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Proof' Let us first give a definition. A word u EA* is 
unbordered if u =I= vwv for any words v, wE A* with v nonempty. 
Let us now consider a regular MSD code X. If X is complete, the 
theorem is trivially true. If X is not complete, there exists, by the 
definition of completeness, a word v $. F( X*). Let a EA be a 
letter that is different from the first letter of v (we assume that 
card (A);;::: 2). Consider the word u = valvl. Clearly, u is unbor-:
dered and u $. · F( X*) because v $. F( X*). Let Y = { uw1 uw2 • • · 

uwnuln ;;:::1, for all i from 1 ton, wi $. X*U A*uA*}, and let 

.Z=Xl.JYU{u}. 

We first prove· that· Z is an MSD code. It _suffices to prove 
that, given a word zE Z*, any possible parsing of z into ele
ments of ? Yields the same rriultise.t of words. Since u is 
tin bordered~ z has a ·Unique 'representation of the form z == 
z1uz2 u · · · u~, (that is, we can ::~q'llelydistinguish all occur
rences ·of uirl ~z);,This representation proViae:S the basis for the 
division of z hi to z~blocks 'which is obtained as follows. 

. . 

1) A factor uz1uzft-J · · · uzf+ku of:z such that, 2 ~ j, j + k 
~ n -1; z1,-. · ·, ii+k $. X* and z1_,),zf+k+ 1 EX*, consti
tutes a Z-block. 

2) All occurrences of. u not jnvolved in blocks of type 1 are 
also- Z•blocks. 

3) All. zi which are noUpyolvedinblocksiof type 1 must be 
in X*· and constitute Z-.blocks. 

The definitiqn -of Y. and the facL:that u$. F(X*) and u is 
, unbordered· guarantee -that z -admits. a unique parsing· into Z- · 
blocks. Z;;blocks correspon~g to cases 1 and 2 are elements of 
Z. Z-blocks .corresponding to case. 3 are elements- of X*. ·Since X 
is an MSD. code, any parsing of. these Z-blocks into. elements of 
X .yields the same i:nriltiset of woidso Thus Z, is an MSD· code. 

We now prove that Z is complete. Given an arbitrary word 
w E ·A*,· 011~ :easily 4~rives,iby ~usll),g :the same· atgutp.ent as ~hove, 
that .the word uwu has: a faetorizationinto elements of Z, i:e.:, w 
is • factor_ of, an .,.el~qren( q( /?* .. Final1y, .··the prq9f that Z 1s, a 
regul~ set· can_.-be)easily defived fro:m·.its .definition. This con:. 
cludes,the,prQPf,of; ~~' the<?r~ril~ 

We can riow state the ID.ain te&ults of this correspondence. The 
followi:qg tfieorem gives a p<>sitive .answer 'to [3, conjecture 2]. 

Theorem 3: __ NoJinite MSD code contains a maximal iJD code 
as a proper S\Jbcode. · 

Proof: We will prove the re&ult by contradiction~ Let X be a 
finite MSD code ovet: the alphabet A; assume that a maximal 
UD code Yexist~ such that Y is ·a proper subset of X. Then there 
exists a word. s e X~ Y. We _will proxe _ that there exist a word 
mE Y* and :an integer -p:~1 such that (msm)P E Y*; this contra
dicts . the hypothesis that X is an MSD co~e. In fact in the 
equiility: 

(msm)P == Y1Y2: · · Yk 

with mEY*,·s:E X;-.Y-,y1;iy2 ,· • ·, y~~~y~ th~leftside contains·a 
codeword, say s; which does not ~ppear on the right side. 
. In· tl_le proof :we use sqme ·techniques ft()Il1· at1toq~a,taJ.h,eory. As 

a conseqtJ,~pce ,qf 'I'heorernl, ·if Y i~ a ,finite m,aximal·UP ·code, · 
thep iJis~ .~sQ~C()m}:)lete-.' Sip.c~ y.is fiJrite, r' is a ~~gtUN set; Le., 
it is recqgq!z,aple~ .-by.·~ finite (deterministic) aJI!pmatpn .91 = 
(A-,Q, a,t;F} Fqr any set o,fst,ates· S ~Q ;tndfor anY word 
u EA*, denote by Su the set {a(q, u)lq_E S} of ~tates reached 
by paths havirig labe,I u and starting at any state of S. Let n = 
lnf card(Qu) with u ranging over A*, and choose u such that 
n = card (Qu} Sirice Y is complete, \Ve have vuw = m E Y* for 
some _v, w E A*. Since Qvu ~ Qy, it foUO\VS that card .( Qm) ~ 
card (Qfl). Thus, py minimality, card ('Qm) ·=-n. ·Let Q' = Qrrz. 
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Since Q'm = Qmm ~ Qm = Q', it follows from the minimality of 
n that Q'm = Q' and thus m defines a permutation of Q'. Thus 
replacing m by a suitable power of m, we may assume that 
q'm = q' for all q' E Q'. Let us now consider a word sE X- Y, 
and let t = msm. Again we have Qt ~ Qm, and thus Qt = Q' = Q't. 
Thus again, for some power tP, p ;;:::1, we have q'tP = q' for all 
q' E Q'. To prove that 

tP = (msm)P E Y*, 

it suffices to show that qtP = qm for all q E Q. Since qmm = qm, 
it follows that qt = qmsm = qmmsm = qmt and therefore that 
qtP = qmtP. Since Qm = Q', we have qmtP = qm. Thus qtP = qtn, 
as required. This completes the proof: 

The next theorem .giv~s a negative an&wer to [3, conjecture J]. 

Theorem 4: There exis-ts a finite MSD code X such that 
MS(X) >:1.. 

Pr()of" A MSD code is proper ifitis nota UD code. ]p[3]·if 
i1) shown that there exist-finite properMSI) ~odes. ByTheo~em 
2, t.b,ere -exist regul~ MSD codes that. ru;e proper and ·C()llJ,ple~te. 
Let Z be, suc:h. a .code. Si,pce Z is complete, by Theorem l, 
MS(Z) ;;:::l._IfMS(Z) =1, the fact that Z is complete implies, -by 
usipg :again Thepr~m 1, that Z is a UD code, which· _is a 
contradic;tion, lbus MS(Z) > 1. There exists, then, a finite subset 
X ~ Z such 'that ~S( X) >1. This concludes the proof. 

Remark: lbe ~ompletiop. pr()Cedure in the proof of Theorem 2 
also gives an . explicit construction for MSD codes whose 
J\,1cMillan sum exceeds unity. Consider indeed a finite and prqper 
MSD code X. Take the set Y u {~}, as in Theorem 2, in some 
given ord_er (for instance, the lexicographic order): 

Y U { u } = { ~u u2 , u3 , • • • } • 

The prbof of Theorem 4 guarantees that. a positive integer k 
exists such that the finite MSD ·code · · 

Z.= XU {uu u2, · · · ;uk} 

. ~atis.ijes the inequality MS(Z) > 1. 
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On Write-Unidirectional Memory Codes 
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zerries~d~ut not both~ Improving· on.the ·results' J>f Willeriis ·and: Vinck, we 
cons~cC codes of rate 0;5325~ We· discuss.: the· .four' · c~~s: .that aris;e 
according to whether .or not the encoder and/ or the decoder ·.is. informed :of ' 
the previous state of the memory .. Borden's converse bound is rederived 
using Fibonacci sequen~es. · 

I. INTRODUCTION 

WrHe-unidirectional memories (WUM's) wen~ recently intro
duced by Borden [1] and by Willems and Vinck [2]. Jlley are 
closely related to wqte-once memories (WOM's),defined by Rivest 
and Shamir in ~98Z [3] (cf, .[41 and: [5]). WUM1.s are binary 
s.torage.me<iia.. for mUltiple uses in -whic,h-n binary. symbols can l?e 
~tored:·at every :singl~ usage. The memory can be reused (up
qat~p) ~th the ·restri~tion that the encoder is all?wed either to 
wJjte::fs in some chosen positions and'sKip:an others 'or to· write 
O's ~~s()me. po~:iqons· a4d skip. all others .. This means that .O's and 
l's cannot be written at the same updatmg. 

The . motiva_tion ·for studying such . a device·. comes from the 
updating process for rewritable optical disks; Here the choiCe. of 0 
or 1 as-. ~e binary digit-stored depends on the orientation of the 
magpetic.·field generated. by an_ electromagnet. The· change of 
orient~tion of the magnetic. field is a slow procedure. This is why 
the Wl.JM is a preferable model for such a device. 

Unlike in a WOM the role of O's and l's is symmetric, and a 
WUM can be used . an. arbitrary number .. of times; Accordingly, 
the effectiveness of a WUM will be measured by the quantity of 
stored. inform~tion per. updating. (In. what follows an updati11g 
process will also. be called a. gen~ratiori.) . 'The main problem. is 
how to.construct.good codes iri this sense. · 

In Settiofl,· II we, give the basic definitions. ~d discuss ,previous 
work. ']n . Sec~on IJI vre g~rieraliie . the construction. of W~lems 
and . Vipck to a family of WUM codes having some better 
members. than the Willems-Vinek code; 

In ~e~tion IV, we copsider the foul' .cases that ari'se according 
to wh~tfier or not the encoder and/or the decoder is ~formed of 
the preVious state of the memory, This parallels the four- cases 
investigfited by Wolf .et a/; for.WOM's [4].·0ne·of these cases·is 
closely related to ·an unsolved. conjecture· ~f Erdos and .Katona 
[8]. In. ~ectio:q V we present a new proof of Theorem 1 ofBotdeh 
[1] based-on Fibonacci seqpences. 

. . . 11. PRELIMINARIES . 

Bon:l~n .[1] (and also. Will ems ariq.Nmck [2]) introduceq WUM's 
under the assiunption that the encoder knows the previous state 
of. the memory before writing new information, while the decoder 
has no ·information about the previous .state. we· shall initially 
restrict attention to this case . 

. Definition 1: Let x = { x1,- • ·, xn} and y = { y1 , · · ·, Yn} be 
binary vectors of length n. We say that x and y are comparable 
(x- y):if 

foralli x! =1 ~ Y; =1 or for all i' Y; =1 ~ x;=l. 

The technical condition that th~ encoder should not change the 
·orientation of the magnet during· a rewriting means formally that 
a s.tate x can be. rewritten into a y only if they. are comparable. 

For an error-free. decoding we. have to be able to partition the 
possible states of the WUM (these are binary. n-vectors) into 
disjoint sets corresponding to the different messages, i.e., each 
element of a set S; will be decoded as message m;. Given a state 
of the WUM, the condition for being able to update it is the 
existence for every i of at least one element in S; comparable to 
the given state. More formally, we have the following. 

Definition 2: A family C = { S1, · · ·, SM} of subsets of {0, 1 Y 
is a WUM code if 

l)S;nSj=0, ifi=t=J 

2) for all i =I= j for all X E Si 3y E S;, such that x ~ y. 

Every·· set· S; is associated with a. different message, and is 
called-its codeset The rate of ·a WUM.:.code is 

11
1ogM 

R=-.
n 

where, ··herein;·. all- the logarithms are to. the· base 2. We . are 
interested in constructing WUM codes with high; rates for large 
n. The larger the rate·the·more.efficient the WUM code is. For 
each n the largest possi,ble Ri~ denotecl by R( n ); 

In what follows. we define a sped:al class of WUM codes. This 
class i~. -i~po{tan,t ·because . .it$· elem~nts . of .• any length! can be 
expai,tded with the, Sanle; rat~ for' ei!bitr.arily large n. 

Def{nipon }: '"the weiii1r of. a. bipary,. ·n'-vectpr x, denoted by 
w(x);is· tli~· nurobe~ Qf rs·.am<;>ng its. COOrdinateS. If U 7 .V ~d 
w(u).~.w(p),:w~writeu.~p. _. . 

Dejhzitton 4.~ A :fiupily c "= { s1, ... 'SM}.of subsets of {O,lY 
is an altematittg WUM codeif · · 

1) Sd1S;=0,ifi=l=j; 
2) for every i there exist two sets 7;0 and 7;1 with the 

following properties: 

Si = Tio U 1j1, andfor all i, all X E T;o, and all }, there exists 
yE 7}1 such that y ~ x. For all i, all x E 'lj1 and. all j, there 
exists y E 7J0 such that y ~· x. _ · . 

The WUM codes · intr<;>duced in [2] are alterriatirig WUM 
codes. It is easy tQ :see. that if we construct an alternating WUM 
code of length. n0 , then we .can, construct an alte!flating WUM 

·code· with the -same rate .and· length :ln0 (l is .some J)Ositive 
integ~r) by simple concatenation. Thi~ is, not 'true. :for general 
WNMcodes;_. . 
~h ·.x' .den6tethe -cozriponentWise. coiPplement·of the. binary 

n~ve.ct6r 
1
'X: For I Ei{O;J}, we '$et t=l-1. . ·. · . 

Deffnftt<m.5;• An alternating WUM code is symmetric. if 

whereT={xlxE T}. 

Theorem 1 (Borden): It holds fuat<R(n) <: y!: log((1+v'5)/2) 
.::::; 0.6942jf. ll~ 5,. 

Theorerh' Z: ( Borden).~ We have. llin n -+ oo ~{ n) = y. 

These are proved in :[1]: the latter -is proved by a random 
coding argument; i.e., it is nonconstructive. The best explicit 
constructi:<>n in [l]for ll!'bitrarily large n yields R = 1/2 and is 
the following, . · . · . · · · 

Assume that. n i$, even, and let 

where 0,,1, &r. E: {0, 1} n/2 

l is the alii vedt~r, 0 is: the allO veetor, arid x; is an arbhrlifY 
n/2 vector. Less formally, the memory.is,divided into twoequal 
parts and an arbitrary. n/2, vector is written on the left (right) 
half while the. all 0 (all1 ). n /2 vector is writt~n on the right (left) 
half; . It· is· ea8y· to see lliat this is really :a. WUM code with 
R=l/2. 

A more refined conStruction was given by Willei11s and Vinck 
in [2] (They _also state without proof a result implying Theorem 
1.) The code of Willems and Vinck achieves a rate of (log6)/5.::::: 
0.517. In Section Ill we generalize this construction describing a 
family of WUM codes. The best member of this family yields the 
rate (log58)/ll = 0.5325. 

Ill. A FAMILY OF WUM-CODES YIELDING R = 0.5325 

In this section we construct a family of WUM codes all of 
which are alternating and symmetric. Because of the alternating 
property, our construction can be used for arbitrarily large mem-
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ories. As usual we will identify a binary n vector with that subset 
of {1, 2, · · ·, n }, of which it is the characteristic vector. 

Baranyai's Theorem [6}: If k divides m, then the k sets of an 

m set can be partitioned into (; ~ ~) classes so that for any class 
its elements give a disjoint covering of the m set. 

Now write m= k(k + 1). The foregoing theorem claims that 

there exist (;~n different families~= {A;1 }J~l of k-element 
subsets of {1, ···,m} with the following properties: 

1) for every i: j =I= I==> AiJ n Au =0; 
2) ~ (') 0 = 0 ' ifi =I= j. . : 

Let x;1 denote the chfll'aCteristic vector of AiJ. Then xif is an 
m ve.ctor with weight k. Let '.f;~ = {f;j, j=1,· · •., k+l},·and so 
11t, ==;: {x;1, }= 1,· · ·, k+l}. We Claim that in this way we obtain 
a W{lM co.de.. _ ·· .· ' 

Lemma 1.~ The fanilly of sets 

C*.= { S;* =T;ti.UT,t: i=1,2,·~-·,(·~=i)} 

is an aiterilating WUM.-c;ode. . 
Proof' By the definition, S; * n ~ * = 0 if i =I= j is obvious. 

Consider an arbitrary JiETji(/ E {O,l)}and f=l= i. We have to 
prove that there· exists v E.1)f, . v - u. Since the construction is 
symmetric in 0 and 1, we can ass~e u E 716. Then w( u) = k. 

Consider the. elements v E 7j[. Note that 

u(u1 ,···,um) i,v(v1 ,-'·,vm)=>3r ur=l, vr=O. 

However, it ·follows irilmediatelyJrom the con~tructio11 that if v, 
v' E 1){ , then the, ~ets . · . 

z(v)= { tlvr = o}- and z(v') ~ {rlv: =\0} 
i ' . '\.... 

are disjoint. .. ' ' - \_ 
. Sl!ppose indirectly. that .u ivfor e~ch vE-Ijt; T~enit{<>llows 

thatfor\~ach.v ET}t3·r ur ~l; vr ~= O·and because ·of·the"pi:evi
ous consequence of the construction this r must be different·Jor 
each. v_E 1)t~ ffowever, lljt 1.~ k+l @plies w(l.f} ~ k + 1; a co11-
trad1ct1on. This completes the proof. · · ·. 

Remark: The idea of Willems and Vinck was to construct· a 
symmetric WUM code where niax:xer.

0
w(x) < 11j11·~d some 

structural property will guarantee. that the code is ~ WUM .code. 
The novelty hereis the recognitiOJ1 0~ the relevance of Barariyai's 
theorem whic~. gives us the flexibility to· const11.1ct ·such _codes for 
many ~d~fferent values of the p~ameters. In the next lemma we 
slightly modify; th~previou& c~e,, !her~ by jll1proving tlie rate. 
. pemma 2: By· ~r~}Jping• til~ J~t-'?i t . ()f each . cod~w()rd .hi t11e 

WUM· code of. Leinma 1,: we··get· a>fi.~w c&ie <;' '\vitli l~ngth 
n. = '!' -:-1 = k( ~. +1) -1. •• ~ is.~&~ ari.. alterriatiilg WU¥ code. 

Proof: Let x' de1-1;ote · the codewoid obtained from x by 
droppirig its last bit It is. iilvi.~;td;s~qw that 

Denote byS; ·the set obtained-from B;* 6fC*. It foUows-fmm 
Lemma 1 and the foregoing fact that for any i =I= j and u' E·7j·0 ; 

there exists v' E 1)1 such th'at·v.' ~ u'. . . . 
It only remains. to prove that S; n S; = 0 for each i =Fj. Note 

that all.the1rcodewords:in C*.·had a.wefght of k or m ~k. Then it 
is clear that the last bit is determined ·by the previous m .:- 1 ones. 
Hence S;* n S/ = 0 implies Si n~ ::;:: 0 . This completes the 
proof. · . . . · . 

By. Lemll1~. ,1 ~d 2 and. thepo~&ibility of con~at~n~tiop, we 
have a fainily of WUM codes.· whh 'the folloWing parameters 

.: . ... . - . ' '' ';. :'- ; .. '• ·'- - ·-·. : ~ - . ..._ ]_ '· >: . - ·.:. ' .·• 
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(k and I are positive integers): 

nk = [k(k +1) -1] ·I 

( 
nk ) 

1 

Mk = k -1 

log( k ~ 1) 

Rk= k(k+1)-1' 

The foregoing construction already achieves R::::: 0.522 for 
k = 4 and R::::: 0.525 for k = 3. We can, however, improve our 
codes by adding further code sets to them. · . · 

Until.now_ the code sets of C ·include all the_ codewotd~ of 
weight · k. and. k - 1, their complements,.· and not4ing el~e. I{.·~~. 
can . constn1ct some IUf.ther. 1j0 with codewords of \V;e,igb,t.:~e&~ 
than 4c ·~ 1 ( T;t . will•·be.~1;0· as ·before }'while keeping~fl.:i.~;,j~}l>Ot~~t 
property of·our constructiqn· •that 'v'L Ff;0 1 = k+ l••a.tfd·;.flie cede," 
words in· a- 7;0 are characteristic vectors '~f disjoin_tsubsets,~f 
{1,2;·. •., n},_ then 'th~ obtain~d code·,will remain· ·an:;altefl,lati~g 
(and symmetric)· WUM code with an obY.iously·better·t~te. The 
proof of the last _statement is .similar to· ·that of Lemma: 1. 
Furthermore, note that the ~ll-0 and all-1 vectors are COfl1p~able 
with all others; thus these two vectors can form a s~parate code 
set of cardinality two: (Inf~~t;:'we could use the all-0 .and the 
all-1 vectors as two sepat"ate code sets of cardinality one. In this 
way, however, we coWa get a ·nonaltemating code, ahd the 
possibility of concatenation would. be lost.) 

The maxinium ·number of new code sets construCted by the 
above method is at most 

This is .aiways achievable as one can . easily verify using the 
follow:irig. · 

G~nera1 Form of Bara,'(!yai's. Th~orern [6}: Let c(lH' •• ' at be 

natural numbers such that E}=.1a1 ~(~} Then-the ·h-sets of an 
n-set can 'be partitioned'intodisjoinf families S{, · • ·, St such that 
L~-1 =a j and each i E {1, 2, ... ' n} is included in exactly raj . hI n l 
or laJ·hfnj elements of~. . . . .• ·. . . . . 

For our purposes we use this theorem with h running over the 
set {1,2;· · ·, k ;_;;1}. For every fixed h.we choose a2 (h)= · · · = 

_,a r-,-l (h) = k + 1. For h > 1 a1 (h) = k + 1- at ( h - 1) a1 (1) = k + 1 

while at(h) ={ ~) -Ej-:\a1{h). In. this V{ay it is easy to get such 
fanrilies of subsets of { 1' 2,- .. ' n } the characteristic . vectors of 
which define codesets of the desired t)ipe. 

This· completes· .. the description of our construction. The new 
code has the following parameters ( k. and I are positive iptegers): 



·-· .. ·: ·. ' . ' 

~ ~'"·We ate. inte,restedi in ·the'behavror of'Rk f<Jrtdiffetent ··7('s•/It·is 
:.~~y.to• che.ck that.for.k ~._·oo, -Rk_~ 0 and·thus=-we can·hope·to 
i~hieve gdod rates for· small: k 's .. The parameters- of ·the cOdes we 
()li)tain for different k 's and I= 1 given in Table I. 

TABLE I 
PARAMETERS OF THECODES OBTAINED FOR DIFFERENT k's AND I =1 

k nk Mk Rk 
-. --~· ~~-,---~--,--------..,....---,---------
 · (log6)/5 =·0.517 (Willems-Vinck code) 

~{~~:~' . g~~~~)/11 ~ 0.5315_ (the besfcooe in this·family) 

0.5()3_. 
. ·!'~1/2 

~~2~~::,~~tif.:;construction gives the- c<xfe. of Willems and Vinck as a 
>.·~~~~!afpasefor k = 2.-The best Code we OQta,inha.s.k= 3. The 7;0 
--~-~~$:.·or so~e of its code sets are.as follows-(for i = 1,.2, · · ·,55 7;0 
\~~·be o]i)tairted by pennuti.tlg the colWn-ns in this matrix form of 
::z,:jjj; -Baranyai's theorem ensur~s that this. is possible while 7;0 n' 
'1)0 ==-0 remains true fori -::1= j): 

0001110oooo 
{ 

11100000000.} 

T10 = __ OQOOOOlll00._-
00000000011 

{ 
109QP000000-} '{<>9QO~ooqooo}' OlOooOOoboo · . -. · 00000100000 

116_ o = oo1_ o00ooooo ___ ._· -___ · _:·_. _rs7 o =_ ooOOoo1aOoo_-_- · 
' 00010000000. 00000001000 

· 7;1 = 7;0 fori =1,2,· · .. ,58. 

IV. GENERAL CASES 

. • In ihis section we will consider the following four cases: 

Case 1: both encoder· and. decoder are informed about the 
previous. state of the memory; , 

C~e 2: encoder informed_, dec~der uninformed about the pre
vious state; of the memory; 

Case 3: encoder uniiiformed, d~~oder informed:.about the pre-
·. · _ ~ous. sta,te of the_ :rnem9ry; . . · · 

(J.ase 4: both e:ncoder and,decoder uninformed about the pre-
vious state of the-memory.· 

:-~,~til now we have·consideted WUM's inCase 2. For the more 
y~~~~raJQiscussion we intr(}(juce. ane~ for:rnulation .. Instead 'Of .set 
:~~~~terns we will now define W{JM codes as mapping~: . . 
~},~~Y. 11,= {m1, ···,mM} lpe the.set of jilL possible messages; 
. .;~!J,h~message, for. evecy .. c:el.l of the. llleD1QfY,.the ~ncqqer.has 

· "•chqices; write al, write aO, or-leave the content of the cell 
~ged. Hence.·given.a_message,,the action_of_the encoder can· 

... scribed by an n vector over the alphabet {0, 1, D} whel'e D 
~fS t9 the case when the content of ·the .cell is left unchanged. 

~~~-~rf.-et, Fi == {1,DY Fi = {0,0}~ F= Ff·u Fi· Then the elements 
:f~f.; F represent the possible actions of the encoder, while the 
i:~~ehi~nts of {0, 1 }" are the possible states of the memory. 
·· To formalize, we introduce a function cp: {O,l,D}X{0,1} ~ 
{0, 1} as follows: 

cp(i,x) =x, 

cp(i,x) =€, 

if €= D 

else. 

With a slight abuse of notation we denote by cp: {0, 1,oy X 
{0, 1 }" ~ {0, 1 Y the obvious extension of the function. Notice, 
however, that we shall be dealing with the restriction of the 
former to F X {0, 1 }". 

. ' 

. · l)uring the:l11sf?rY· orsucces~ve' ·qp~atings of the•·WUM the 
ac_tions ··. of, ~e • ~tjcOder :and:-· the: Jdeeoder: : are ·.described·; by: the 
functioJ1;s f', g~.-~her,~\.( r~fers _t?,_the:genera_tion numper.,}be 
problems connected 'Yitfi,the gt;rieration number are discussed-in . 
[7]. Here we a:Ssufue that bqth .the encoder· and· the decoderjrnow 
enough about the generation~ number to. be able to function as 
describe& Consid~ring the: ~ifferent .cases. 

CaSe 1 (Encoder'and'Dec6der1nformed): For every t the encod-
ing function P is .a mapping ' 

f: Jt~ {0,1} 11 -+ F 

while the decoding function is 

i:·{O,l}
11

X.{0~1}
11 

~.A . 

An: error-free decoding is .gu~ilr).teed if and only if 

. g1(~(P(m,x),x),x) =m 

holds· for· every m E Jt and every x which is a possible state of 
the memory at generation t -1. 

Case 2, (Encoder Informed, Decoder- Uninformed): For every t 
the encoc;ling function p is a mapping 

p: Jt X {0, 1} n ~ F 

while the decoding function ·is 

g1
: .{O,lt ~Jt. 

An error-ff~e decoding is guaranteed if and onlyif 

g1(cp(f.1(m, x),x)) =-m 

holc:l~ ~or.ey~IY: trl. E Jl an<J-eyery .x which is a possible state of 
the tl)emoiy .·at generation i ..,.,.1. · . · · · · 
Note,~atthisformu}ationis slightly more general than the one 

used in -S,~ction L If/1(111; x) and g1(x) depend, on t only 
thro1;1gh x, theri setting 

S;= {xlg(x) =m;} 
we obtain the previous _formulation. For alternating codes we can 
set · · 

7;0 = { xj3y-possible cbde~ord with y ~x, x= cp(j( mi' y ), y)} 
while 

Ti1.:::::: {xj3y. possible codeword with y ~ X; X = cp ( f( m;, y); y)} . 

C_ases 3 ~d 4 ~an be d~scrlbed in a siirll,Iar way :with an encodi~g 
function l': J( ~ F and d~C()<iplg Junctions g1

: {0,1} n ~ {0, ~y 
~ ..../( 39d g~: { ~' 1} n ~ Jl, res,pectively~ We now redefine .. the 
altematip:g ,property. 
,· IJefinitiorz: q: A"WUM code (in: ·a.11 four S~~es)is alte:rna~g if 
tile ra,n&e of·' the. enc.o9-ing. fupQtion f' is .a.subset, of FJ.·. or-of>:&_ 
dep_endi~1g~ ()D· the patjty ()f(. : _ _ _.. . ~ _ _ .. _ · . · , , , 

Remark: It. s,@l,remaj.n.s_ ·true.-th~t by concatenating alternating 
WUM. codes we obtaitl a}ternatll)g Wl)M codes.<>£ t,he s~e ntte 
and double, triple, etc., length. One can. easily check that defllii
tion · 6 is really a generalization of Definition 4. 

Definition 7: An alternating WUM code_is said to be symmet
ric (in all four cases} if there are only two different pairs (Jf, g1

) 

and 

f2 =fl 
where the complementation is understood componentwise as 
before and the complement of D is D. 

We now consider the four cases separately and state some 
basic facts for each one of them. 

Case I (Encoder and Decoder Informed): It is easy to check 
that Borden' s proof of Theorem 1 remains true in this case. Thus 
R(n) < y for n ;?; 5 (from Borden's Theorem 1), and 
lim

17
_.

00
R(n) = y (from Borden's Theorem 2). 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 35, NO. 3, MAY 1989 

Using the decoder's knowledge we can use a nonrandorilized 
version of Borden's random code (which helped prove his. Theo
rem 2, see [1]). This achieves the asymptotic optimum. For a 
detai~ed description see [7]. 

Case 2 (Enco4er Informed, Decoder Uninformed): This case was 
considered in Section HI. Borden' s Theorems 1 and 2 give the 
best possible a.Syniptotic upper and lower bounds for R(n)~ The 
best known . construction is the one described in Section Ill, 
yielding a rate of (log58)/H ~ 0~5325. 

For Cases 3 and 4 w~,have the following. 

Theorem 3: ~n Cases J and 4 for every WUM code of rate R 0 
there' ~ocists an alteniating ·WUM ·code having exaCtly the same 
rate. Our proqf of tJ;lis- theorem, actually yields ·a construction 
(cf [7}); - - · - - -

Consider now C~es 3 and 4 separately. 
Case J (Encoder Uni'nformed, . Df!coder Informed):, the only 

upper bound we la.low for B(~) in this ·case isjhat of Theorem 1. 
The best :~ower bound ·we have derives from the ··folloWing coi:J.
stru~tion, .We cori,~tru.:ct aJ,talteinatingand ~)rtninetqc·WUM code 
with length n = 3; and M::= 3, yielding tlie ·t~~e .of (log'S)/3 ~ 
0:528. ·Because of the ~teinatlng · property this rate is a<;hieved 
asymptotically. Set -· - · --

-. P(m1) =oll f 1(m2 ) =lD~ l(m3)::=q(;J 

/2 ~~~. 
Lemma 3: There exist ·decoding functions . i. ·· ·and g2 such 

th~t, together \vi~ the aboye encoding functio~~. they yield . an 
error-free WUM-code. ··-- - · 

froof" Set g1 and g2 as follows: 

g1(011,x) = ~i gl(111,100) = nh 

~2{101, i)·=m2 i(rg;o;o) 9' mz 
. . 

g1(11.o~ X:)== ~3 i(1ILO()H.== m3 

g2( x, J') = g.l(x, .V). 
It is easy to see that j 1

, [
2

, gl, g2 ddhie _an error-free WUM 
code. · 

~ . ' 

Lemma 4: The following two questions are equivalent: 

1) for Case 3, what is the maximum p.umber M(n) fo.r which 
· there exists an alternating ap.d symmetric error-:free WUM 

code of length n? · 
2) what is the m~tt1um car4inality ~f a family fF of s~bsets 

of an · n set wi~ the following property: - · 

Ji; ~ f-"LIAi ~ {1,· · ·., n }: there· exists no triple Ai, Ai, Ak 
such that Ai#= Ai ;md Ai.c..A1 ~ Ak }, where· A;~Ai denotes 
the symmetric difference of Ai ·and Ai. 

Proof: Consider a .family~ = { AJIAi ~ {1,- · ·, n} }. Define 
the function t as follows: 

and 

-{D, 
a;J= 1,. 

~f j EA; 

i~ j~Ai. 

'fP.en [ 2 is defined to be symmetric with t, i.e., 

{
D, 

bu = 0, 
if j E. Ai 
if jft, rt:· 
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Note that the correspondence between the famiiies ~ and the 
(symmetric) .pairs of functions f 1

' f 2 is one to one. 
Suppose that there exist functions g1

, g2 which form a WUM 
code with P ~d f 2

. If there eJP,st A0 Ai, Ak E ~ for which 
A i .c. A I ~ ~ k, then consider the two series of messages for an 
arbitrary state x 0 of the -WUM: 

ml=mi m2=mk m3=m1 m4=mk ms=mi 

and 

fi'i=m. 
. I m 2 =.mk m 3=m. 

. ' 1 
m4=mk m 5 =m-. . - J 

Then it is e~~y to check that ~4 and also· x 5 (i.e., the state of 
the, Jllemory in generations 4 and. 5) will ·Qe the s~e Jor$e· !WO 
sepes<·This i~pli~~· ~e,cliatety·~U!at. it j~ inlpossible, to' fjnp 
decodiD.g Junctions. th'arcan:d~ciqe if -tl;J.e Jifth_ me~sage wa$: t.ni .!Jr 
m j, a ~ffi:l:tradidion._ On 'fu.e •other han4~ if· the f~y ?o .. hfis· the 
pro,perty describ~_d .~ 2) ·then the for~going- amb1gtijty·can never 
arise, ~so·we-always firia g1 arid··g~ to .fol'in an error-free WUM 
code ~th ji:' and f 2• .. ' ' ; • . - . - . ' ' 

Now consider a f~y 

-~,=-{AijAi~ {1,-··,n}, no p~se di~ferent sets 

-1i• A1 ,'A~ yield 4r.t..A1 s Ak}. 

It is conjectured by Erdos and katona '[8, p. 27] that the maxi
m~ Carditiality Of 'SUCh • .fl/ I iS . ob~~ed PY th~ fq~l0\Vit)~ COn
St~Ctioii:. Divid,e {1 •. ·:· .. ~ n} ·. int? r n /31. Clas~~s <jf} ail~rz. e~e
nu~nts,, and let e~ch ~i E ~'-contain ~xac:dY: <;>ne ~~~m~:nt from 
each class.- · ;:::·,.,, · · ~: ·: ~ .. 

. -Note thaftbis constructiOn.·satisfte~ th~·~li~t}~:.iltbte· te~tricted 
condition~· fQr ·$&" in:i.en,utw·4; This' rpe~~::}hat {f'Qle .. corij~cture 

~ of . Erdos and Katoila is· true~ then the same is tine f()t such . a 
fanrliy'j: de$cri~eQ intetittna 4~- · .- · --... · . ; ·' . · ·. · 
· .. ·. Fmal!y, note-~that. the .co~jectute~ op~al constru,ction . corre
sp()ttds (in :the ~erl_~e ()f Lemrila 4) to the WUM cpd~ construction 
we.gave for Case 3. Then.~~ Erdos.:..Katon~ ·co1;1jeGttire imp1:ies 
th~ f<;>llowing (only ~ligJ1tly weaker). . . . . ., . - . . .. 

·ConjeCture: Eor. an· ~tematillg and symirietqc WUM-c;ode. in 
Case -·3; B.( 1J) ~,(log 3)/J·~ 0;?28. 

Ctzy~ 4: We- know tl.tat. R(n.) < y as in all other qses .. We 
~ow 'R(n) ~ 1/2:(for every-even n, and R(n).~ 1/2...:... 1j2n for 
odd . n) . ft9t;n t,he. coiistiucti()n of Borden described· hi ~ection II. 
(It. i~ e~sy to· check th~t this constructi6J:! is goOd even in Case 4.) 
~e c01ijecture. th~.t in-Cas·e.4·t~~·construction is !he best possi-: 
ble, i.e:,_ the best achieva]:>le rate for -large n is 1/2 ii?- Case 4 .. A 
sum~ary ofour knoW,le~~e about limn '-+ 00R(n) in the ~our cases 
i~, given in Tabl~ 1~. · , · · · · . · · 

TABLE II 
OuR KNOWLEDGE ABou:r R(n) IN THE FouR CASES INVESTIGATED 

- -

lim R{n) 
!le~i Rate Achi~yed .. •• .· .. · .. 

Encqder Decoder (For,Arbitr~y Large n) 
Case Inform ea l~fOfl!led n -.oo ll,Y Con~t(Uctloil . · 

1 yes - yes 'Y 'Y ~-Q.694 ' ' 
2 -yes no y (Iog5s);n ~ o.5325 
3 no yes ? (1og3)/3~ 0.528 
4 no no 0.5? 0.5 

V. A NEW PR90F OF BORDEN'S R.¥SULT R(n) ::5 y 
In con~lusion, we prese~t a· new proof~f the asymptotic upper 

bound of Borden's theorem. This proof, partially due to ·Tatdos, 
explains. the ~onnectioii :betwee11 WUM: codes. an~ .. the Fibonacci 
se.quence.' · · · · · 



. "Rr.ooJ of Bord~n-~s ·theorefm 
· Case A: We Claim- that for altemafug WUM codes of 

length n 

.(l+v's) R(n) <y=log _-
2
-_ .. (1) 

. Consider the tth cell in the WUM. WHhout los~ of generality, 
we can assume that i = 1. Its state in the jth generation is xi. We 
now shall count the number of all the possible "fates" of this cell 
duri~g t generations, i.e., the number 1 B1 1 where · 

B, = { ( x0 , x1 ,. • ·, x 1
) lx0 ·e {0,1}, x 21 E {0} U { x21- 1 }, 

:'·,· . . . 
$-~#e:·c,onditions for x 2land ~21+ 1 are the formai descriptio!ls of. 
th,e ,tact _.that our_ WUM. code is alternatiltg, i.e., the encoder 
:c~9t\VriteO's in odd or 1's in even generations. 

-~we claim th·a~ · 

IB,I = at+2 

·where an is the Fibonacci sequence defined by 

a1 =1, a2 = 2 

fork~ 3~ 
. . . 

(2) 

It is easy to che~k that B0 = {0,1} and B1 = {(0,0),(0,1),(1,1) 
i:e:, !Bol = 2 and IB1l = 3 is true. 

We have to show 

Jor k~2. 

Let U.& define the sets Bko and Bkl as follows: 

Bko= {(x0=0;x1 ,···,xk)lx11 e {O}u{x21
- 1

}; 

x 21+ 1 E {1} U {x21 }} 

Bkl = { (x0 =1,x1
,- • ·,xk)lx11 e {0} U {x21- 1 

}, 

x 21e { 1 } U { x 11 } } . 

It is obvious that 

Bk = Bko u Bk1 , while Bko h Bk1 =0·, 

implying IBkl = IBkol+ IBicd· 

The condition x0 = 0 does not restrict the value of xl, whence 
', '. ' I . ' 

-IBkOI=I{(x1 ,-··,xk)lx1 ~ {0,1}, x 21 e {O}u{x21
-

1
}, 

x2l+l E {1} U { x2l}} I= IBk:--11· 

·If :xo ~1, then x1 = 1, but. there is :o.o reStriction on the value of 
·:x2 .. Tlius 

IBkil =I { ( x2
,. • ·, xk) lx2 

E _{0,1 }, x 21 
E {0} U { x21

-
1
}, 

·x21+Ie {1}u{.xz'}} I=IBk!..,-11; 

which proves (2). 
The explicit formula of ak is well-known (see [,9, p. 158]): 

a.~ ~{(1+2J5)' -c-2vsn. (3) 

It is clear that the number of all possible fates of the whole 
memory during t generations, i.e., the number of all the possible 
vectors of n vectors ( x 0

, xl, · · · , x 1
) is exactly I B1 1

11
• 

On the other hand, there are M 1 different series of messages 
during t generations, and each of these must belong to a different 

fa~e·ofthe 'memory 'or else error~free· decoding is impossible. This 
iniplies .. that-for every t, . . 

'•\ . 
· t · ( )n M ~ IB,In = at+1 · 

Then using. (3) we obtain for the rate 

JogM logM
1 1· _ ·.[ 1_ (. ( l+v's;)r+Z 

R=--=--::;-log - --
n tn -t ·· v'5 2 

This is true for any t; theref~re, 

R(n) -::; lim
·. l . 1(·(. l_+f5_s.)t+2. ·( t~/5 )t+2_] 

t-+oo tlog v'5 · .-2- - --2-.. 

·~log( l+(). 

(4) 

The proof of Case A is complete because simple arithmetic shows 
that equality can never occur for any finite n .. 

Case. B (Tardos_ [10}): :Let b be a t-length sequence of O's 
and l's. We are given a WUM fotwhich at the jth generation we 
are only allowed to write 0, i.e., the possible fates of a certain 
cell of the memory <,iuring• t generations can· be. described by the 
set 

_ !J1b ~ { ( x 0
, x1, · · · ,x1

) !x0 E {0,1}, xi E {b1}u{ ~;~i J}. 
It is easy to see (by induction and using the method of the proof 
of Ca~e.A) thAtBt~·a,~ 2,.for any fixed ·binary· sequence· b. This 
implies ·that, once ~ehayefixed b,. thenqmber of an the possible 
fates of the whol~ mem01j is ~IP,bln ~- (a,+ 1)n. In fact, we have 2t 
possible choiCes for the:~eq~ep.ce b.)ience f()r the number- d1 of 
all the possible fates of the memory during t generations (without 
predetermined writirig directions), we have 

dt =' .E IBtbln ~ 2t( at+2) n. 

bf!={O,l}' 

There are M 1 diffete:o.t _sequences of messages during. ,t. genera
tions, each of which must belong to a different fate of the 
memory. Thus 

Mt ~d~ ~2~(ar+zr 

which-is the sameas.(4) wHh M/2 instead of M. Hence:wfiting 

M 
log M . log·2 + 1 

R = --· = --"'---
n n 

we can repeat the previo~s computation (Case' _A) obtaining 

R~log( l+()+~ 
which asymptotically gives 

R ,;;log( 1+2Jj). 
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Estimating the Information Content of~Symbo~ 
· Sequ~n~~s and.'Efficie~t Codes 

PETER GRASSBERGER 

Abstract -Several variants ·of a,n algorithm for estimating Shamion 
entropies· of sypibol.sequences ·are· presented .• They are all related to the 
~rnpei-"'Ziv algorithm .. and ·to recent algorithms for estimating ·aausdorff 
dimensions. The average' storage. arid tunnirig· times. increase as · N and 
N log N, res~tlvel!,· with·.the .· ~ue~ce length N .. Thest; .al~orithms. pro
ceed; ~asically~y: coristructing:efficie~t codes. They seem. to be·.~e optimal 
~gorithms 'for'~ue~ces":Wi~h~strc)n,g·l_ong-range correl~tions, e:g;~ n~tural 
ianguages. An·applicati~~;to Writtert·'Englisll illustrates their- use. \ . ' ~" ', : ,- •·. ·. ~ " . . . ' . ' ' ' ' ' 

I: IN;IRODUCTION 

·· Si11cet~e d~velc.ipnient of inforip~tion theory by .Sh3l,Ulon [1], it 
has beep. ·re?bgniied'that. few • gOO<f ·algorithms exist for· inea~niring 
th(: ihform1it1on pf signals c·()ntmnll,lg strong long.,iange correla
tions. To be . more spedfic; Jet us aSSUJ:Ite a qinary sequence 
S=:={s1,s2 , ···)With Sre {0,1}. Our assup1ption :represents no 
restriction. since any ?ther discrete. S~qUCJJ.Ce with a fini~e alpha
bet cill). be encoded iri this way, and even the' output of coiltinu~ 
ous dynaJnical systems. can be encoded in such a way that the 
entropy.of ~esequence of code symbols ("Kolmogor:ov.entropy" 
[2]," [3])'is in~~pendep.t qf th~ ~encoding. We assume that the 
sequence· is statistically stationary. Thus~ for any sequence SN of 
N binary digits, well-defuled prob~biliti.es PN{ SN} exist for 
fhjdiJlg SN starting at ~y ·chosen site. within · S. ~he Shannon 
entropy is defined as .. 

h = lim hN 
·N·-oo 

{1.1) 

with 

(1.2). 

H~re, we take ~e logaritlun to ~ase 2 to obtmn h"in bits/digit. 

Manuscript received Junel, 1987; revised July 18, 1988. 
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The quantities hN are called block entropies. The limit in (1.2) 
converges always from above, i.e., one always has h :S: h N· The 
latter is very useful in practical' applications because it implies 
that estimating upper bounds on h is very easy. 

These bounds are tight if the sequence has no strong long-range 
correlations. More precisely, h 11 = h for all n;:::.: N if the sequence. 
is an Nth:.order Markov chmn. However, in realistic cases such 
as natural languages, DNA sequences, or TV images coded in 
some sequential form, these correlations are very strong, and h N 

converges so slowly that (1.1) is rendered virtually us~less. . 
This fact was understood by Shannon who devrsed . an m

gerieously simple inethod for estimating the information of writ
ten English [4]: he randQmly erased letters from some text 
(replacing. them by blanks) and presented the mutilated text to 
students who' had not seen it before. If the students were able to 
gl;less ·the meaning-.,of the text in whi~h . a. per~entage p of l~tt.ers 
were' missing then these letters were. obviously redundant1 giVIng 
a redundanc~ . ~ p. This m~thod and·. other. similar subjective 
methods·[5]-'-[10l(fora complete survey of the literature; see{lQ]) 
have several. drawbacks. First, .they can be applied only 'to natural 
languages since guessmg at statistics and. grammar ~ould require 
perfect ~d compreheil$ive ~owle?ge:. ·~econdl~, sine~ th~ pro
cess is subjective, estimating error~ rs difficult. Fmally; m VIe~ ·of 
the increasing avmlability of computers an4 of computer,..read
able written text, algorithms that can be used by computers 
would seem useful. · 

Up to now, the objective method wit4 .the· best chances of 
taking ·long-,range correlations into account has been·. the algo
rithm of Lempel and Ziv [11], [12]. Originally constructed to 
provide· an information measure_ for ~~ividri~ fini~e. sequences, 
the Lempel-Ziv algorithm IS srmrlar m sprnt t<? the 

. Kolmogorov..o..Solomonoff.:...Chmtin [13]-[1.5] algorithmic c~:m~
plexity. However, it .was shown [16] that, m the case o~ statisti
cally stationary strings, it converges to the Shannon entropy as 
N -4 oo. The Lempel-Ziv complexity will be defined in the next 
section. . 

As ·proposed in [llh [12] an<;l implemented; e.g., :in [17], !}te 
Lempel-Ziv algorithm needs ~time of !fie ·orde~·of_N2 for a 
sequence. of N symbols. (Algotrthrils needmg runmng time of the 
order of N have been, proposed [18], [19], but they·refer not to 

·.the Lempel-Ziv algorithm but th~ Ziv-LeJ:?~el alg~rithJ:? of_ [22] 
which seems considerably less optinial for frmte stnngs, 1ts VIrtue 
being that. it .is much easier to apply. Furthermore, these· algo
rithms seem to attmn· their claimed. a8yniptotic· behavior only 
when applied to Markov sequences. We are interested in. the 
opposite case where the Markov property c~ot be· ~s,ed or rs to 
be .tested.) With present-day comput~rs, this restncts one to 
anaiYzitig :s:104 -105 symbols. Thi~ is not enou~ for· the long
rang~ correl~tions in written language. The .algonthms ~re~ented 
m Section 11 need times of the· order of N l!Jg N, making more 
serious analy~es feasible. : . . . . . . 

These algorithms ~an be u~derstood in sevex;~ ways: I11 ·one 
sense, they: are modifications:of _the Lempel-~1v .. algonthm~ ,~ 
another, they ·are adaptations of:.~goriVuns .prqposecj' by .Badii 
and Poij.ti apd billets. [21]-[23] for estima#I1g Hausdorff~diplen
sions .. In [21]-[23] the dimension of a ·meast;~r:e JL support~d by a 
metric space is estimated fro~ the n~~est neighbor distances 
d(i, j) of N points chosen randomly with respect to JL. The 
formula · · 

logN 
D=- lim --·

N .... oo (log d) 
(1.3) 

is conjectureq (here and in what follows, angUlar brackets denote 
average values). As pointed out by Farmer [24], t~e ~hannon 
entropy is just the dimension of the set of symbol sequences, 
provided oil~ uses a suitable' m~tric: the ·distance between two 
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