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Abstra
tWe prove that the edges of a self-
omplementary graph and its 
omplement 
an be orientedin su
h a way that they remain isomorphi
 as digraphs and their union is a transitivetournament. This result is used to explore the relation between the Shannon and Sperner
apa
ity of 
ertain graphs. In parti
ular, using results of Lov�asz, we show that themaximum Sperner 
apa
ity over all orientations of the edges of a vertex-transitive self-
omplementary graph equals its Shannon 
apa
ity.



1 Introdu
tionThe Shannon 
apa
ity C(G) of a graph G was de�ned by Shannon in [16℄ (see also[13, 2℄). It is easy to determine for many graphs, highly non-trivial but known for someothers and not even known for another many. Sperner 
apa
ity is a generalization of thisnotion for dire
ted graphs given by Gargano, K�orner, and Va

aro [8℄. The motivation ofthis generalization was the appli
ability of the new 
on
ept in extremal set theory thatwas 
arried out quite su

essfully in [9℄ and [10℄. In this paper we are dealing with the
onne
tions of these values, the Shannon and Sperner 
apa
ities of a graph. Let us givethe de�nitions �rst.De�nition 1 Let G be a dire
ted graph on vertex set V . The tth power of G is de�nedto be the dire
ted graph Gt on vertex set V t = fx = (x1 : : : xt) : xi 2 V g with edge setE(Gt) = f(x;y) : 9i (xi; yi) 2 E(G)g:Noti
e that Gt may 
ontain edges in both dire
tions between two verti
es even if su
h apair of edges is not present in G.De�nition 2 For a dire
ted graph G let tr(G) denote the size (number of verti
es) of thelargest transitive tournament that appears as a subgraph of G. The (logarithmi
) Sperner
apa
ity of a digraph G is �(G) = limt!1 1t log tr(Gt):All logarithms in the paper are on base 2.The Shannon 
apa
ity of an undire
ted graph G 
an be de�ned as the following spe
ial
ase of Sperner 
apa
ity. Let us 
all a graph symmetri
ally dire
ted if for ea
h of its edgesit also 
ontains the edge going opposite way between the same two endpoints. In whatfollows we often identify an undire
ted graph G with the symmetri
ally dire
ted graphthat has edges (in both dire
tions) between the same endpoints as G has. This digraph is
alled the symmetri
ally dire
ted equivalent of G. Note, that powers of a symmetri
allydire
ted graph are also symmetri
ally dire
ted, hen
e they 
an be 
onsidered as undire
tedgraphs, as well.De�nition 3 The Shannon 
apa
ity C(G) of G is the Sperner 
apa
ity of its symmetri-
ally dire
ted equivalent.Noti
e that writing undire
ted edges instead of dire
ted ones in De�nition 1 and the
lique number !(Gt) in pla
e of tr(Gt) in De�nition 2 we get C(G) in pla
e of �(G).We also remark that originally the de�nition of �(G) was formulated in a di�erent (butequivalent) way. The above de�nition already appears, e.g., in [6℄.1



It should be 
lear from the de�nitions that the Sperner 
apa
ity of a digraph is alwaysbounded from above by the Shannon 
apa
ity of the underlying undire
ted graph. Thetwo values are not the same in general. It was �rst shown in [5℄ (
f. also [3℄ for a shortand di�erent proof) that the Sperner 
apa
ity of a 
y
li
ally oriented triangle is 1(= log 2)while the Shannon 
apa
ity of Kn is logn in general, i.e., log 3 for a triangle.For an undire
ted graph G let D(G) = maxĜ �(Ĝ);where Ĝ stands for an oriented version of G, i.e., the maximum is taken over all orientedgraphs Ĝ 
ontaining exa
tly one oriented edge for ea
h edge of G. Clearly D(G) � C(G)holds. Our main 
on
ern is the question whether this inequality is an equality or not.2 D(G) versus C(G)It was already proved by Shannon that C(G) satis�es log!(G) � C(G) � log�(G) where�(G) is the 
hromati
 number of the graph G. (In fa
t, he proved more, namely, thoughin di�erent terms, that the logarithm of the fra
tional 
hromati
 number of G is also anupper bound for C(G). For further details of this, see [12℄. We also remark that Shannonand many authors following him used a 
omplementary language, i.e., de�ned C( �G) aswe de�ned C(G). The two approa
hes are equivalent, our reason to break the traditionis our need to orient edges that would be
ome non-edges in the original language.) It iseasy to observe that tr(Gt) � (tr(G))t, thus �(G) � log tr(G) always holds. (Shannon'slog!(G) � C(G) is a spe
ial 
ase of this.) This inequality is not an equality in generaleven among tournaments as was shown re
ently by Alon [1℄. On the other hand, a 
liqueof an undire
ted graph 
an always be oriented in an a
y
li
 way, thus giving an indu
edtransitive tournament. Therefore the previous inequalities imply that if �(G) = !(G) forG then D(G) = C(G) also holds. In parti
ular, this happens for all perfe
t graphs.The smallest graph for whi
h Shannon was not able to determine the value of its 
apa
ityis C5, the 
hordless 
y
le on �ve points. He observed that !(C25) � 5 > (!(C5))2 = 4implying C(C5) � 12 log 5. The theorem that this lower bound is sharp was proven byLov�asz in his 
elebrated paper [13℄. Lov�asz proved there the more general result that anyvertex-transitive self-
omplementary graph on n points has Shannon 
apa
ity 12 logn.It was already observed in [7℄ (see Proposition 4 of quoted paper) that C5 has an orien-tation for whi
h C25 
ontains an a
y
li
ally oriented 
lique on �ve points. This impliesD(C5) � 12 log 5 and thus by Lov�asz' result D(C5) = C(C5). It is worth mentioning thatthis orientation of C5 is unique (up to isomorphism); for all other orientations the Sperner
apa
ity is stri
tly smaller. This 
an be shown using the methods of [5℄ and [3℄, as it wasshown to us by Rob Calderbank [4℄. 2



The main result of this paper is a generalization of the above observation, showing thatfor any self-
omplementary graph G on n points the edges 
an be oriented in su
h away that G2 
ontains a transitively oriented 
lique of size n. By the above mentionedresult of Lov�asz this will immediately imply D(G) = C(G) for all vertex-transitive self-
omplementary graphs. Another impli
ation, due to the work of Alon and Orlitsky [2℄, isthat D(G) 
an be exponentially larger than log!(G).The 
ore of our result is a theorem about self-
omplementary graphs that we think to beinteresting in itself. This is the topi
 of the next se
tion.3 Self-
omplementary graphsA graph G = (V;E) is self-
omplementary if there exists a 
omplementing permutationof the elements of V . That is, there exists a bije
tion � :V 7! V with the propertythat 8v 6= w 2 V fv; wg 2 E () f�(v); �(w)g 62 E. A 
hara
terization of self-
omplementary graphs 
an be found in [14℄ or [15℄, 
f. also [11℄.Let G be a self-
omplementary graph with 
omplementing permutation � . Then the setf(v; �(v)) : v 2 V g, or equivalently, the set f(�(v); v)) : v 2 V g of pairs (two-lengthsequen
es) indu
es a 
lique of size jV j = n in G2. Using these two-length sequen
esas building blo
ks, we 
an �nd 
liques of size n t2 in Gt for every even t. This showsC(G) � 12 logn and by Lov�asz' result this is sharp if G has the additional property ofbeing vertex-transitive. If we 
ould orient the edges of G in su
h a way that for the soobtained oriented graph Ĝ at least one of the 
liques of the above type in Ĝ2 would be
omea transitive tournament then we would have D(G) � 12 logn and thus D(G) = C(G) forvertex-transitive self-
omplementary graphs. Therefore we seek for su
h orientations. Thefollowing theorem will imply that this kind of orientation always exists. The proof alsogives a 
onstru
tion.If � is a linear order of the elements of the set f1; : : : ; ng then �(x) denotes the elementstanding on the xth position in this linear order. Thus ��1(i) is the position where elementi 
an be found. We say that j is to the right of i (a

ording to �) i� ��1(i) < ��1(j).Theorem 1 Let G = (V (G); E) be a self-
omplementary graph on V (G) = f1; 2; : : : ; ngwith 
omplementing permutation � . Then there exists a linear order � on V (G) su
h thatif fi; jg 62 E and ��1(i) < ��1(j), then ��1(��1(i)) < ��1(��1(j)).Proof. The essential part of the argument 
on
erns the 
ase when � 
ontains only one
y
le, the remaining 
ases 
an be redu
ed to this easily. So assume �rst that � 
onsistsof only one 
y
le. By results in [14℄, [15℄ this implies that n should be even, but this willnot be exploited here.We may assume without loss of generality that � = (123 : : : n) and that f1; 2g is an edgeof G. An algorithm will be given, that starting from the identity order, su

essively3



rearranges the terms thus generating the linear order �. We give the formal des
riptionof this algorithm and explain it afterwards.let �0 = id; k = 0;general:Let �k(n) = m and ��1k (m+ 1) = i,where m+ 1 is 1 in 
ase m = n, that is in the �rst step.A = fr: i < r and f�k(r); �k(n)g 2 Egif A = ; then goto 'end'j = minA�k+1(s) = �k(s) if s < j, �k+1(j) = m and �k+1(s) = �k(s� 1) for j < s � nk:=k + 1goto 'general'end:� = �kstopThat is, in the general step when m stands on the last (rightmost) position in �k, we 
he
kwhether m has a neighbour to the right of m+1. If there is one, then m is inserted just infront of its leftmost neighbour whi
h is to the right of m+ 1. This step is repeated until,�nally, all neighbours of the 
urrently last element m are to the left of the (previouslyinserted) element m + 1. Sin
e the number of elements to the right of the previouslyinserted element is de
reasing at every step, the algorithm surely terminates. (As anexample, see the graph on Figure 1. In the �rst run of 'general' 8 is inserted in front ofits leftmost neighbour, whi
h is 3, resulting in the �1-sequen
e 1,2,8,3,4,5,6,7. In the nextrun 7 is inserted in front of 4, its leftmost neighbour to the right of 8 in �1. Finally, 6 isinserted in front of 5, thus the resulting �-sequen
e is 1,2,8,3,7,4,6,5 for this graph.)We have to prove that the linear order we obtain satis�es the requirements. Assumethat �(n) = m, then � 
an be viewed as a merge of the two sequen
es 1; 2; : : : ; m andn; n � 1; : : : ; m + 1. Furthermore, if ��1(m + 1) = i, then f�(j); mg 62 E for i < j < n,in other words, m has no neighbour between m + 1 and itself. We have to prove that iffi; jg 62 E and j is to the right of i, then ��1(j) is also to the right of ��1(i). Note, that��1(b) = b� 1 for 1 < b and ��1(1) = n. The elements m+ 1; m+ 2; : : : ; n moved by thealgorithm are 
alled inserted, while 1; 2; : : : ; m are 
alled original. Let fi; jg 62 E and jbe to the right of i. Four 
ases are distuingished a

ording to whi
h of i and j is inserted.Case 1. Both i; j are original. Then i� 1 and j � 1 are also original, provided 1 < i. Inthis 
ase the order of i � 1 and j � 1 is the same as the order of i and j. If i = 1, then��1(1) = n and f��1(1); ��1(j)g 2 E, thus n is put to the left of j � 1.Case 2. i is inserted and j is original. Now i � 1 is to the right of i. Sin
e fi; jg 62 Ei 
ould not be inserted just in front of j, so j � 1 is also to the right of i. However,fi� 1; j � 1g 2 E, that is i� 1 must be inserted, otherwise i� 1 would have remained as�(n) and then it must not have any 
onne
tion to the right of i. Furthermore it had tobe inserted somewhere before j � 1, thus ��1(j) is also to the right of ��1(i).Case 3. i is original and j is inserted. If i = 1, then ��1(i) = n and fn; j � 1g 2 E, thus4
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Figure 1.n is inserted before j � 1, i.e., ��1(j) is also to the right of ��1(i). Otherwise, i� 1 is tothe left of i and j � 1 is to the right of j.Case 4. Both i; j are inserted. In this 
ase the larger of i and j is to the left of the other,thus i > j. Also, either both i� 1 and j � 1 are also inserted or one of them is insertedand the other is the rightmost element in the linear order obtained. In either 
ase, thelarger of the elements i� 1 and j � 1 is also to the left of the other.This 
ompletes the proof for uni
y
li
 � .If � is not uni
y
li
 then let the number of 
y
les in � be d. For d = 1 the theorem isproved by the foregoing. If � de
omposes into more than one 
y
le, then the subgraphsindu
ed by the verti
es in ea
h individual 
y
le are all self-
omplementary, thus the aboveargument 
an be applied to them one by one. The resulting partial order on V (G), whi
his the union of d total orders, 
an be extended to one total order by putting the 
y
les inorder. Thus, ��1(i) < ��1(j) if i is in a 
y
le of � put before the 
y
le of j, or if i and jare in the same 
y
le of � then this is their order given by the algorithm applied to that
y
le alone. Let fi; jg 62 E and ��1(i) < ��1(j). If i; j are 
ontained in the same 
y
leof � , then ��1(��1(i)) < ��1(��1(j)) holds by the �rst part of the proof. On the otherhand, if i and j are in di�erent 
y
les, then one 
an use that i and ��1(i), furthermore jand ��1(j) are in the same 
y
les, respe
tively, so their order a

ording to � is the same.2Note that, taking the left-to-right ordering a

ording to �, ea
h edge of G is mappedby � to an edge of �G of the same orientation. The union of G and �G is the transitive5



tournament given by the order (�(1); �(2); : : : ; �(n)).4 Consequen
es for Sperner 
apa
ityAn immediate impli
ation of Theorem 1 is a lower bound on the Sperner 
apa
ity ofappropriately oriented self-
omplementary graphs.Corollary 1 If G is a self-
omplementary graph on n verti
es then D(G) � 12 logn.Proof. Let the vertex set of G be V = f1; : : : ; ng and a 
omplementing permutationof these verti
es be � . Let � be the linear order on V satisfying the requirements ofTheorem 1 and orient the edges of G a

ording to �, that is, the edge fi; jg is orientedfrom i towards j i� ��1(i) < ��1(j). The resulting oriented graph is denoted by Ĝ.Consider the subset U of the verti
es of Ĝ2 de�ned byU = f(i; ��1(i)) : i = 1; : : : ; ng:By the properties of � if fi; jg =2 E(G) then (��1(i); ��1(j)) 2 E(Ĝ) i� ��1(i) < ��1(j).Thus U indu
es a transitive tournament in Ĝ2, be
ause ea
h edge is oriented a

ordingto the �-order of the �rst 
oordinate of the verti
es. Therefore every even power Ĝ2k of Ĝ
ontains a transitive tournament of size jU jk = nk implying �(Ĝ) � 12 logn. Sin
e �(Ĝ)is a lower bound on D(G), this proves D(G) � 12 logn. 2We remark that the above given lower bound is not tight for all self-
omplementarygraphs. It is easy to give, for example, self-
omplementary graphs on 8 verti
es with
lique number 4. If su
h a maximum 
lique of size 4 is oriented transitively in this graphthen the Sperner 
apa
ity of the resulting oriented graph is at least log 4 > 12 log 8. (Sin
elog 3 > 12 log 8 the same argument applies also for the graph on Figure 1.) If, however, ourgraph is not only self 
omplementary but also vertex-transitive, then by Lov�asz' resultsthe above bound is tight. The next theorem formulates this statement.Theorem 2 For a vertex-transitive self-
omplementary graph G, the value of D(G) equalsthe Shannon 
apa
ity of G.Proof. Lov�asz proved in [13℄ that for a vertex-transitive self-
omplementary graphG on nverti
es C(G) � 12 logn. This 
ombined with Corollary 1 and the fa
t that D(G) � C(G)implies the statement. 2A 
onsequen
e of Corollary 1 is that the Sperner 
apa
ity of a graph 
an be exponentiallylarger than the value implied by its 
lique number. This will follow by using the proofof the analogous result for Shannon 
apa
ity by Alon and Orlitsky [2℄. First we quotea lemma of theirs (see as Lemma 3 of [2℄ on page 1282). We remark that [2℄ uses the
omplementary language.Lemma AO: For every integer n that is divisible by 4, there exists a self-
omplementarygraph G on n verti
es with !(G) < 2dlogne.6



Corollary 2 For every integer n divisible by 4, there exists a graph G on n verti
es su
hthat D(G) > 2log(!(G)�2)�2.Proof. Let n be an integer divisible by 4 and G be the graph 
onstru
ted by Alon andOrlitsky proving Lemma AO. Sin
e this graph is self-
omplementary, Corollary 1 impliesD(G) � 12 logn > 2log(!(G)�2)�2. 2We remark that the graphs in the proof of Lemma AO all have 
omplementing per-mutations 
ontaining 
y
les of length four only. Thus, the proof of Corollary 2 does notrequire the full generality of Theorem 1.5 Further remarksA

ording to the relation of D(G) and C(G), we 
an distinguish among the followingthree 
lasses of (undire
ted) graphs. The �rst 
lass 
onsists of those graphs every orientedversion of whi
h has its Sperner 
apa
ity equal to the Shannon 
apa
ity of the graph. These
ond 
lass 
ontains the graphs G for whi
h this is not true but stillD(G) = C(G) holds.The third 
lass is the 
lass of those graphs for whi
h D(G) < C(G).Sin
e every graph 
ontaining at least one dire
ted edge has its Sperner 
apa
ity at least 1,all graphs with Shannon 
apa
ity 1 belong to the �rst 
lass. Using Shannon's observationthat log!(G) � C(G) � log�(G) one knows that all bipartite graphs have this property.The same 
hain of inequalities imply that all graphs with �(G) = !(G) belong to one ofthe �rst two 
lasses. This 
an be seen by orienting a largest 
lique transitively. Clearly,the possibility of su
h orientations shows D(G) = C(G) for any graph G having C(G) =log!(G) even if the 
hromati
 number and the 
lique number of G are di�erent. Examplesof su
h graphs are the 
omplements of Kneser graphs of appropriate parameters, as it isshown by Theorem 13 of Lov�asz [13℄.It is not 
lear whether a graph G with C(G) > 1 
an belong to the �rst 
lass. There is nograph identi�ed to belong to the third 
lass and it is not 
lear at all whether 
lass threeis empty or not. (This question is also mentioned in [6℄.) The main novelty of this paperis that many graphs that have a gap between their 
apa
ity values and the logarithm oftheir 
lique number also satisfy the D(G) = C(G) equality. This may support the guessthat perhaps this equality always holds but we have too little eviden
e to state this as a
onje
ture.Finally, let us express our feeling that Theorem 1, though motivated 
ompletely by the
apa
ity questions exposed here, might have rather di�erent appli
ations, too.6 A
knowledgmentThe authors would like to express their sin
ere gratitude to Andr�as Gy�arf�as, for hisen
ouraging remarks and 
ontinuing interest in their work.7
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