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AbstratWe investigate the problem of minimum rate zero-error soure oding when there are sev-eral deoding terminals having di�erent side information about the entral soure variableand eah of them should deode in an error-free manner. For one deoder this problemwas onsidered by Witsenhausen. The Witsenhausen rate of the investigated multiplesoure is the asymptotially ahievable minimum rate. We prove that the Witsenhausenrate of a multiple soure equals the Witsenhausen rate of its weakest element. The proofrelies on a powerful result of Gargano, K�orner, and Vaaro about the zero-error apaityof the ompound hannel.



1 IntrodutionLet X; Y (1); Y (2); : : : ; Y (k) be k + 1 disrete random variables. Consider X as a `entral'variable available for a transmitter T and the Y (i)'s as side information available for di�er-ent stations S(i); i = 1; 2; : : : ; k, that are loated at di�erent plaes. The joint distributionis known for X and Y (i) for every i. The task is that T broadast a message reeived byall S(i)'s in suh a way that learning this message all S(i)'s should be able to determineX in an error-free manner. The question is the minimum number of bits that should beused for this per transmission if blok oding is allowed. This problem is onsidered fork = 1 by Witsenhausen in [20℄. He translated the problem to a graph theoreti one andshowed that blok oding an indeed help in dereasing the (per transmission) numberof possible messages that should be used. The optimal number of bits to be sent pertransmission de�nes a graph parameter that is alled Witsenhausen's zero-error rate in[1℄. (We will write simply Witsenhausen rate in the sequel.) In this paper we de�ne theWitsenhausen rate of a family of graphs. Our main result is that the Witsenhausen rateof a family of graphs equals its obvious lower bound: the largest Witsenhausen rate of thegraphs in the family. This will easily follow from a powerful result of Gargano, K�orner,and Vaaro [8℄.2 The graph theory modelFor eah i = 1; 2; : : : ; k we de�ne the following graph Gi. The vertex set V (Gi) = X isthe support set of the variable X for every i. Two elements, a and b of X form an edgein Gi if and only if there exists some possible value  of the variable Y (i) that is jointlypossible with both a and b, i.e., Prob(; a)Prob(; b) > 0: It is already explained in [20℄that the minimum number of bits to be sent by T to (one) S(i) for making it learn X (forone instane) in an error-free manner is log2 �(Gi), where �(F ) denotes the hromatinumber of graph F . Indeed, if T would use less bits, than there were some two elementsof X that form an edge in Gi and still T sends the same message when one or the otherappears as the atual value of X. Sine they form an edge there is some possible value  ofY (i) that is jointly possible with both, thus S(i) would not be able to deide whih of themoured if it had  as side information. (As in [20℄, we use the assumption, that the sideinformation Y (i) is not available at T .) On the other hand, if a proper oloring of Gi isgiven, then if T sends the olor of X this will make S(i) learn X using the side-informationontained by Y (i).All subsequent logarithms are on base two.If blok oding is allowed then the minimum number of bits to be transmitted to S(i) (notaring about the other S(j)'s for the moment) by T after observing the n-fold variable(X1; X2; : : : ; Xn) will be log�(Gni ) where Gni is an appropriately de�ned power of thegraph Gi. 1



De�nition 1 Let G = (V;E) be a graph. The nth normal (in [1℄ it is alled `anded')power of G is the graph Gn de�ned as follows. V (Gn) = V n andE(Gn) = ffu;vg : u 6= v; 8i xi = yi or fxi; yig 2 E(G)g:That is the verties of Gn are the n-length sequenes over V and two are adjaent i� theyare adjaent at every oordinate where they are not equal.It is easy to see that two n-length sequenes over X are jointly possible with somen-fold outome (Y (i)1 ; Y (i)2 ; : : : ; Y (i)n ) i� they are adjaent in Gni (our soures are stationaryand memoryless). Thus the previous argument gives that if we ared only about S(i) thenT should transmit one of �(Gni ) messages for making S(i) learn (X1; X2; : : : ; Xn). Thus,in ase k = 1 (and denoting G1 by G) the value of interest is the Witsenhausen rate of Gde�ned as R(G) = limn!1 1n log(�(Gn)):In our problem (when k > 1) the message sent by T should be suh that learning itshould be enough for eah S(i) to determine X without error. Thus T annot send thesame message for two n-fold outome of the variable X if they, as verties of the graphsGni , are adjaent in any Gni . On the other hand, if we olour the elements of V n = X nin suh a way that elements adjaent in any Gni get di�erent olor, then transmitting theolor of the atual (X1; X2; : : : ; Xn) will make all S(i)'s able to determine (X1; X2; : : : ; Xn).This justi�es the following de�nition.De�nition 2 Let G = (G1; : : : ; Gk) be a family of graphs all of whih have the samevertex set V . The Witsenhausen rate of the family G is de�ned byR(G) = limn!1 1n log(�([iGni ));where [iGni is meant to be the graph on the ommon vertex set V n of the Gni with edgeset [iE(Gni ):It is obvious from the de�nition that R(G) � maxfR(Gi)g: Our main result is thatthis trivial estimation is sharp.Theorem 1 If G = (G1; : : : ; Gk) is a family of graphs on the same vertex set, thenR(G) = maxfR(Gi)g:To appreiate the above statement onsider the following.Example: Let jV j = v and [iGi = Kv, i.e, the omplete graph an v verties suh thateah Gi is bipartite. (This needs k � log v.) Now for n = 1 we would be obliged to use2



log v bits to make sure that eah S(i) an deode the outome of X orretly. However,with blok oding, the above theorem states that roughly one bit per soure outome isenough if we let n go to in�nity.For proving Theorem 1 we have to introdue some other notions. This is done in the nextsetion.3 Probabilisti graph invariantsThe proof of our theorem relies on a result that determines the zero-error apaity of aompound hannel. Here we give our de�nitions already in graph terms, the translationis explained in detail in [3℄ where these investigations started, in [8℄, where the powerfulresult we are going to use was obtained, and also in the survey artile [12℄.De�nition 3 Let G = (G1; : : : ; Gk) be a family of graphs all of whih have the samevertex set V . The apaity of the family G is de�ned byC(G) = limn!1 1n log(�([iGni ));where � stands for the independene number (size of largest edgeless subgraph) of a graph.If G = fGg we write C(G) instead of C(G).Remark: If jGj = 1 then C(G) beomes equivalent to the Shannon apaity of the graph G.It is not hard to see that the valueC(G) represents the zero-error apaity of the ompoundhannel the individual hannels in whih are desribed by the graphs in the family. Fora more detailed explanation, see [3℄, [8℄, [12℄. We have to warn the reader, however, thatseveral papers, inluding the ones just ited, use a omplementary language and de�neC(G) as our C( �G), while C(G) is also de�ned via liques instead of independent sets.The language we use here is the more traditional one (f. [16℄, [14℄), although the earlierited papers have their good reason to do di�erently. (It has to do with a generalizationto oriented graphs that we will not need here.)It is obvious that C(G) � miniC(Gi). An easy but somewhat more sophistiatedupper bound is obtained in [3℄. This needs the following notion of apaity within a giventype introdued by Csisz�ar and K�orner [6℄. First we need the onept of (P; �)-typialsequenes, f. [5℄.De�nition 4 Let V be a �nite set, P a probability distribution on V , and � > 0. Asequene x in V n is said to be (P; �)-typial if for every a 2 V we have j 1nN(ajx)�P (a)j <�, where N(ajx) = jfi : xi = agj.De�nition 5 Given graph G, probability distribution P , and � > 0, the graph GnP;� is thegraph indued in Gn by the (P; �)-typial sequenes.3



De�nition 6 The Shannon apaity C(G;P ) of a graph G within a given type P is thevalue C(G;P ) = lim�!0 lim supn!1 1n log�(GnP;�):In a similar manner we writeC(G; P ) = lim�!0 lim supn!1 1n log�([iGni;P;�):The upper bound shown in [3℄ states C(G) � maxP miniC(Gi; P ): Gargano, K�orner,and Vaaro proved the surprising result that this bound is sharp. This is a orollary oftheir more general result that we will also need.Theorem (Gargano, K�orner, Vaaro [8℄): For any family of graphs G = fG1; : : : ; Gkgand any probability distribution P on the ommon vertex set of the Gi's we haveC(G; P ) = mini C(Gi; P ):Remark: The exat statement proven in [8℄ (f. also [7℄ for an important speial ase)is that C(G1 [ G2; P ) = minfC(G1; P ); C(G2; P )g holds for any two graph families G1and G2 with ommon vertex set. This easily implies the above by setting iterativelyG1 = fG1; G2; : : : ; Gig and G2 = fGi+1g for all i = 1; 2; : : : ; k � 1.To relate C(G) and R(G) we will use the \within a type version" of R(G) whih wasalready introdued in [11℄ by K�orner and Longo in a di�erent ontext under the nameomplementary graph entropy. (We use the name o-entropy as in [18℄ and [19℄.) Marton[15℄ investigated this funtional further, while reent interest in it also oured in [9℄.De�nition 7 The o-entropy �H(G;P ) of a graph G within a given type P is the value�H(G;P ) = lim�!0 lim supn!1 1n log�(GnP;�):In a similar manner we write�H(G; P ) = lim�!0 lim supn!1 1n log�([iGni;P;�):Remark: It would be appropriate to denote the within a type version of R(G) by R(G;P ).Here we keep the �H(G;P ) notation only to emphasize that this is not a new onept.Remark: We use the name o-entropy to distinguish the above value from the relatednotion of graph entropy introdued by K�orner [10℄. For a detailed aount of their relationsee [15℄ or [18℄, [19℄. For further relations of graph entropy and soure oding, f. also [2℄.In [15℄ the following relation is proven. 4



Lemma (Marton [15℄): For any graph G and probability distribution P on its vertex set�H(G;P ) = H(P )� C(G;P )where H(P ) is the Shannon entropy of the distribution P .We also need the following more general statement the proof of whih is exatly the sameas that of Marton's Lemma.Lemma 1 For any family of graphs and any probability distribution on their ommonvertex set V one has �H(G; P ) = H(P )� C(G; P ):We sketh the proof of this lemma for the sake of ompleteness. Setting G = fGg italso implies Marton's result. The following lemma of Lov�asz [13℄ is needed.Lemma 2 For any graph G �(G) � ��(G)(1 + ln�(G));where ��(G) is the frational hromati number of graph G.Remark: Lov�asz's result is formulated in a more general setting for the overing numbersof hypergraphs. The above statement is a straightforward orollary of that. For basifats about the frational hromati number we refer the reader to [17℄. One suh fatwe need is that for a vertex-transitive graph G one always has ��(G) = jV (G)j�(G) (see [17℄Proposition 3.1.1).Sketh of proof of Lemma 1. Consider a sequene Pn of probability distributionsthat onverges to P in the sense that 8� > 0 9n0 suh that n � n0 implies 8a 2 V :jPn(a) � P (a)j < �. As the number of possible types of an n-length sequene is only apolynomial funtion of n (f. Lemma 2.2 of Chapter 1 in [5℄) we an write�H(G; P ) = limn!1 1n log�([iGni;Pn;0):Sine sequenes of the same type are all permutations of eah other, one easily sees thatthe graph [iGni;Pn;0 is vertex transitive for any n. Thus we an ontinue bylimn!1 1n log�([iGni;Pn;0) � limn!1 1n log jV ([iGni;Pn;0)j�([iGni;Pn;0) (1 + ln�([iGni;Pn;0)) =H(P )� C(G; P ) + limn!1 1n log(1 + ln�([iGni;Pn;0)) = H(P )� C(G; P ):The opposite inequality is obvious as �(F ) � jV (F )j�(F ) is trivially true for any graph F andapplying it for F = [iGni;Pn;0 we get what we need. 25



4 Proof of Theorem 1For proving Theorem 1 we �rst need an easy lemma.Lemma 3 R(G) = maxP �H(G; P ):Proof. Using again the Type Counting Lemma (Lemma 2.2 on page 29) from Csisz�arand K�orner's book [5℄ we get that�([iGni ) � (n+ 1)jV jmaxP �([iGni;P;0)where the maximization is meant over those P 's that an be exat types of sequenes oflength n. (Equivalently, we an just think of Gni;P;0 as a graph with no verties for otherP 's). Sine �([iGni � �([iGni;P;0 obviously holds for any P , taking the logarithm and letn go to in�nity in the earlier inequality we get the desired result. 2Proof of Theorem 1. By the previous two lemmas and the Gargano-K�orner-Vaarotheorem we have R(G) = maxP �H(G; P ) = maxP (H(P )� C(G; P )) == maxP (H(P )� minGi2GC(Gi; P )) = maxP maxGi (H(P )� C(Gi; P )) == maxGi maxP �H(Gi; P ) = maxGi R(Gi)giving the desired result. 2Remark: It seems worth noting that while the proof of Theorem 1 needed separate in-vestigation of the di�erent types P the statement itself does not ontain any referene totypes. This is not so in the original Gargano-K�orner-Vaaro result. Though the reasonof this is a very simple tehnial di�erene (namely that the hromati number is de�nedas a minimum, while the lique number and the independene number are appropriatemaximums), we feel that this phenomenon makes Theorem 1 another good example of aresult that demonstrates the power of the method of types, f. [4℄.Referenes[1℄ N. Alon and A. Orlitsky, Repeated ommuniation and Ramsey graphs, IEEE Trans.Inform. Theory, 41 (1995), 1276{1289.[2℄ N. Alon and A. Orlitsky, Soure oding and graph entropies, IEEE Trans. Inform.Theory, 42 (1996), 1329{1339. 6
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