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1 Introdu
tionColoring the verti
es of a graph so that no adja
ent verti
es re
eive the same 
olor givesrise to the notion of 
hromati
 number, one of the 
entral notions of graph theory. Similar
on
epts for oriented or dire
ted graphs have also been de�ned. (We make the follow-ing usual distin
tion between oriented and dire
ted graphs: while a dire
ted graph mayhave edges in both dire
tions between the same pair of verti
es, this is not allowed foran oriented graph.) The 
hromati
 number of oriented graphs was introdu
ed re
entlyby Sopena [11℄. It is de�ned as follows. A legal 
oloring of an oriented graph is an as-signment of 
olors to the verti
es in su
h a way that adja
ent verti
es re
eive di�erent
olors and all edges between any two 
olor 
lasses go in the same dire
tion. The oriented
hromati
 number �!(G) is the minimal number of 
olors that is enough to legally 
olorthe oriented graph G. (In other words, it is the size of the smallest tournament T forwhi
h a homomorphism from G to T is possible.)Another re
ently well investigated graph parameter is 
h(G), the 
hoi
e number of a(nundire
ted) graph G. (Cf. [1℄, [6℄.) Assign a list of k 
olors to ea
h vertex of G and �nd aproper 
oloring of its verti
es from the 
orresponding lists. The smallest k for whi
h thisis always possible (whatever the a
tual lists are) is the 
hoi
e number of G.In this paper we introdu
e the oriented 
hoi
e number of an oriented graph in the obviousway (see details in next se
tion) and the oriented 
hoi
e number o
h(G) of an undire
tedgraph as its minimum over all orientations of the edges of G. We will investigate therelation of o
h(G) to other parameters of G. In parti
ular, we will show that the gapbetween o
h(G) and 
h(G) 
an be arbitrarily large while o
h(G) is both upper and lowerbounded by fun
tions of �(G), the minimal number of points needed to 
over all edges.Another notion of 
hromati
 number for dire
ted graphs, the so-
alled di
hromati
 num-ber, is de�ned by Neumann-Lara, and the di
hromati
 number of an undire
ted graphby Erd�os and Neumann-Lara, 
f. [9℄, [2℄, [3℄. In the last se
tion we investigate the list
oloring version of this 
on
ept. (A third 
hromati
 number type invariant of dire
tedgraphs is given by Fa
hini and K�orner [5℄. This is of di�erent nature, however, and we donot investigate it in this paper.) The paper is organized as follows. The next se
tion isdevoted to the investigation of o
h(G) and its relation to other graph parameters. Se
tion3 deals with mis
ellaneous problems 
onne
ted to o
h(G). In parti
ular we 
onsider thequestion how many transitive triangles are needed to 
over every tournament on n points.Se
tion 4 deals with the list 
oloring analogon of the di
hromati
 number.2 The oriented 
hoi
e numberRe
all that a proper 
oloring of a graph G is an assignment of 
olors to its nodes su
h thatno adja
ent verti
es re
eive the same 
olor. The minimum number of 
olors needed for aproper 
oloring is the 
hromati
 number �(G) of G. A graph G is said to be k-
hoosable1



if for every possible assignment of lists of size k of 
olors to its verti
es there is a proper
oloring of G where every vertex is assigned one of the 
olors from its list. For an orientedgraph Sopena [11℄ de�nes a proper 
oloring to be an assignment of 
olors to the nodes insu
h a way that in addition to the requirement that adja
ent verti
es get di�erent 
olorswe also have the following. It is not allowed that we have two (oriented) edges in su
h away that the tail of one of them is 
olored the same 
olor as the head of the other onewhile at the same time the tail of the se
ond re
eives the same 
olor as the head of the�rst. Now an oriented graph F is said to be k-
hoosable if for every possible assignment oflists of size k to its verti
es there is a proper 
oloring of F where every vertex is assignedone of the 
olors of its list. The minimum k for whi
h the oriented graph F is k-
hoosablewill be denoted by 
h!(F ). Our main 
on
ern will be the following graph parameter.De�nition 1 The oriented 
hoi
e number o
h(G) of the undire
ted graph G is the small-est k for whi
h there exists an orientation of the edges of G resulting in a k-
hoosableoriented graph.In other words, o
h(G) is the minimum of 
h!(Ĝ) for all possible oriented versions Ĝ ofG. At �rst glan
e it is not 
lear whether o
h(G) is diferent from 
h(G). Indeed, if wewould de�ne the oriented 
hromati
 number of an undire
ted graph in a similar manner(i.e., as the minimum value of the oriented 
hromati
 number of the di�erent orientations),we would only get a more 
ompli
ated de�nition of the 
hromati
 number itself.First we give a simple example showing that o
h(G) 6= 
h(G) in general. Consider the
hordless 
y
le C6 on six verti
es. Let the verti
es be v1; :::; v6 in their 
y
li
 order (thatis fvi; vi+1g is an edge for every i where addition is intended modulo 6.) It is easy tosee that 
h(C6) = 2. We show o
h(C6) > 2. First observe that if we do not orientthe edges in an alternating way then an oriented path of length 2 appears that alreadyhas oriented 
hromati
 number 3 and 
h!(G) is always at least as large as the oriented
hromati
 number of the same (oriented) graph. (This 
an be seen by assigning identi
allists to the verti
es.) So the only way 
h!(F ) 
ould be less than 3 for an orientedversion F of C6 is if every vertex of F is either a sour
e or a sink. There is only onesu
h orientation up to isomorphism so w.l.o.g. we may assume that the edges of Fare (v1; v2); (v3; v2); (v3; v4); (v5; v4); (v5; v6); (v1; v6). Now assign the following two-elementlists to these verti
es:L(v1) = L(v4) = f1; 2g; L(v2) = L(v5) = f2; 3g; L(v3) = L(v6) = f1; 3gwhere L(x) stands for the list assigned to vertex x.Claim One 
annot �nd a proper 
oloring of the verti
es of the above oriented graph Ffrom the above lists.Proof. Indeed, if we 
olor v1 by 2 we are for
ed to 
olor v2 by 3, v3 by 1 and v4 by 2.Then 
oloring v5 by neither of 2 or 3 is allowed. This means we should start 
oloring v12



by 1 but then v6, v5 and v4 are for
ed to be 
olored by 3, 2 and 1, respe
tively, and nowv3 
annot be 
olored properly. 2This example already shows that o
h(G) = 
h(G) does not hold in general. In fa
t, mu
hmore is true.Theorem 1 For every positive integer k there is an integer g(k) su
h that if a graph G
ontains at least g(k) independent edges then o
h(G) > k.Before proving Theorem 1 let us formulate the following immediateCorollary 1 For every positive integer k there exists a graph G su
h that 
h(G) = 2 ando
h(G) > k.Proof. Let G be the graph 
onsisting of g(k) independent edges, where g(k) is thefun
tion in Theorem 1. This G has 
h(G) = 2 and its oriented 
hoi
e number is largerthan k by Theorem 1. 2We remark that if we want our graph to be 
onne
ted then a path of 2g(k) verti
es wouldalso do in pla
e of the graph in the proof of Corollary 1.To prove Theorem 1 we re
all the following result from [8℄ (
f. Theorem 10. on page 15)attributed to Erd�os-Moser, and Stearns.Theorem EMS: For every n there exists a fun
tion F (n) su
h that every tournament onat least F (n) verti
es 
ontains a transitive subtournament on n verti
es. For the smallestpossible su
h F (n) one has 2n�12 � F (n) � 2n.Proof of Theorem 1.Fix some positive integer k. Consider a set of F (2k) 
olors where F (n) is the fun
tion inthe above mentioned result about tournaments. The idea of the proof is that we will makeit impossible that any tournament de�ned on F (2k) 
olors as verti
es would be 
onsistentwith a legal 
oloring from our lists. Take a graph G with m = 2F (2k) independent edgesand �x any orientation of the graph. Let the independent edges be e1; : : : ; em. Considerall the possible 2F (2k) tournaments on the F (2k) 
olors, let them be 
alled T1; : : : ; Tm.Now we give the lists assigned to those verti
es of our graph that are the endpoints ofthe above mentioned independent edges. For giving the lists of the endpoints of ei lookat Ti and �nd a transitive subtournament of 2k points in it. Let the 
olors 
orrespondingto this subtournament be 
1; : : : ; 
2k indexed a

ording to their ordering in Ti. Thismeans that (
j; 
r) 2 E(Ti) i� j < r. Denote the two endpoints of ei by vi1 and vi2and assume ei is oriented towards the latter. Assign lists L(vi1) = f
k+1; 
k+2; : : : ; 
2kgand L(vi2) = f
1; 
2; : : : ; 
kg to vi1 and vi2, respe
tively. Observe that any legal 
oloringof the endpoints of ei will make it impossible that the 
oloring is 
onsistent with (ahomomorphism onto) Ti. Sin
e every possible tournament on our 
olors is represented bysome Ti this proves that no valid 
oloring exists. Thus o
h(G) > k. 23



Remark: The proof above does not really use that the Ti's 
ontain large transitive sub-tournaments, only a bipartite subgraph of these is needed. Thus some smaller numberrepla
ing F (2k) 
ould be used in the argument.Using the monotoni
ity of o
h(G) (i.e., the fa
t that adding new edges to a graph o
h(G)
annot de
rease) Theorem 1 shows that o
h(G) is linked to the mat
hing number �(G)of G in the sense that a lower bound on o
h(G) 
an be formulated in terms of �(G). Thefollowing observation shows that these two quantities are related, indeed, in the sensethat an upper bound on o
h(G) 
an also be given in terms of �(G). Let �(G) denote theminimum number of verti
es 
overing all edges of G. It is obvious that 2�(G) � �(G)sin
e the endpoints of edges in a maximum size mat
hing 
over every edge. Thus thefollowing observation gives o
h(G) � 2�(G) + 1.Proposition 1 For every graph G one has o
h(G) � �(G) + 1.Proof. Consider G and a minimal set T of points 
overing all the edges. Orient all edgesbetween a point in T and a point in V (G)� T towards T and orient the rest of the edgesarbitrarily. If we assign lists of �(G) + 1 
olors to every node then we 
an 
olor everyelement of T �rst then delete the already used 
olors from every list in V (G) � T and
olor the elements of V (G)�T from the remaining lists. Sin
e jT j = �(G) (so at least oneelement remained on every list after 
oloring T ) and V (G)� T must be an independentset (otherwise some edge would not be 
overed) this is 
ertainly possible thus proving thestatement. 2Remark: There are 
ases when o
h(G) = �(G) + 1 indeed. This happens for 
ompletegraphs and also for 
omplete bipartite graphs with 
olor 
lasses of size t = �(G) and ttwhere already 
h(G) = �(G) + 1. The latter 
an be seen by assigning disjoint t-elementlists to the verti
es of the smaller 
olor 
lass and all their transversals as lists to theverti
es in the larger 
olor 
lass.Theorem 1 is formulated in su
h a way that the existen
e of g(k) is emphasized. It shouldbe 
lear, however, that g(k) is a well-de�ned fun
tion, namely, its value is the least integerm for whi
h we have o
h(G) = k if G = mK2, i.e., the union of m independent edges.The proof of Theorem 1 and the statement of Proposition 1 give bounds on g(k) but todetermine the a
tual value seems to be an intriguing problem. We say a bit more aboutit later.3 Covering tournamentsLet C(k) mean the 
lass of graphs G with o
h(G) = k and let its super
lass C(k; r) bede�ned as follows. A graph G belongs to C(k; r) if there exists an orientation of G su
hthat for any assignment of k-element lists of 
olors out of not more than r 
olors a properoriented 
oloring from the lists is possible. 4



Clearly C(k; r) � C(k; r + 1) and C(k) = \1r=kC(k; r). It is also 
lear that C(k; k) isidenti
al to the 
lass of k-
hromati
 graphs.In the following we take a 
loser look on C(2). A 
omplete 
hara
terization of graphsbelonging to this 
lass seems rather tedious therefore we do not intend to give a 
omplete
hara
terization, but some more interesting remarks instead. It is 
lear that any graph inC(2) should be bipartite, in fa
t, even its 
hoi
e number should be 2. A 
hara
terizationof 2-
hoosable graphs is given by Erd}os, Rubin, and Taylor [4℄ as follows. They denoteby �k;l;m the graph 
onsisting of three vertex disjoint paths of length k; l;m, respe
tively,between the same two distinguished endpoints. Their theorem states that deleting su

es-sively all degree one points of a 2-
hoosable graph the remaining part of ea
h 
omponentmust be (at most) a �2;2;2m, where m is a positive integer.If a graph G has o
h(G) = 2 than it must be a
hieved by an orientation 
ontainingno two-edge oriented path. This means that for some 2-
oloring of su
h a (ne
essarily2-
hromati
) graph all edges are oriented from one 
olor 
lass to the other. Thus for abipartite graph with a given bipartition there is essentially only one orientation to beinvestigated when we want to de
ide whether its oriented 
hoi
e number is 2 or not.We will 
all this orientation the alternating orientation. (Cf. the example of C6 in theprevious se
tion.)We believe that C(2) = C(2; 4). (Note that it is not 
lear whether there exists for every ksome �nite rk su
h that C(k) = C(k; rk).) One way to see the fa
t that C(2) 6= C(2; 3) isto realize that any graph 
onsisting of independent edges only is in C(2; 3) but, for manyedges, not in C(2; 4). We prove this next.Proposition 2 Let F be a graph 
onsisting of k independent edges. Then F 2 C(2; 3).On the other hand, there exists k0 for whi
h k � k0 implies F =2 C(2; 4).Proof. We prove the �rst statement �rst. Assume we have three 
olors available, 
allthem a; b; 
. Consider the 
y
li
 tournament K given by a! b! 
! a on these 
olors.Now take the edges of F one by one. (Noti
e that the orientation is 
onsidered already�xed when the lists are assigned to the verti
es.) If an edge has identi
al lists on its twoendpoints then the two 
olors o

uring in these lists 
an be put on the verti
es in su
h away that their order given by the orientation of the edge is 
onsistent with K. If, on theother hand, the two lists are di�erent then put a 
olor on one of the endpoints that is notpresent in the other list. Now sin
e K is 
y
li
, one of the 
olors in the other list 
an beused to 
olor the other node properly. Sin
e all edges of F 
an be 
olored this way, the�rst statement is proven.Now we prove the se
ond statement. Let T0 denote the tournament on the available 
olors
onsistent with the proper 
oloring we are to �nd. Observe that the endpoints of an edgewith list fa; bg at the tail and list fb; 
g at the head 
annot be properly 
olored if andonly if the indu
ed subtournament of T0 on 
olors a; b; 
 is a transitive triangle with 
being its sour
e and a its sink. This means that an edge of the above type ensures that T0
annot 
ontain this transitive triangle. Sin
e any tournament on four points 
ontains some5



transitive triangle, this way we 
an ex
lude every tournament from being a 
andidate forT0 if we have enough edges to ex
lude at least one transitive triangle for ea
h of them.This proves the se
ond statement. 2The k0 in the above theorem need not be very large, in fa
t its optimal value is at most12. We will explain this in what follows. First we introdu
e a new notion inspired by theforegoing.De�nition 2 Let T be a tournament on n labelled verti
es. We say that a transitivetriangle H 
overs T if it is on three verti
es of T and those three verti
es indu
e H in T .Remark Note that De�nition 2 requires more that H be a subtournament. It is importantthat the verti
es of H are labelled and it o

ures in T on the triplet of verti
es labelledsame.It seems to be a question of independent interest what is the minimum number of transitivetriangles that 
over every possible tournament on n points. More pre
isely we mean thefollowing. Let Q be a set of transitive triangles on the verti
es 1; 2; : : : ; n su
h that everypossible tournament on f1; : : : ; ng 
ontains at least one element of Q. Let q(n) denotethe minimum possible size of su
h a set Q. Our question is the value of q(n). It is 
learthat q(n) is not meaningful (or equals to in�nity) for n = 3 sin
e there are tournamentson three points not 
ontaining a transitive triangle. But q(n) is well de�ned for all n � 4.Two easy observations are as follows.1) q(n) � 9 for all n � 4.Reason: The number of n-vertex tournaments is exa
tly eight times the number of thoseany transitive triangle 
an 
over. On the other hand, the two sets of tournaments 
overedby two di�erent transitive triangles is disjoint i� the two triangles are on the same threeverti
es. Sin
e the ar
s in a given triple of verti
es 
an be oriented 
y
li
ally one 
annot
over all n-point tournaments by using triangles on only one triple of the points.2) q(n+ 1) � q(n) for every n.Reason: If we 
over all tournaments on f1; : : : ; ng then all tournaments on f1; : : : ; n+1gare also 
overed.It is somewhat frustrating that we do not know the exa
t value of q(n) for every n. Webeleive it is 12 for all n � 4 but 
ould not prove it for n > 5.Proposition 3 q(4) = q(5) = 12.Proof. By the se
ond observation above it is enough to prove q(4) � 12 and q(5) � 12:q(4) � 12: Consider all transitive triangles on V4 = f1; 2; 3; 4g in whi
h 1 appears as asour
e or a sink. The number of su
h triangles is 12. Sin
e either the outdegree or theindegree of 1 is at least two in any tournament on V4 this system of transitive triangles
overs all possible tournaments on V4. 6



q(5) � 12: Consider those tournaments on V5 = f1; 2; 3; 4; 5g that are the union oftwo oriented Hamiltonian 
y
les. The number of su
h tournaments equals the numberof 
y
li
 permutations of 1; : : : ; 5, that is 24. One 
an easily 
he
k that any transitivetriangle appears in at most (in fa
t, exa
tly) two of the above tournaments, thus at least12 transitive triangles are needed to 
over all of them. 2Proposition 3 shows that the k0 of Proposition 2 need not be more than 12. (It doesnot ne
essarily give the optimum be
ause of the possibility of edges with non-interse
ting2-element lists at their endpoints. More 
ompli
ated tournament 
overing questions 
anbe de�ned if we want to give an equivalent translation of the problem of determiningthe fun
tion g(k) of the previous se
tion. These problems, however seem to be more
ompli
ated than relevant therefore we do not dis
uss them.)Let us 
onsider the 
lass of C(2; 3) on
e more. We sket
h a way to 
hara
terize this
lass. We will 
all an edge an edge of type (xy; zt) if its tail is assigned the list of 
olorsfx; yg while its head is assigned the list of 
olors fz; tg. Considering C(2; 3) we have 3
olors available, let us 
all them a; b and 
. Let G be a bipartite graph not in C(2; 3).Consider (one of) its alternating orientation(s) and an assignment of two element listsof the available 
olors to its verti
es su
h that no proper 
oloring exists from these lists.(Su
h an assignment should exist if G =2 C(2; 3).) In the following we refer to our orientedgraph with this assignment of 
olor lists simply as G (or sometimes the assigned G toavoid 
onfusion).Claim: G must have an edge of ea
h of the following six types:(ab; a
); (a
; ab); (ab; b
); (b
; ab); (a
; b
); (b
; a
).Proof. By our assumptions there is no tournament on U = fa; b; 
g to whi
h G 
ould behomomorphi
ally mapped (in a way 
onsistent also with the list assignment). Considera transitive triangle on U let x be its sour
e and z its sink and y its middle point wherex; y; z is some permutation of the elements of U . One 
an easily 
he
k that the onlyobsta
le of a homomorpism to this tournament 
an be an edge of type (yz; xy). Thisapplies to all the six possible transitive triangles on U thus the six edges above must bepresent. 2Observe that on
e we have a bipartite graph with alternating orientation, then ea
h ofits points is either a sour
e or a sink. Thus the Claim above implies that the assignedG must have at least six points: a sour
e and a sink for ea
h of the three possible listsab; a
; b
. In fa
t, we have the six edges given in the Claim and ea
h of these six typepoints appear as an endpoint of two of them. These same type points 
an be identi�ed inan arbitrary manner and then the resulting six edge graph investigated whether or not itis still possible to �nd a legal homomorphism of it onto a 
y
li
ally oriented triangle onthe three 
olors. If, for example, we make all the the possible identi�
ations we arrive toC6, our �rst example with o
h(G) > 
h(G). If fewer identi�
ations are made then we mayneed additional edges to ex
lude homomorphisms to the 
y
li
 triangular tournaments of3 
olors. A three edge path with edges of type (xy; yz); (xz; yz); (xz; xy) ex
ludes a 
y
li
7
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4Figure 1.triangle and ex
hanging dire
tions the other 
y
li
 triangle 
an be ex
luded. Thus thetwo paths of length three into whi
h the C6 above 
an be broken ex
lude all three vertextournaments on the 
olors. If a 
y
li
 triangle is not ex
luded by su
h a three edge pathit 
an also be ex
luded by two 
onne
ting edges of type (xy; xz) and (xy; xy). Thus herewe need some additional edge (to the previous six ones) whi
h will have the same list onboth of its endpoints. To ex
lude both 
y
li
 triangles we either need two su
h two orthree edge 
on�gurations or two 
an be glued together at a degree three point. (Thuswe 
an ex
lude both 
y
li
 triangles on a three edge star, for example.) This means thatwe have six edges to ex
lude the six transitive triangles and at most two additional edges(in appropriate lo
ations) are needed to ex
lude the two 
y
li
 triangles. Thus de
idingwhether a graph is in C(2; 3) needs only to de
ide whether 
ertain 
on�garations of atmost eight edges appear in the graph or not. This is easy to 
he
k in polynomial time,say.Finally in this se
tion we give an example of a 
onne
ted graph that belongs to C(2; 3)but not to C(2; 4).Example Let T be the tree de�ned by V (T ) = fa; b; 
; u1; : : : um1 ; v1; : : : vm2g with mi � 3and E(T ) = ffa; bg; fb; 
g; fa; uig; f
; vjgg where i = 1; : : : ; m1; j = 1; : : : ; m2. (In short:T is the union of two stars having a non-
entral vertex in 
ommon.) See Figure 1.Consider the alternating orientation of T determined by (a; b) being an edge. We assignthe following 2-element lists of 
olors x; y; z; t to the verti
es. L(a) = fx; yg; L(b) =fx; zg; L(
) = fz; tg,L(u1) = fx; tg; L(u2) = fy; zg; L(u3) = fy; tg,L(v1) = fx; tg; L(v2) =fy; zg; L(v3) = fy; tg. Simple 
ase 
he
king shows that no proper oriented 
oloring fromthese lists is possible. On the other hand, if we have only three 
olors, than T 
an alwaysbe 
olored properly sin
e only a and 
 are sour
es of the 
onsidered oriented version of Tand we have seen that a graph not in C(2; 3) must have at least three sour
es.We remark that there are in�nitely many graphs in C(2) having arbitrarily many sour
esand sinks in their alternating orientations. Su
h an in�nite family of graphs 
an be
onstru
ted by putting arbitrarily large stars on two verti
es of a K2;3 that are not in thesame 
olor 
lass. The reason of these graphs belonging to C(2) is this. The given graphs8



have 
hoi
e number 2 and one 
an easily 
he
k that any 
oloring that is proper as anordinary 
oloring will also be legal as an oriented 
oloring for these graphs.4 Di
hoi
e numberIn the previous se
tions we investigated the 
hoi
e number analogon of the oriented 
hro-mati
 number de�ned in [11℄. In this se
tion we do similarly with a di�erent 
hromati
number type invariant of a dire
ted graph de�ned by Neumann-Lara [9℄ and (its undi-re
ted version by) Erd}os and Neumann-Lara, 
f. [2℄ and also [3℄.LetD be a dire
ted graph. Its di
hromati
 number d(D) is the smallest integer k for whi
hthe vertex set of D 
an be partitioned into k 
lasses su
h that none of the 
lasses 
ontainsan oriented 
y
le. For an undire
ted graph G its di
hromati
 number d(G) is de�ned asthe maximum of the di
hromati
 numbers of all oriented versions of G. Here we allowthe orientation of ea
h edge only in one dire
tion; observe however that the di
hromati
number of a symmetri
ally dire
ted graph (where ea
h edge is present in both dire
tions)is equal to the 
hromati
 number of the underlying undire
ted graph. It follows thatd(G) � �(G) and it is remarkable that it is not known whether the gap between the twoinvariants 
an be arbitrarily large. More pre
isely, even that is not known whether thereexists some k0 su
h that �(G) > k0 would imply d(G) > 2, 
f. [2℄.Here we introdu
e the 
hoi
e number analogon d
h(G) of the undire
ted graph G and
all it the di
hoi
e number of G.De�nition 3 Let G be an undire
ted graph. Its di
hoi
e number d
h(G) is the smallestinteger k satisfying the following 
onditions. For any assignment of k-element lists of
olors for the verti
es and any orientation of the edges of G there exists a 
oloring of theverti
es from their lists su
h that no 
olor 
lass 
ontains an oriented 
y
le.It is 
lear that d
h(G) is upper bounded by 
h(G). For any tree T we have d
h(G) = 1so the di
hoi
e number 
an even be smaller than the 
hromati
 number. The main resultin this se
tion is that we show the existen
e of bipartite graphs with arbitrarily largedi
hoi
e number. Our 
onstru
tion is an extension of that of Erd}os, Rubin, and Taylor[4℄ by whi
h they showed the existen
e of bipartite graphs with arbitrarily large 
hoi
enumber.Theorem 2 For any positive integer k there exists graph G with �(G) = 2 and d
h(G) >k.Proof. Let m = 2k�2k�1k � and G be the 
omplete bipartite graph Km;m. We show thatthis G satis�es the requirements in the statement, that is its di
hoi
e number is largerthan k. To this end we give an orientation of its edges that has the property that we
an assign k-element lists to the verti
es for whi
h no proper "di
oloring" exists from thelists. Let the 
olor 
lasses of G be 
alled A and B. To de�ne the orientation partition9



both A and B into �2k�1k �parts of size 2k ea
h. Within ea
h su
h 
lass label the verti
eswith 1; : : : ; 2k. Now orient those edges of G from A to B that have di�erent labels ontheir two endpoints and orient the rest from B to A.Observe that verti
es having the same label indu
e 
omplete bipartite graphs isomorphi
to K(2k�1k );(2k�1k ). For these subgraphs of G we use the idea of Erd}os, Rubin, and Taylor.Consider all possible k-element lists formed from a given set of 2k � 1 
olors and assignea
h of these lists to exa
tly two verti
es of ea
h of the above mentioned subgraphs (i.e.,those indu
ed by verti
es of identi
al labels), one in A and one in B, respe
tively.Consider any 
oloring from the above lists. We show that there exists some 
olor 
lass
ontaining an oriented 
y
le. By the argument in [4℄ for every i the graph indu
ed byverti
es labelled i must 
ontain an edge whose two endpoints are 
olored by the same
olor. (This is be
ause ea
h k� 1 element subset of the 2k� 1 
olors are missing at someof these verti
es thus at least k 
olors are used altogether both in A and B. But sin
ethere are only 2k�1 
olors they 
annot all be di�erent, thus some point in A got the same
olor as another one in B and they are adja
ent.) Consider the edges with the same 
oloron their endpoints for every i. This means 2k edges. Sin
e we have only 2k�1 
olors thereare two of these edges that have the same 
olor on their altogether four endpoints. Thesetwo edges are oriented from B to A sin
e they both 
onne
t identi
ally labelled verti
es.These labels are di�erent for the two edges, so the two other edges present among the fourendpoints are oriented from A to B. This means that these verti
es indu
e an oriented4-
y
le and the proof is 
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