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Abstract

To distinguish n objects, we can label them by n binary sequences of length
dlog2 ne each. Shorter sequences would not do. How about tristinguishing n objects?
In this problem we use ternary sequences for labeling and require that any three
of these be different in one and the same coordinate. This is the simplest unsolved
case of a problem known as perfect hashing. We give a non-existence bound for a
similar problem on binary sequences. We also deal with related problems of edge–
colorings in graphs. It is shown that the minimum number of tricolorings needed
to give every triangle of Kn all the three colors in at least one coloring is at most
dlog2 ne.

∗The manuscript was prepared while this author was visiting the IASI–CNR, Rome, Italy.
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1 Introduction

To distinguish n objects, we can address them by n binary sequences of length dlog ne
each. Shorter sequences would not do. (Notice that here and in the sequel all log’s and
exp’s are binary.) From this trivial observation a surprisingly short way takes us to a hard
unsolved combinatorial problem that emerges in several important models of computer
science. More importantly, we will try to show that this problem represents a stumbling
block whose “removal” might lead to a spectacular extension of the information–theoretic
approach to extremal set theory from the case of graphs to hypergraphs.

Subsets or bipartitions of an n–set can be represented by binary sequences of length n.
Likewise, k-partitions of an n–set can be represented by sequences over a k–ary alphabet.
It was shown in the papers [6] and [7] that many problems in combinatorics regarding
subsets or partitions of a set can be reformulated within a common information–theoretic
framework in which the key notion is for sequences to be really different in a particular
way pertinent to the problem. Let us consider a graph having as vertex set our k–ary
alphabet. Considering two k–ary sequences really different if in some coordinate they
differ in two elements of the alphabet which are the two endpoints of an edge of G leads
us to the problem of Shannon capacity of the graph, [14]. In this problem, we ask how long
each of n sequences over a k–ary alphabet must be if they have to be “really different”
in the previous sense. This minimum length is easily shown to be asymptotically of the
order c log n where the constant c is a characteristic of the graph. In fact, if we denote the
above minimum length of the sequences by l(G, n), then we can define the (logarithmic)
Shannon capacity of the graph G as the always existing limit

lim
n→∞

log n

l(G, n)
.

In [2] Cohen, Körner and Simonyi extend this definition to families of graphs. Rather
than requiring the occurrence of an edge of a fixed graph between sequences, they require
the existence of an edge of any graph from a fixed family G. They call the corresponding
notion of capacity the Shannon capacity of the family of graphs G. In [5] L. Gargano, J.
Körner and U. Vaccaro introduce a further extension of this definition. Instead of simple
graphs they consider directed graphs. Then, in case of a single digraph, the notion of
really different requires, between any pairs of sequences the existence of arcs of the graph
with opposite orientations. The corresponding analogon of Shannon capacity is called
Sperner capacity.

Our paper [10] gives a simple example of the relevance of this kind of notions to
extremal set theory. Subsequently, Gargano, Körner and Vaccaro have shown ([6], [7])
that the concept of Sperner capacity of a family of graphs offers a formally information–
theoretic framework to treat and solve many interesting and even some long–standing
open problems in extremal combinatorics in an asymptotic sense. These include various
generalizations of Sperner’s classical theorem on the maximum number of subsets of an
n–set without one containing the other and the solution of Rényi’s 1970 problem on the
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maximum number of pairwise qualitatively 2–independent k–partitions of an n–set, [13].
Beyond the above papers the interested reader is advised to consult [11] and [1] where the
problem of computing the Shannon capacity and the Sperner capacity of a single graph
are addressed.

If it is true that the Sperner capacity framework encompasses a great many combina-
torial problems, we soon have to add that much more problems are left outside its scope.
In fact, many problems in extremal combinatorics require more structure than what is
offered by the framework of pairwise comparison of sequences. Whatever complicated
notion of being really different we might come up with, it would not help; to formulate
more problems in our language, we have to invoke some comparison of three or more
sequences. Formally, this amounts to extend the investigation of capacities from graphs
to hypergraphs, [9]. Of all such problems one is standing out. This is the problem of
trifference discussed in the next section. We dare say that it is the conceptually simplest
and more natural of them all. In one way or the other, solving it would shed light on the
rest.

In this paper we just want to present some results concerning trifferentiating objects
in some restricted manner. Some of these related problems are defined on graphs. Instead
of trifferentiating any triple of elements of an n-set we might want to trifferentiate just a
particular subset of these. Problems of the latter kind bring us closer to the interesting
topic of anti–Ramsey theorems in the sense of [15]. A typical problem in anti–Ramsey
theorems is to ask how many colors are needed to color the edges of Km so that any three
edges that form a triangle obtain different colors. (In fact, the answer to this question is
trivial, but problems of this kind soon get complicated, cf. [15].) Reversing this question,
Vera T. Sós asked how many tricolorings of the edges of Km are needed if the edges of
every triangle have to get three different colors in at least one of them. Setting n =

(
m
2

)
Vera Sós’ question can be reformulated in our language as follows. What is the minimum
length of ternary sequences we have to use for labeling in order to assign trifferent labels
to any triple of edges forming a triangle in Km? Similar questions can be asked about
three edges forming other subgraphs.

Problems of tristinction are strongly connected to Rényi’s still unsolved question of
qualitatively 3–independent partitions of an n–set and some other problems in combina-
torics which keep coming back under different disguises.

2 Perfect hashing, trifference and quasi-trifference

Perfect hashing is a purely combinatorial model for the hashing problem in computer
science. Its history and importance can be best understood from the paper of A. Yao
[16]. We shall adopt the terminology of Fredman and Komlós [4].

Definition 1 A family of b–partitions of a set X is called a (b, k)–system of perfect hash
functions if every k–element subset of X meets k different classes of at least one of the
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partitions in the family. We denote by Y (b, k, n) the minimum number of partitions in
any (b, k)–system for a set of n elements. For given b and k set

F (b, k) = lim inf
n→∞

Y (b, k, n)

log n
.

(Notice that F (b, k) is the reciprocal of the capacity of a particular uniform hypergraph
in the sense of [9]). The exact value of F (b, k) is unknown for b ≥ k > 2. The best available
bounds are due to Fredman and Komlós [4] and Körner and Marton [8], cf. also [9]. In
said papers rather sophisticated information–theoretic proof techniques are used to obtain
lower bounds. In exchange, in [4] the upper bound is derived using plain random selection.
In [8] and [3], independently, this upper bound was improved in the case b = k = 3, thus
showing that random selection gives rather poor results for this problem. In this paper we
concentrate on problems related to this particular case which we like to call the problem
of trifference. We recall the corresponding bounds available in the literature.

Körner and Marton [8] have proved

1

log 3
2

≤ F (3, 3) ≤ 4

log 9
5

. (1)

Numerically, this means that

1.709 ≤ F (3, 3) ≤ 4.717

The upper bound is implicit also in [3].
Now we consider the following related problem.

Definition 2 We call the binary sequences x = x1, x2, . . . , xt, y = y1, y2, . . . , yt and
z = z1, z2, . . . , zt quasi–trifferent if there exists a coordinate 1 ≤ i ≤ t − 1 for which the
ordered pairs (xi, xi+1), (yi, yi+1), (zi, zi+1) are all different.

Let Y2(2, 3, n) be the minimum number t for which there exist n binary sequences of
length t such that every three of them are quasi–trifferent. Set

F2(2, 3) = lim inf
n→∞

Y2(2, 3, n)

log n
.

(Note that any three pairwise different binary sequences are trifferent at some two
coordinates, i.e., if there is no restriction on the (relative) location of these two coordi-
nates.)

The result of this section is the following

Theorem 1
F2(2, 3) ≥ 2
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Proof.
Let D be a quasi-trifferent set of t-length binary sequences, i.e., any three sequences

in D are quasi-trifferent. Let B = {0, 1}bt/2c and for each y ∈ B let A(y) denote the set
of all t-length binary sequences the even numbered coordinates of which form y.

Now we use double counting for the pairs (x, A(y)) where x ∈ D, y ∈ B and x ∈ A(y).
Since every x ∈ D uniquely determines the corresponding A(y), obviously |{(x, A(y)) :
x ∈ A(y), x ∈ D}| = |D|. On the other hand, |A(y) ∩ D| ≤ 2 for any fixed A(y) since
three binary sequences that coincide at every even-numbered coordinate could not be
quasi-trifferent. This implies

|{(x, A(y)) : x ∈ D, x ∈ A(y)}| ≤ 2|{A(y) : y ∈ {0, 1}bt/2c}| = 2 · 2bt/2c.

Combining this inequality with the previous equality we get |D| ≤ 2 · 2bt/2c. This
implies n ≤ 2 · 2bY2(2,3,n)/2c and thus the theorem follows. 2

Tedious calculations give an upper bound by random choice that we omit here because
of its irrelevance.

3 Tricolored triangles

Let Kn denote the complete graph on n vertices. An edge–tricoloring of Kn is a partition
of the edge set of Kn into three different classes. We refer to the members of these
respective classes as red, blue and green edges, respectively. We call a triangle edge–
tricolored (ET) if all its edges are colored differently. Let t(n) denote the minimum
number of edge–tricolorings needed to make every triangle ET in at least one of them.
Write

T = lim inf
n→∞

t(n)

log n
.

Determining T seems hard and our lower and upper bounds are far apart. The lower
bound is trivial. The main interest of the next result is that the upper bound is obtained
via an explicit construction for this does not seem to happen frequently with similar
problems.

Theorem 2
1

log 3
≤ T ≤ 1.

Proof.
The lower bound is trivial. In fact, fix any vertex and look at all the adjacent edges

of which there are n − 1. Clearly, any two of them must have differing colors in at least
one tricoloring. This gives

log(n− 1)

log 3
≤ t(n).
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To prove the upper bound, assign to every node of Kn a different binary sequence of
length dlog ne. We will define dlog ne edge–tricolorings of Kn through these sequences. Let
us look at the edge having the different vertices a and b as endpoints. Let x = x1, x2, . . . , xt

and y = y1, y2, . . . , yt be the corresponding binary sequences. Define the i’th tricoloring
of (a, b) as follows.

Let (a, b) be blue if xi = yi.
Let (a, b) be green if xi 6= yi but xj = yj for all j < i.
Let (a, b) be red else.

Let us say that the i’th coordinate cuts the edge (a, b) if the i’th coordinates of the
sequences assigned to a resp. b are different, i. e., if xi 6= yi. We claim that the edges of
every triangle get 3 different colors in a coloring in some coordinate i > 1. To prove this,
notice that every edge of Kn is cut in some coordinate and that a coordinate cutting any
edge of a triangle will cut exactly two of them. From these two observations it follows
that in every triangle at least two different pairs of edges are cut in some coordinate.

Now fix a triangle and consider the smallest coordinate i for which all the edges of the
triangle are cut in some coordinate with j ≤ i. This means by the foregoing that in this
coordinate i there is an edge cut for the first time and therefore never cut in a coordinate
j < i. Notice, however, that the triangle cannot have more than one edge with these
properties, for some pair of edges had to be cut before. Furthermore, there is an edge
that is not cut in the i’th coordinate. This proves that our triangle has tricolored edges
in this coordinate. Thus

t(n) ≤ dlog ne − 1.

2

It seems unlikely that the lower bound be tight. In this context, it is worth noticing
what happens if we just want to bicolor every pair of adjacent edges. More precisely, let
u(n) be the minimum number of edge–tricolorings needed to make every pair of adjacent
edges of Kn bicolored in at least one of the tricolorings. Write

U = lim inf
n→∞

u(n)

log n
.

We have

Proposition 1

U =
1

log 3
.

Proof.
The lower bound is true by the same argument as in Theorem 1. To prove the upper

bound label every vertex of Kn by a different ternary sequence of length d log n
log 3
e. Next

label every edge by the modulo 3 sum of the ternary vectors assigned to its two endpoints.
The i’th coordinates of all these vectors give rise to the i’th edge–coloring in the obvious
way. It is immediate that this family of colorings satisfies our condition. 2
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4 Other tricolored subgraphs

It follows from our previous observations that substantially more tricolorations of the
edges of Kn are needed to tristinguish any triple of edges of the complete graph on n
vertices than to tristinguish just the three edges of a triangle. In fact, by definition, the
number of tricolorings needed to tristinguish every triple of the edges is Y (3, 3,

(
n
2

)
) which

is about 2F (3, 3) log n ≥ 3.4 log n while we have seen that for the tristinction of the three
edges of any triangle we need not more than about log n tricolorings of the edges. It
is therefore interesting to understand what happens if we want to tristinguish the three
edges of some other 3–edge subgraphs of Kn by the minimum number of 3–colorings of
the edges of this complete graph. In particular, it is interesting to see whether there is
a single type of subgraph which in itself is responsible for the total number of colorings
needed to tristinguish all the edge triples of Kn, in the asymptotic sense.

Let s(n) denote the minimum number of tricolorings of the edges of Kn needed to
make every tristar edge–tricolored in at least one of them. (Here a tristar is a graph on
4 points with 3 edges all of which have a common endpoint. Just as for triangles, we say
that a tristar is edge–tricolored if all its edges are colored differently.) Write

S = lim inf
n→∞

s(n)

log n
.

We have

Proposition 2
S = F (3, 3)

Proof.
The lower bound F (3, 3) ≤ S follows from the fact that if we want to tristinguish

just the n− 1 edges meeting in a single fixed vertex of Kn, then this is equivalent to the
problem of trifference and thus Y (3, 3, n− 1) ≤ s(n).

To prove the upper bound label every vertex of Kn by a trifferent ternary sequence
of length Y (3, 3, n). Then label every edge by the modulo 3 sum of the ternary vectors
assigned to its two endpoints. 2

We will call trident a graph on 6 vertices with three vertex–disjoint edges. Let r(n)
denote the minimum number of tricolorings of the edges of Kn needed to tristinguish the
three edges of any trident in at least one of them. Write further

R = lim inf
n→∞

r(n)

log n
.

We claim that

Proposition 3
R = F (3, 3)
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Proof.
The lower bound F (3, 3) ≤ R is obvious. In fact, notice that a maximal matching of

the graph consists of bn
2
c pairwise vertex–disjoint edges. If we only restrict ourselves to

coloring these, we see that Y (3, 3, bn
2
c) ≤ r(n).

To prove the upper bound, let us assign trifferent ternary sequences of minimum length
to each of the vertices of Kn. Next assign to every edge one of the ternary sequences
assigned to its two endpoints in a completely arbitrary manner. The sequences will define
the tricolorings in the obvious way establishing

r(n) ≤ Y (3, 3, n).

2

The last proposition is somewhat surprising for numberwise the configuration of three
vertex–disjoint edges is dominant among all the configurations of three edges. The proof
shows that for very general criteria for colorings of k vertex–disjoint edges the minimum
number of colorings is asymptotically the same as for criteria on vertex–colorings involving
arbitrary k–tuples of vertices. The same remark applies for stars with k edges.

All our above constructions share the feature that the edge–colorings are constructed
from vertex–colorings in a straightforward manner. We wonder whether this is due to our
lack of imagination or something more relevant to the subject.

We have failed to give non–trivial bounds for the minimum number of tricolorings
needed to tristinguish the edges of the two missing subgraphs.
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