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Abstra
tWe investigate the problem of minimum rate zero-error sour
e 
oding when there are sev-eral de
oding terminals having di�erent side information about the 
entral sour
e variableand ea
h of them should de
ode in an error-free manner. For one de
oder this problemwas 
onsidered by Witsenhausen. The Witsenhausen rate of the investigated multiplesour
e is the asymptoti
ally a
hievable minimum rate. We prove that the Witsenhausenrate of a multiple sour
e equals the Witsenhausen rate of its weakest element. The proofrelies on a powerful result of Gargano, K�orner, and Va

aro about the zero-error 
apa
ityof the 
ompound 
hannel.



1 Introdu
tionLet X; Y (1); Y (2); : : : ; Y (k) be k + 1 dis
rete random variables. Consider X as a `
entral'variable available for a transmitter T and the Y (i)'s as side information available for di�er-ent stations S(i); i = 1; 2; : : : ; k, that are lo
ated at di�erent pla
es. The joint distributionis known for X and Y (i) for every i. The task is that T broad
ast a message re
eived byall S(i)'s in su
h a way that learning this message all S(i)'s should be able to determineX in an error-free manner. The question is the minimum number of bits that should beused for this per transmission if blo
k 
oding is allowed. This problem is 
onsidered fork = 1 by Witsenhausen in [20℄. He translated the problem to a graph theoreti
 one andshowed that blo
k 
oding 
an indeed help in de
reasing the (per transmission) numberof possible messages that should be used. The optimal number of bits to be sent pertransmission de�nes a graph parameter that is 
alled Witsenhausen's zero-error rate in[1℄. (We will write simply Witsenhausen rate in the sequel.) In this paper we de�ne theWitsenhausen rate of a family of graphs. Our main result is that the Witsenhausen rateof a family of graphs equals its obvious lower bound: the largest Witsenhausen rate of thegraphs in the family. This will easily follow from a powerful result of Gargano, K�orner,and Va

aro [8℄.2 The graph theory modelFor ea
h i = 1; 2; : : : ; k we de�ne the following graph Gi. The vertex set V (Gi) = X isthe support set of the variable X for every i. Two elements, a and b of X form an edgein Gi if and only if there exists some possible value 
 of the variable Y (i) that is jointlypossible with both a and b, i.e., Prob(
; a)Prob(
; b) > 0: It is already explained in [20℄that the minimum number of bits to be sent by T to (one) S(i) for making it learn X (forone instan
e) in an error-free manner is log2 �(Gi), where �(F ) denotes the 
hromati
number of graph F . Indeed, if T would use less bits, than there were some two elementsof X that form an edge in Gi and still T sends the same message when one or the otherappears as the a
tual value of X. Sin
e they form an edge there is some possible value 
 ofY (i) that is jointly possible with both, thus S(i) would not be able to de
ide whi
h of themo

ured if it had 
 as side information. (As in [20℄, we use the assumption, that the sideinformation Y (i) is not available at T .) On the other hand, if a proper 
oloring of Gi isgiven, then if T sends the 
olor of X this will make S(i) learn X using the side-information
ontained by Y (i).All subsequent logarithms are on base two.If blo
k 
oding is allowed then the minimum number of bits to be transmitted to S(i) (not
aring about the other S(j)'s for the moment) by T after observing the n-fold variable(X1; X2; : : : ; Xn) will be log�(Gni ) where Gni is an appropriately de�ned power of thegraph Gi. 1



De�nition 1 Let G = (V;E) be a graph. The nth normal (in [1℄ it is 
alled `anded')power of G is the graph Gn de�ned as follows. V (Gn) = V n andE(Gn) = ffu;vg : u 6= v; 8i xi = yi or fxi; yig 2 E(G)g:That is the verti
es of Gn are the n-length sequen
es over V and two are adja
ent i� theyare adja
ent at every 
oordinate where they are not equal.It is easy to see that two n-length sequen
es over X are jointly possible with somen-fold out
ome (Y (i)1 ; Y (i)2 ; : : : ; Y (i)n ) i� they are adja
ent in Gni (our sour
es are stationaryand memoryless). Thus the previous argument gives that if we 
ared only about S(i) thenT should transmit one of �(Gni ) messages for making S(i) learn (X1; X2; : : : ; Xn). Thus,in 
ase k = 1 (and denoting G1 by G) the value of interest is the Witsenhausen rate of Gde�ned as R(G) = limn!1 1n log(�(Gn)):In our problem (when k > 1) the message sent by T should be su
h that learning itshould be enough for ea
h S(i) to determine X without error. Thus T 
annot send thesame message for two n-fold out
ome of the variable X if they, as verti
es of the graphsGni , are adja
ent in any Gni . On the other hand, if we 
olour the elements of V n = X nin su
h a way that elements adja
ent in any Gni get di�erent 
olor, then transmitting the
olor of the a
tual (X1; X2; : : : ; Xn) will make all S(i)'s able to determine (X1; X2; : : : ; Xn).This justi�es the following de�nition.De�nition 2 Let G = (G1; : : : ; Gk) be a family of graphs all of whi
h have the samevertex set V . The Witsenhausen rate of the family G is de�ned byR(G) = limn!1 1n log(�([iGni ));where [iGni is meant to be the graph on the 
ommon vertex set V n of the Gni with edgeset [iE(Gni ):It is obvious from the de�nition that R(G) � maxfR(Gi)g: Our main result is thatthis trivial estimation is sharp.Theorem 1 If G = (G1; : : : ; Gk) is a family of graphs on the same vertex set, thenR(G) = maxfR(Gi)g:To appre
iate the above statement 
onsider the following.Example: Let jV j = v and [iGi = Kv, i.e, the 
omplete graph an v verti
es su
h thatea
h Gi is bipartite. (This needs k � log v.) Now for n = 1 we would be obliged to use2



log v bits to make sure that ea
h S(i) 
an de
ode the out
ome of X 
orre
tly. However,with blo
k 
oding, the above theorem states that roughly one bit per sour
e out
ome isenough if we let n go to in�nity.For proving Theorem 1 we have to introdu
e some other notions. This is done in the nextse
tion.3 Probabilisti
 graph invariantsThe proof of our theorem relies on a result that determines the zero-error 
apa
ity of a
ompound 
hannel. Here we give our de�nitions already in graph terms, the translationis explained in detail in [3℄ where these investigations started, in [8℄, where the powerfulresult we are going to use was obtained, and also in the survey arti
le [12℄.De�nition 3 Let G = (G1; : : : ; Gk) be a family of graphs all of whi
h have the samevertex set V . The 
apa
ity of the family G is de�ned byC(G) = limn!1 1n log(�([iGni ));where � stands for the independen
e number (size of largest edgeless subgraph) of a graph.If G = fGg we write C(G) instead of C(G).Remark: If jGj = 1 then C(G) be
omes equivalent to the Shannon 
apa
ity of the graph G.It is not hard to see that the valueC(G) represents the zero-error 
apa
ity of the 
ompound
hannel the individual 
hannels in whi
h are des
ribed by the graphs in the family. Fora more detailed explanation, see [3℄, [8℄, [12℄. We have to warn the reader, however, thatseveral papers, in
luding the ones just 
ited, use a 
omplementary language and de�neC(G) as our C( �G), while C(G) is also de�ned via 
liques instead of independent sets.The language we use here is the more traditional one (
f. [16℄, [14℄), although the earlier
ited papers have their good reason to do di�erently. (It has to do with a generalizationto oriented graphs that we will not need here.)It is obvious that C(G) � miniC(Gi). An easy but somewhat more sophisti
atedupper bound is obtained in [3℄. This needs the following notion of 
apa
ity within a giventype introdu
ed by Csisz�ar and K�orner [6℄. First we need the 
on
ept of (P; �)-typi
alsequen
es, 
f. [5℄.De�nition 4 Let V be a �nite set, P a probability distribution on V , and � > 0. Asequen
e x in V n is said to be (P; �)-typi
al if for every a 2 V we have j 1nN(ajx)�P (a)j <�, where N(ajx) = jfi : xi = agj.De�nition 5 Given graph G, probability distribution P , and � > 0, the graph GnP;� is thegraph indu
ed in Gn by the (P; �)-typi
al sequen
es.3



De�nition 6 The Shannon 
apa
ity C(G;P ) of a graph G within a given type P is thevalue C(G;P ) = lim�!0 lim supn!1 1n log�(GnP;�):In a similar manner we writeC(G; P ) = lim�!0 lim supn!1 1n log�([iGni;P;�):The upper bound shown in [3℄ states C(G) � maxP miniC(Gi; P ): Gargano, K�orner,and Va

aro proved the surprising result that this bound is sharp. This is a 
orollary oftheir more general result that we will also need.Theorem (Gargano, K�orner, Va

aro [8℄): For any family of graphs G = fG1; : : : ; Gkgand any probability distribution P on the 
ommon vertex set of the Gi's we haveC(G; P ) = mini C(Gi; P ):Remark: The exa
t statement proven in [8℄ (
f. also [7℄ for an important spe
ial 
ase)is that C(G1 [ G2; P ) = minfC(G1; P ); C(G2; P )g holds for any two graph families G1and G2 with 
ommon vertex set. This easily implies the above by setting iterativelyG1 = fG1; G2; : : : ; Gig and G2 = fGi+1g for all i = 1; 2; : : : ; k � 1.To relate C(G) and R(G) we will use the \within a type version" of R(G) whi
h wasalready introdu
ed in [11℄ by K�orner and Longo in a di�erent 
ontext under the name
omplementary graph entropy. (We use the name 
o-entropy as in [18℄ and [19℄.) Marton[15℄ investigated this fun
tional further, while re
ent interest in it also o

ured in [9℄.De�nition 7 The 
o-entropy �H(G;P ) of a graph G within a given type P is the value�H(G;P ) = lim�!0 lim supn!1 1n log�(GnP;�):In a similar manner we write�H(G; P ) = lim�!0 lim supn!1 1n log�([iGni;P;�):Remark: It would be appropriate to denote the within a type version of R(G) by R(G;P ).Here we keep the �H(G;P ) notation only to emphasize that this is not a new 
on
ept.Remark: We use the name 
o-entropy to distinguish the above value from the relatednotion of graph entropy introdu
ed by K�orner [10℄. For a detailed a

ount of their relationsee [15℄ or [18℄, [19℄. For further relations of graph entropy and sour
e 
oding, 
f. also [2℄.In [15℄ the following relation is proven. 4



Lemma (Marton [15℄): For any graph G and probability distribution P on its vertex set�H(G;P ) = H(P )� C(G;P )where H(P ) is the Shannon entropy of the distribution P .We also need the following more general statement the proof of whi
h is exa
tly the sameas that of Marton's Lemma.Lemma 1 For any family of graphs and any probability distribution on their 
ommonvertex set V one has �H(G; P ) = H(P )� C(G; P ):We sket
h the proof of this lemma for the sake of 
ompleteness. Setting G = fGg italso implies Marton's result. The following lemma of Lov�asz [13℄ is needed.Lemma 2 For any graph G �(G) � ��(G)(1 + ln�(G));where ��(G) is the fra
tional 
hromati
 number of graph G.Remark: Lov�asz's result is formulated in a more general setting for the 
overing numbersof hypergraphs. The above statement is a straightforward 
orollary of that. For basi
fa
ts about the fra
tional 
hromati
 number we refer the reader to [17℄. One su
h fa
twe need is that for a vertex-transitive graph G one always has ��(G) = jV (G)j�(G) (see [17℄Proposition 3.1.1).Sket
h of proof of Lemma 1. Consider a sequen
e Pn of probability distributionsthat 
onverges to P in the sense that 8� > 0 9n0 su
h that n � n0 implies 8a 2 V :jPn(a) � P (a)j < �. As the number of possible types of an n-length sequen
e is only apolynomial fun
tion of n (
f. Lemma 2.2 of Chapter 1 in [5℄) we 
an write�H(G; P ) = limn!1 1n log�([iGni;Pn;0):Sin
e sequen
es of the same type are all permutations of ea
h other, one easily sees thatthe graph [iGni;Pn;0 is vertex transitive for any n. Thus we 
an 
ontinue bylimn!1 1n log�([iGni;Pn;0) � limn!1 1n log jV ([iGni;Pn;0)j�([iGni;Pn;0) (1 + ln�([iGni;Pn;0)) =H(P )� C(G; P ) + limn!1 1n log(1 + ln�([iGni;Pn;0)) = H(P )� C(G; P ):The opposite inequality is obvious as �(F ) � jV (F )j�(F ) is trivially true for any graph F andapplying it for F = [iGni;Pn;0 we get what we need. 25



4 Proof of Theorem 1For proving Theorem 1 we �rst need an easy lemma.Lemma 3 R(G) = maxP �H(G; P ):Proof. Using again the Type Counting Lemma (Lemma 2.2 on page 29) from Csisz�arand K�orner's book [5℄ we get that�([iGni ) � (n+ 1)jV jmaxP �([iGni;P;0)where the maximization is meant over those P 's that 
an be exa
t types of sequen
es oflength n. (Equivalently, we 
an just think of Gni;P;0 as a graph with no verti
es for otherP 's). Sin
e �([iGni � �([iGni;P;0 obviously holds for any P , taking the logarithm and letn go to in�nity in the earlier inequality we get the desired result. 2Proof of Theorem 1. By the previous two lemmas and the Gargano-K�orner-Va

arotheorem we have R(G) = maxP �H(G; P ) = maxP (H(P )� C(G; P )) == maxP (H(P )� minGi2GC(Gi; P )) = maxP maxGi (H(P )� C(Gi; P )) == maxGi maxP �H(Gi; P ) = maxGi R(Gi)giving the desired result. 2Remark: It seems worth noting that while the proof of Theorem 1 needed separate in-vestigation of the di�erent types P the statement itself does not 
ontain any referen
e totypes. This is not so in the original Gargano-K�orner-Va

aro result. Though the reasonof this is a very simple te
hni
al di�eren
e (namely that the 
hromati
 number is de�nedas a minimum, while the 
lique number and the independen
e number are appropriatemaximums), we feel that this phenomenon makes Theorem 1 another good example of aresult that demonstrates the power of the method of types, 
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