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Abstract

We investigate the problem of minimum rate zero-error source coding when there are sev-
eral decoding terminals having different side information about the central source variable
and each of them should decode in an error-free manner. For one decoder this problem
was considered by Witsenhausen. The Witsenhausen rate of the investigated multiple
source is the asymptotically achievable minimum rate. We prove that the Witsenhausen
rate of a multiple source equals the Witsenhausen rate of its weakest element. The proof
relies on a powerful result of Gargano, Korner, and Vaccaro about the zero-error capacity
of the compound channel.



1 Introduction

Let X, Y Y@ Y% be k + 1 discrete random variables. Consider X as a ‘central’
variable available for a transmitter 7" and the Y()’s as side information available for differ-
ent stations S i =1,2,..., k, that are located at different places. The joint distribution
is known for X and Y® for every i. The task is that 7 broadcast a message received by
all S@’s in such a way that learning this message all S®)’s should be able to determine
X in an error-free manner. The question is the minimum number of bits that should be
used for this per transmission if block coding is allowed. This problem is considered for
k =1 by Witsenhausen in [20]. He translated the problem to a graph theoretic one and
showed that block coding can indeed help in decreasing the (per transmission) number
of possible messages that should be used. The optimal number of bits to be sent per
transmission defines a graph parameter that is called Witsenhausen’s zero-error rate in
[1]. (We will write simply Witsenhausen rate in the sequel.) In this paper we define the
Witsenhausen rate of a family of graphs. Our main result is that the Witsenhausen rate
of a family of graphs equals its obvious lower bound: the largest Witsenhausen rate of the
graphs in the family. This will easily follow from a powerful result of Gargano, Korner,
and Vaccaro [8].

2 The graph theory model

For each i = 1,2,...,k we define the following graph G;. The vertex set V(G;) = X is
the support set of the variable X for every . Two elements, a and b of X form an edge
in G; if and only if there exists some possible value ¢ of the variable Y that is jointly
possible with both a and b, i.e., Prob(c,a)Prob(c,b) > 0. It is already explained in [20]
that the minimum number of bits to be sent by T to (one) S for making it learn X (for
one instance) in an error-free manner is log, x(G;), where x(F') denotes the chromatic
number of graph F. Indeed, if T" would use less bits, than there were some two elements
of X that form an edge in GG; and still 7" sends the same message when one or the other
appears as the actual value of X. Since they form an edge there is some possible value ¢ of
Y (® that is jointly possible with both, thus S would not be able to decide which of them
occured if it had ¢ as side information. (As in [20], we use the assumption, that the side
information Y is not available at 7.) On the other hand, if a proper coloring of G; is
given, then if T sends the color of X this will make S learn X using the side-information
contained by Y@,

All subsequent logarithms are on base two.

If block coding is allowed then the minimum number of bits to be transmitted to S® (not
caring about the other SU)’s for the moment) by T after observing the n-fold variable
(X1, X, ..., X,) will be logx(G?) where G? is an appropriately defined power of the
graph G;.



Definition 1 Let G = (V, E) be a graph. The n'™ normal (in [1] it is called ‘anded’)
power of G is the graph G™ defined as follows. V(G™) = V" and

EG") ={{u,v} :u#v,Viz, =y or {z;,y;} € E(G)}.

That is the vertices of G™ are the n-length sequences over V' and two are adjacent iff they
are adjacent at every coordinate where they are not equal.

It is easy to see that two n-length sequences over X are jointly possible with some
n-fold outcome (Yl(i), 2(2'), ..., YD) iff they are adjacent in G? (our sources are stationary
and memoryless). Thus the previous argument gives that if we cared only about S then
T should transmit one of x(G?) messages for making S learn (X, X5, ..., X,). Thus,
in case k = 1 (and denoting Gy by G) the value of interest is the Witsenhausen rate of G

defined as .
R(G) = lim —log(x(G")).

n—oo n

In our problem (when k& > 1) the message sent by 7 should be such that learning it
should be enough for each S® to determine X without error. Thus 7' cannot send the
same message for two n-fold outcome of the variable X if they, as vertices of the graphs

G?, are adjacent in any G7'. On the other hand, if we colour the elements of V" = X"

in such a way that elements adjacent in any G} get different color, then transmitting the
color of the actual (X1, X, ..., X,,) will make all S®’s able to determine (X, X,..., X,,).
This justifies the following definition.

Definition 2 Let G = (G4,...,Gr) be a family of graphs all of which have the same
vertex set V. The Witsenhausen rate of the family G is defined by

R(G) = lim ~ log(x(U;G™)).

n—oo n,

where U;GT is meant to be the graph on the common vertex set V™ of the G with edge
set U;E(GT).

It is obvious from the definition that R(G) > max{R(G;)}. Our main result is that
this trivial estimation is sharp.

Theorem 1 If G = (Gy,...,Gy) is a family of graphs on the same vertex set, then
R(G) = max{R(G;)}.

To appreciate the above statement consider the following.

Ezample: Let |V| = v and U;G; = K,, i.e, the complete graph an v vertices such that
each G; is bipartite. (This needs k > logv.) Now for n = 1 we would be obliged to use
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logv bits to make sure that each S® can decode the outcome of X correctly. However,
with block coding, the above theorem states that roughly one bit per source outcome is
enough if we let n go to infinity.

For proving Theorem 1 we have to introduce some other notions. This is done in the next
section.

3 Probabilistic graph invariants

The proof of our theorem relies on a result that determines the zero-error capacity of a
compound channel. Here we give our definitions already in graph terms, the translation
is explained in detail in [3] where these investigations started, in [8], where the powerful
result we are going to use was obtained, and also in the survey article [12].

Definition 3 Let G = (G4,...,Gg) be a family of graphs all of which have the same
vertex set V. The capacity of the family G is defined by

C(G) = lim L log(a(UiG™),

n—oo n,

where o stands for the independence number (size of largest edgeless subgraph) of a graph.
If G = {G} we write C(G) instead of C(G).

Remark: If |G| = 1 then C(G) becomes equivalent to the Shannon capacity of the graph G.
It is not hard to see that the value C'(G) represents the zero-error capacity of the compound
channel the individual channels in which are described by the graphs in the family. For
a more detailed explanation, see [3], [8], [12]. We have to warn the reader, however, that
several papers, including the ones just cited, use a complementary language and define
C(G) as our C(G), while C(G) is also defined via cliques instead of independent sets.
The language we use here is the more traditional one (cf. [16], [14]), although the earlier
cited papers have their good reason to do differently. (It has to do with a generalization

to oriented graphs that we will not need here.)

It is obvious that C'(G) < min; C(G;). An easy but somewhat more sophisticated
upper bound is obtained in [3]. This needs the following notion of capacity within a given
type introduced by Csiszar and Korner [6]. First we need the concept of (P,¢)-typical
sequences, cf. [5].

Definition 4 Let V' be a finite set, P a probability distribution on V, and ¢ > 0. A
sequence x in V™ is said to be (P, €)-typical if for every a € V we have |+ N(a|x)—P(a)| <
€, where N(a|x) = |{i: x; = a}].

Definition 5 Given graph G, probability distribution P, and € > 0, the graph G’ is the
graph induced in G™ by the (P, €)-typical sequences.



Definition 6 The Shannon capacity C(G, P) of a graph G within a given type P is the
value

1
C(G,P) = li_r)% lim sup —log a(G'p).

n—oo TN
In a similar manner we write

1
C(G, P) = limlim sup — log o(U;G7.p ).

=0 psoco N

The upper bound shown in [3] states C'(G) < maxp min; C'(G};, P). Gargano, Korner,
and Vaccaro proved the surprising result that this bound is sharp. This is a corollary of
their more general result that we will also need.

Theorem (Gargano, Korner, Vaccaro [8]): For any family of graphs G = {Gi,..., Gy}
and any probability distribution P on the common vertex set of the G;’s we have

C(G,P) = miinC(Gi, P).

Remark: The exact statement proven in [8] (cf. also [7] for an important special case)
is that C(G; U Gy, P) = min{C(G;, P),C(Gy, P)} holds for any two graph families G;
and G, with common vertex set. This easily implies the above by setting iteratively
Ql = {Gl,GQ,...,Gi} and g2 = {Gi—l—l} for all 7 = 1,2,...,]€— 1.

To relate C(G) and R(G) we will use the “within a type version” of R(G) which was
already introduced in [11] by Koérner and Longo in a different context under the name
complementary graph entropy. (We use the name co-entropy as in [18] and [19].) Marton
[15] investigated this functional further, while recent interest in it also occured in [9].

Definition 7 The co-entropy H(G, P) of a graph G within a given type P is the value

_ 1
H(G, P) = limlim sup — log x (G'5).

=0 posoco N

In a similar manner we write

_ 1
H(G, P) = limlim sup — log x (U;,G}p.,)-
€e=20 pnsoco N o

Remark: Tt would be appropriate to denote the within a type version of R(G) by R(G, P).
Here we keep the H(G, P) notation only to emphasize that this is not a new concept.
Remark: We use the name co-entropy to distinguish the above value from the related
notion of graph entropy introduced by Kérner [10]. For a detailed account of their relation
see [15] or [18], [19]. For further relations of graph entropy and source coding, cf. also [2].

In [15] the following relation is proven.



Lemma (Marton [15]): For any graph G and probability distribution P on its vertex set
H(G,P)=H(P)-C(G,P)
where H(P) is the Shannon entropy of the distribution P.

We also need the following more general statement the proof of which is exactly the same
as that of Marton’s Lemma.

Lemma 1 For any family of graphs and any probability distribution on their common

vertex set V one has )

We sketch the proof of this lemma for the sake of completeness. Setting G = {G} it
also implies Marton’s result. The following lemma of Lovész [13] is needed.

Lemma 2 For any graph G
X(G) < x*(G)(1 +Ina(G)),
where x*(QG) is the fractional chromatic number of graph G.

Remark: Lovasz’s result is formulated in a more general setting for the covering numbers
of hypergraphs. The above statement is a straightforward corollary of that. For basic
facts about the fractional chromatic number we refer the reader to [17]. One such fact

we need is that for a vertex-transitive graph G one always has y*(G) = % (see [17]

Proposition 3.1.1).

Sketch of proof of Lemma 1. Consider a sequence P, of probability distributions
that converges to P in the sense that Ve > 0 dngy such that n > ng implies Va € V :
|P,(a) — P(a)| < e. As the number of possible types of an n-length sequence is only a
polynomial function of n (cf. Lemma 2.2 of Chapter 1 in [5]) we can write

_ 1
H(G,P) = lim ~log x(U;GLp, o).

n—oo n

Since sequences of the same type are all permutations of each other, one easily sees that
the graph U;GT.p , is vertex transitive for any n. Thus we can continue by

1 1 V(U;G?

1+ Ina(y,G? =
n—oon n—0o0 Ol(UiGZPn,O) ( " HCY( l’Pn’O))

H(P)-C(G,P)+ Jim % log(1 +Ina(U;GYp, ) = H(P) — C(G, P).

The opposite inequality is obvious as x(F') > % is trivially true for any graph F' and
applying it for F' = U;G}p, 5 we get what we need.

O



4 Proof of Theorem 1

For proving Theorem 1 we first need an easy lemma.

Lemma 3 B
R(G) = IIIFE)LXH(Q,P).

Proof. Using again the Type Counting Lemma (Lemma 2.2 on page 29) from Csiszar
and Korner’s book [5] we get that

(UG < (n+ 1) max x(UiGhpy)

where the maximization is meant over those P’s that can be exact types of sequences of
length n. (Equivalently, we can just think of G.p as a graph with no vertices for other
P’s). Since x(U;G} > x(U;G.p obviously holds for any P, taking the logarithm and let
n go to infinity in the earlier inequality we get the desired result.

|

Proof of Theorem 1. By the previous two lemmas and the Gargano-Korner-Vaccaro
theorem we have

R(G) = mgx[jl(g, P) = rnlz}x(H(P) -C(G,P)) =

= mgx(H(P) — min C(G;, P)) = max max(H (P) — C(G;, P)) =

GiegG Gi
= max max H (G;, P) = max R(G;)
Gi P Gi

giving the desired result.

O
Remark: 1t seems worth noting that while the proof of Theorem 1 needed separate in-
vestigation of the different types P the statement itself does not contain any reference to
types. This is not so in the original Gargano-Korner-Vaccaro result. Though the reason
of this is a very simple technical difference (namely that the chromatic number is defined
as a minimum, while the clique number and the independence number are appropriate
maximums), we feel that this phenomenon makes Theorem 1 another good example of a
result that demonstrates the power of the method of types, cf. [4].
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