generauons ie., the number |B,| where

B (e e (o), 2 e U (),
xz»’H e {1}U {x”}}

conditions for x2 and x are the formal descriptions of
fact that ‘our WUM code is alternatmg, i.e., the encoder
yot write 0§ in odd or 1’s in even generations, -

We c1a1m that)

2{+1

| |B|= a5 )
'Where a, is the Fibonacci sequence defined by
a=1,a,=2
ay=a; 1+a,_,, for k = 3.

It is easy to check that By={0,1} and B, = {(0,0),(0,1),(L,1)
i, |By|=2 and |B;}=3is true
We have to show

; _ 1Bil =1B,- 1|+|Bk o forkz2.
~ Let us define the sets By, and By, as follows:
| ={(xb=0',x1,~-,x")jx2’e{O}K'UI{xz"l},'
o e 1ju(a))
,xF)1x? € {0} U {x¥71},

xe 1oy}

It is ‘obvious that
B,=ByUBy, while BN B, =2,
4imp’1yiJA1g 1Bi| =1Byol+ | Bjal-
= 0 does not restrict the value of x', whence
Bl =[{(x, ., xO) x € (0,1}, ¥ € (0} U {521,

2/+1e {I}U{xZI}} |'_|Bk 1|

ﬁIf x° —1 then x!=1, but. there is no restncuon on Lhe value of
x?, Thus

;o,;;«le=|{(x2

~ The condition x°

-, xk) |x2 E{O 1}, xz’G{O}U{xz' 1}

2/+1E {I}U{XZI}} I_IBk 2]

|Bi] =By _1]+|By_s|

which proves 2).
The explicit formula of a, is well-known (see [9, p. 158]):

1 ((1+/5\° [1-/5\"
wwl e
It is clear that the number of all possible fates of the whole
memory during ¢ generatlons ie., the number of all the possible
vectors of n vectors (x%, a1, - -, x*) is exactly |B,}".
On the other hand, there are M’ different series of messages

during ¢ generations, and each of these must belong to a different

+HIBEB TRANSACTIONS ON 1NFORMATION THEORY, VOL. 35,03

fate of the: memory ‘or else: error-frce decodmg 1s 1mposs1b1e Thxs

,unphes that-for every 1

MSIBy —(a,+z) @
Then using (3) we obtain for the rate ‘

T1 145\
lg F (—2‘—)

logM logM' 1

n m Tt

This is true for any t; therefore,

R(n) étl_i,m llog‘/_ [( 1+\/_) . (1—2‘[5— ‘)t‘+2j|
| | 1+V5 | -
).

The proof of Case A is complete because simple anthmeuc shows
that equality can nevér occur for any finite .

. Case B (Tardos [10]): Let b be a t-length sequence of 0’s
and 1’s. We are given a WUM for which at the Jjth generation we
are only allowed to write &, i.e., the possible fates of a certain
cell of the memory durmg 7 generauons can: be descnbed by the

set

,B - {(x0 X ’)Ix € {O 1} xle {b } U{x/ 1}}

It is ‘¢asy ‘to see (by mductlon and using the method of the proof
of Case A) that B¥< q, % for any fixed binary sequencé b. This
implies that, once we have fixed b, the number of all the possible
fates of the whole memory is |B?" < (a,,,)" In fact, we have 2/
possible choices for the sequence b.-Hence for the number d, of
all the possible fates of the memory dunng t generations (w1thout

‘predetermined writing dll'CCthIlS), we have

d= 3

be{0,1)

B <2(4,42)"

There are M’ different sequences of messages during ¢ genera-
tions, each of which must belong to-a différent fate of the
memory. Thus

M'<d, s2(a,+2)

wh1ch is the same as (4) wnh M/2 mstead of M Hence writing

4 M

Lo e

we can repeat the previous computation (Case A) obtaining
(1+/5 ) 1

Rglog( +;

which asymptotically gives

1+/5
R <log 2 .
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Estimating the Informatlon Content of Symbol
Sequences and’ Efflc1ent Codes

'PETER GRASSBERGER

Abstract—'Severﬂ variants ‘of an algorithm for estimating Shannon
entropies of symbol sequences ‘are presented ’I'hey are all related to the
LempeI—Zlv algonthm and to recent algorlthms for estlmatlng "Hausdorff
dimensions. The average storage and funning’ times increase ‘as- N and
Nlog N, respectlvely, with' the sequence length N. These algonthms pro-
ceed baslcally by conslnictmg eff1c1ent codes They seem to be the optlmal

the mformation of s1gna1s contam.mg ‘strong long-range correla—
tions. To be more specific, let us assume a binary sequence

S= (sl,sz, ‘) with S, € {0,1}. Our assumption represents no
restnctlon since any other discrete sequence with a finite ‘alpha-
bet can be encoded in this way, and even the’ output of continu-
ous dynamlcal systems can be enicoded in such a way that the
entropy of the sequence of code symbols (“Kolmogorov entropy”
{21, [3]) is 1ndependent of the “encoding. We assume that the
sequence is statistically statlonary ‘Thus, for any sequence Sy of
N binary digits, well-defined probablhtles Py {Sy) cexist for
finding Sy starting at any chosen site within *$ The Shannon
entropy is defined as; oo
h= lim hy,

: N=00
with
. 1. ?
by = -NEPN{SN}IOgZ v{Sv}
s
Here, we take the logafithnl~‘to base 2 to obtain #'in bits/digit.
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The quantities s, are called block entropies. The limit in (1.2)
converges always from above, i.c., one always has h < h,. The
latter is very useful in practical ‘applications because it implies
that estimating upper bounds on % is very easy.

These bounds are tight if the sequence has no strong long-range
correlations. More precisely, 4, = h for all n > N if the sequence .
is an Nth-order Markov chain. However, in realistic cases such
as natural languages, DNA sequences, or TV images coded in
some sequential form, these correlations are very strong, and #,
converges so slowly that (1.1) is rendered virtually useless.

This fact was understood by Shannon who devised .an in-
geneously simple method for estimating the information of writ-
ten English [4]: he randomly erased letters from some text
(replacing them by blanks) and presented the mutilated text to
students who had not seen it before. If the students were able to
guess the meamng~of the text in which 4 percentage p of letters
were missing, then these letters were obviously redundant, giving
a redundancy > p. This method and' other similar subJect1ve
methods: [5]~ [10] (for a complete survey of the literature; see [10])
have several drawbacks. First, they can be applied only o natural
languages since guessing at statistics and grammar would require
perfect and comprehensive knowledge ‘Secondly; since the pro-
cess is subJecnve, estimating errors is difficult. Finally, in view of
the increasing availability of computers and of computer—read—
able ‘written text, algorithms that can be used by computers
would seem. useful.

Up to now, the objecnve method Wlth the best chances of
taking ‘long-rangé correlations into account has been the algo-
rithm' of Lempel and Ziv [11], [12]. Originally constructed to
provide' an information ineasure for individual finite sequences,
the Lempel-Ziv algorithm is ~similar in spirit 10  the

- Kolmogorov--Solomonoff-Chaitin [13]-[15] algorithmic ' com-

plexity. However, it was shown [16] that, in the case of statisti-
cally statlonary strings, it converges to the Shannon entropy as
N — co. The Lempel-Ziv complexity will be defmed in the next
section.

As proposed 4qn {11]; [12] and. implemented; e:g.; in-[17], the
Lempel-Ziv algorithm needs a time of the order of N? for a
sequence of N symbols. (Algotithms needing running time of the
order of N have been:proposed [18], [19], but they refer not to

-the Lempel~Ziv algorithm but the Ziv—Lempel algorithm of [22]

which seems considerably less optimal for finite strings, its virtue
bemg that it .is much easier to apply. Furthermore, these algo-
rithms seem to attain their claimed asymptotic” behavior only
when applied to Markov sequences. We are interested in the
opposite case where the Markov property cannot be used or:is to
be tested) With present-day compuiters, this restricts one to
analyzing <10*-10° symbols. This is not enough for the long-
range correlations in written language. ‘The algorithms presented
in Séction II need times of the order of N logN makmg more
serious -analyses feasible.

These algorithms can be understood in several ways In -one
sense, they are modifications of the Lempel-Ziv. algonthm In
another, they are. adaptatlons of. algonthms ‘proposéd: by Badii
and Politi and others [21]- -[23] for estimating Hausdorff: dimen-
sions. In [21]- [23] the dimension of a measure p supported by a
metric space is estimated from the nearest neighbor distances
d(i, j) of N points chosen randomly. with réspect to p. The
formula

i log N
Nos (logd)

D=- (1.3)

is conjectured (here and in what follows, angular brackets denote

average values). As pointed out by Farmer [24], the Shannon
entropy is just the dimension of the set of symbol séquences,
provided one uses a suitable: metric: the dlstance between two
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