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AbstratWe prove that the edges of a self-omplementary graph and its omplement an be orientedin suh a way that they remain isomorphi as digraphs and their union is a transitivetournament. This result is used to explore the relation between the Shannon and Spernerapaity of ertain graphs. In partiular, using results of Lov�asz, we show that themaximum Sperner apaity over all orientations of the edges of a vertex-transitive self-omplementary graph equals its Shannon apaity.



1 IntrodutionThe Shannon apaity C(G) of a graph G was de�ned by Shannon in [16℄ (see also[13, 2℄). It is easy to determine for many graphs, highly non-trivial but known for someothers and not even known for another many. Sperner apaity is a generalization of thisnotion for direted graphs given by Gargano, K�orner, and Vaaro [8℄. The motivation ofthis generalization was the appliability of the new onept in extremal set theory thatwas arried out quite suessfully in [9℄ and [10℄. In this paper we are dealing with theonnetions of these values, the Shannon and Sperner apaities of a graph. Let us givethe de�nitions �rst.De�nition 1 Let G be a direted graph on vertex set V . The tth power of G is de�nedto be the direted graph Gt on vertex set V t = fx = (x1 : : : xt) : xi 2 V g with edge setE(Gt) = f(x;y) : 9i (xi; yi) 2 E(G)g:Notie that Gt may ontain edges in both diretions between two verties even if suh apair of edges is not present in G.De�nition 2 For a direted graph G let tr(G) denote the size (number of verties) of thelargest transitive tournament that appears as a subgraph of G. The (logarithmi) Spernerapaity of a digraph G is �(G) = limt!1 1t log tr(Gt):All logarithms in the paper are on base 2.The Shannon apaity of an undireted graph G an be de�ned as the following speialase of Sperner apaity. Let us all a graph symmetrially direted if for eah of its edgesit also ontains the edge going opposite way between the same two endpoints. In whatfollows we often identify an undireted graph G with the symmetrially direted graphthat has edges (in both diretions) between the same endpoints as G has. This digraph isalled the symmetrially direted equivalent of G. Note, that powers of a symmetriallydireted graph are also symmetrially direted, hene they an be onsidered as undiretedgraphs, as well.De�nition 3 The Shannon apaity C(G) of G is the Sperner apaity of its symmetri-ally direted equivalent.Notie that writing undireted edges instead of direted ones in De�nition 1 and thelique number !(Gt) in plae of tr(Gt) in De�nition 2 we get C(G) in plae of �(G).We also remark that originally the de�nition of �(G) was formulated in a di�erent (butequivalent) way. The above de�nition already appears, e.g., in [6℄.1



It should be lear from the de�nitions that the Sperner apaity of a digraph is alwaysbounded from above by the Shannon apaity of the underlying undireted graph. Thetwo values are not the same in general. It was �rst shown in [5℄ (f. also [3℄ for a shortand di�erent proof) that the Sperner apaity of a ylially oriented triangle is 1(= log 2)while the Shannon apaity of Kn is logn in general, i.e., log 3 for a triangle.For an undireted graph G let D(G) = maxĜ �(Ĝ);where Ĝ stands for an oriented version of G, i.e., the maximum is taken over all orientedgraphs Ĝ ontaining exatly one oriented edge for eah edge of G. Clearly D(G) � C(G)holds. Our main onern is the question whether this inequality is an equality or not.2 D(G) versus C(G)It was already proved by Shannon that C(G) satis�es log!(G) � C(G) � log�(G) where�(G) is the hromati number of the graph G. (In fat, he proved more, namely, thoughin di�erent terms, that the logarithm of the frational hromati number of G is also anupper bound for C(G). For further details of this, see [12℄. We also remark that Shannonand many authors following him used a omplementary language, i.e., de�ned C( �G) aswe de�ned C(G). The two approahes are equivalent, our reason to break the traditionis our need to orient edges that would beome non-edges in the original language.) It iseasy to observe that tr(Gt) � (tr(G))t, thus �(G) � log tr(G) always holds. (Shannon'slog!(G) � C(G) is a speial ase of this.) This inequality is not an equality in generaleven among tournaments as was shown reently by Alon [1℄. On the other hand, a liqueof an undireted graph an always be oriented in an ayli way, thus giving an induedtransitive tournament. Therefore the previous inequalities imply that if �(G) = !(G) forG then D(G) = C(G) also holds. In partiular, this happens for all perfet graphs.The smallest graph for whih Shannon was not able to determine the value of its apaityis C5, the hordless yle on �ve points. He observed that !(C25) � 5 > (!(C5))2 = 4implying C(C5) � 12 log 5. The theorem that this lower bound is sharp was proven byLov�asz in his elebrated paper [13℄. Lov�asz proved there the more general result that anyvertex-transitive self-omplementary graph on n points has Shannon apaity 12 logn.It was already observed in [7℄ (see Proposition 4 of quoted paper) that C5 has an orien-tation for whih C25 ontains an aylially oriented lique on �ve points. This impliesD(C5) � 12 log 5 and thus by Lov�asz' result D(C5) = C(C5). It is worth mentioning thatthis orientation of C5 is unique (up to isomorphism); for all other orientations the Spernerapaity is stritly smaller. This an be shown using the methods of [5℄ and [3℄, as it wasshown to us by Rob Calderbank [4℄. 2



The main result of this paper is a generalization of the above observation, showing thatfor any self-omplementary graph G on n points the edges an be oriented in suh away that G2 ontains a transitively oriented lique of size n. By the above mentionedresult of Lov�asz this will immediately imply D(G) = C(G) for all vertex-transitive self-omplementary graphs. Another impliation, due to the work of Alon and Orlitsky [2℄, isthat D(G) an be exponentially larger than log!(G).The ore of our result is a theorem about self-omplementary graphs that we think to beinteresting in itself. This is the topi of the next setion.3 Self-omplementary graphsA graph G = (V;E) is self-omplementary if there exists a omplementing permutationof the elements of V . That is, there exists a bijetion � :V 7! V with the propertythat 8v 6= w 2 V fv; wg 2 E () f�(v); �(w)g 62 E. A haraterization of self-omplementary graphs an be found in [14℄ or [15℄, f. also [11℄.Let G be a self-omplementary graph with omplementing permutation � . Then the setf(v; �(v)) : v 2 V g, or equivalently, the set f(�(v); v)) : v 2 V g of pairs (two-lengthsequenes) indues a lique of size jV j = n in G2. Using these two-length sequenesas building bloks, we an �nd liques of size n t2 in Gt for every even t. This showsC(G) � 12 logn and by Lov�asz' result this is sharp if G has the additional property ofbeing vertex-transitive. If we ould orient the edges of G in suh a way that for the soobtained oriented graph Ĝ at least one of the liques of the above type in Ĝ2 would beomea transitive tournament then we would have D(G) � 12 logn and thus D(G) = C(G) forvertex-transitive self-omplementary graphs. Therefore we seek for suh orientations. Thefollowing theorem will imply that this kind of orientation always exists. The proof alsogives a onstrution.If � is a linear order of the elements of the set f1; : : : ; ng then �(x) denotes the elementstanding on the xth position in this linear order. Thus ��1(i) is the position where elementi an be found. We say that j is to the right of i (aording to �) i� ��1(i) < ��1(j).Theorem 1 Let G = (V (G); E) be a self-omplementary graph on V (G) = f1; 2; : : : ; ngwith omplementing permutation � . Then there exists a linear order � on V (G) suh thatif fi; jg 62 E and ��1(i) < ��1(j), then ��1(��1(i)) < ��1(��1(j)).Proof. The essential part of the argument onerns the ase when � ontains only oneyle, the remaining ases an be redued to this easily. So assume �rst that � onsistsof only one yle. By results in [14℄, [15℄ this implies that n should be even, but this willnot be exploited here.We may assume without loss of generality that � = (123 : : : n) and that f1; 2g is an edgeof G. An algorithm will be given, that starting from the identity order, suessively3



rearranges the terms thus generating the linear order �. We give the formal desriptionof this algorithm and explain it afterwards.let �0 = id; k = 0;general:Let �k(n) = m and ��1k (m+ 1) = i,where m+ 1 is 1 in ase m = n, that is in the �rst step.A = fr: i < r and f�k(r); �k(n)g 2 Egif A = ; then goto 'end'j = minA�k+1(s) = �k(s) if s < j, �k+1(j) = m and �k+1(s) = �k(s� 1) for j < s � nk:=k + 1goto 'general'end:� = �kstopThat is, in the general step when m stands on the last (rightmost) position in �k, we hekwhether m has a neighbour to the right of m+1. If there is one, then m is inserted just infront of its leftmost neighbour whih is to the right of m+ 1. This step is repeated until,�nally, all neighbours of the urrently last element m are to the left of the (previouslyinserted) element m + 1. Sine the number of elements to the right of the previouslyinserted element is dereasing at every step, the algorithm surely terminates. (As anexample, see the graph on Figure 1. In the �rst run of 'general' 8 is inserted in front ofits leftmost neighbour, whih is 3, resulting in the �1-sequene 1,2,8,3,4,5,6,7. In the nextrun 7 is inserted in front of 4, its leftmost neighbour to the right of 8 in �1. Finally, 6 isinserted in front of 5, thus the resulting �-sequene is 1,2,8,3,7,4,6,5 for this graph.)We have to prove that the linear order we obtain satis�es the requirements. Assumethat �(n) = m, then � an be viewed as a merge of the two sequenes 1; 2; : : : ; m andn; n � 1; : : : ; m + 1. Furthermore, if ��1(m + 1) = i, then f�(j); mg 62 E for i < j < n,in other words, m has no neighbour between m + 1 and itself. We have to prove that iffi; jg 62 E and j is to the right of i, then ��1(j) is also to the right of ��1(i). Note, that��1(b) = b� 1 for 1 < b and ��1(1) = n. The elements m+ 1; m+ 2; : : : ; n moved by thealgorithm are alled inserted, while 1; 2; : : : ; m are alled original. Let fi; jg 62 E and jbe to the right of i. Four ases are distuingished aording to whih of i and j is inserted.Case 1. Both i; j are original. Then i� 1 and j � 1 are also original, provided 1 < i. Inthis ase the order of i � 1 and j � 1 is the same as the order of i and j. If i = 1, then��1(1) = n and f��1(1); ��1(j)g 2 E, thus n is put to the left of j � 1.Case 2. i is inserted and j is original. Now i � 1 is to the right of i. Sine fi; jg 62 Ei ould not be inserted just in front of j, so j � 1 is also to the right of i. However,fi� 1; j � 1g 2 E, that is i� 1 must be inserted, otherwise i� 1 would have remained as�(n) and then it must not have any onnetion to the right of i. Furthermore it had tobe inserted somewhere before j � 1, thus ��1(j) is also to the right of ��1(i).Case 3. i is original and j is inserted. If i = 1, then ��1(i) = n and fn; j � 1g 2 E, thus4
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Figure 1.n is inserted before j � 1, i.e., ��1(j) is also to the right of ��1(i). Otherwise, i� 1 is tothe left of i and j � 1 is to the right of j.Case 4. Both i; j are inserted. In this ase the larger of i and j is to the left of the other,thus i > j. Also, either both i� 1 and j � 1 are also inserted or one of them is insertedand the other is the rightmost element in the linear order obtained. In either ase, thelarger of the elements i� 1 and j � 1 is also to the left of the other.This ompletes the proof for uniyli � .If � is not uniyli then let the number of yles in � be d. For d = 1 the theorem isproved by the foregoing. If � deomposes into more than one yle, then the subgraphsindued by the verties in eah individual yle are all self-omplementary, thus the aboveargument an be applied to them one by one. The resulting partial order on V (G), whihis the union of d total orders, an be extended to one total order by putting the yles inorder. Thus, ��1(i) < ��1(j) if i is in a yle of � put before the yle of j, or if i and jare in the same yle of � then this is their order given by the algorithm applied to thatyle alone. Let fi; jg 62 E and ��1(i) < ��1(j). If i; j are ontained in the same yleof � , then ��1(��1(i)) < ��1(��1(j)) holds by the �rst part of the proof. On the otherhand, if i and j are in di�erent yles, then one an use that i and ��1(i), furthermore jand ��1(j) are in the same yles, respetively, so their order aording to � is the same.2Note that, taking the left-to-right ordering aording to �, eah edge of G is mappedby � to an edge of �G of the same orientation. The union of G and �G is the transitive5



tournament given by the order (�(1); �(2); : : : ; �(n)).4 Consequenes for Sperner apaityAn immediate impliation of Theorem 1 is a lower bound on the Sperner apaity ofappropriately oriented self-omplementary graphs.Corollary 1 If G is a self-omplementary graph on n verties then D(G) � 12 logn.Proof. Let the vertex set of G be V = f1; : : : ; ng and a omplementing permutationof these verties be � . Let � be the linear order on V satisfying the requirements ofTheorem 1 and orient the edges of G aording to �, that is, the edge fi; jg is orientedfrom i towards j i� ��1(i) < ��1(j). The resulting oriented graph is denoted by Ĝ.Consider the subset U of the verties of Ĝ2 de�ned byU = f(i; ��1(i)) : i = 1; : : : ; ng:By the properties of � if fi; jg =2 E(G) then (��1(i); ��1(j)) 2 E(Ĝ) i� ��1(i) < ��1(j).Thus U indues a transitive tournament in Ĝ2, beause eah edge is oriented aordingto the �-order of the �rst oordinate of the verties. Therefore every even power Ĝ2k of Ĝontains a transitive tournament of size jU jk = nk implying �(Ĝ) � 12 logn. Sine �(Ĝ)is a lower bound on D(G), this proves D(G) � 12 logn. 2We remark that the above given lower bound is not tight for all self-omplementarygraphs. It is easy to give, for example, self-omplementary graphs on 8 verties withlique number 4. If suh a maximum lique of size 4 is oriented transitively in this graphthen the Sperner apaity of the resulting oriented graph is at least log 4 > 12 log 8. (Sinelog 3 > 12 log 8 the same argument applies also for the graph on Figure 1.) If, however, ourgraph is not only self omplementary but also vertex-transitive, then by Lov�asz' resultsthe above bound is tight. The next theorem formulates this statement.Theorem 2 For a vertex-transitive self-omplementary graph G, the value of D(G) equalsthe Shannon apaity of G.Proof. Lov�asz proved in [13℄ that for a vertex-transitive self-omplementary graphG on nverties C(G) � 12 logn. This ombined with Corollary 1 and the fat that D(G) � C(G)implies the statement. 2A onsequene of Corollary 1 is that the Sperner apaity of a graph an be exponentiallylarger than the value implied by its lique number. This will follow by using the proofof the analogous result for Shannon apaity by Alon and Orlitsky [2℄. First we quotea lemma of theirs (see as Lemma 3 of [2℄ on page 1282). We remark that [2℄ uses theomplementary language.Lemma AO: For every integer n that is divisible by 4, there exists a self-omplementarygraph G on n verties with !(G) < 2dlogne.6



Corollary 2 For every integer n divisible by 4, there exists a graph G on n verties suhthat D(G) > 2log(!(G)�2)�2.Proof. Let n be an integer divisible by 4 and G be the graph onstruted by Alon andOrlitsky proving Lemma AO. Sine this graph is self-omplementary, Corollary 1 impliesD(G) � 12 logn > 2log(!(G)�2)�2. 2We remark that the graphs in the proof of Lemma AO all have omplementing per-mutations ontaining yles of length four only. Thus, the proof of Corollary 2 does notrequire the full generality of Theorem 1.5 Further remarksAording to the relation of D(G) and C(G), we an distinguish among the followingthree lasses of (undireted) graphs. The �rst lass onsists of those graphs every orientedversion of whih has its Sperner apaity equal to the Shannon apaity of the graph. Theseond lass ontains the graphs G for whih this is not true but stillD(G) = C(G) holds.The third lass is the lass of those graphs for whih D(G) < C(G).Sine every graph ontaining at least one direted edge has its Sperner apaity at least 1,all graphs with Shannon apaity 1 belong to the �rst lass. Using Shannon's observationthat log!(G) � C(G) � log�(G) one knows that all bipartite graphs have this property.The same hain of inequalities imply that all graphs with �(G) = !(G) belong to one ofthe �rst two lasses. This an be seen by orienting a largest lique transitively. Clearly,the possibility of suh orientations shows D(G) = C(G) for any graph G having C(G) =log!(G) even if the hromati number and the lique number of G are di�erent. Examplesof suh graphs are the omplements of Kneser graphs of appropriate parameters, as it isshown by Theorem 13 of Lov�asz [13℄.It is not lear whether a graph G with C(G) > 1 an belong to the �rst lass. There is nograph identi�ed to belong to the third lass and it is not lear at all whether lass threeis empty or not. (This question is also mentioned in [6℄.) The main novelty of this paperis that many graphs that have a gap between their apaity values and the logarithm oftheir lique number also satisfy the D(G) = C(G) equality. This may support the guessthat perhaps this equality always holds but we have too little evidene to state this as aonjeture.Finally, let us express our feeling that Theorem 1, though motivated ompletely by theapaity questions exposed here, might have rather di�erent appliations, too.6 AknowledgmentThe authors would like to express their sinere gratitude to Andr�as Gy�arf�as, for hisenouraging remarks and ontinuing interest in their work.7
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