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Abstract

We introduce the choice number analogon of the oriented chromatic number
of Sopena. It is shown that its minimum over all orientations of a graph can be
arbitrarily much larger than the choice number of the underlying undirected graph.
Investigating related problems we also look at the minimum number of transitive
triangles needed to cover all tournaments on n vertices. The choosability analogon
of the dichromatic number of Erdés and Neumann-Lara is also considered briefly.
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1 Introduction

Coloring the vertices of a graph so that no adjacent vertices receive the same color gives
rise to the notion of chromatic number, one of the central notions of graph theory. Similar
concepts for oriented or directed graphs have also been defined. (We make the follow-
ing usual distinction between oriented and directed graphs: while a directed graph may
have edges in both directions between the same pair of vertices, this is not allowed for
an oriented graph.) The chromatic number of oriented graphs was introduced recently
by Sopena [11]. It is defined as follows. A legal coloring of an oriented graph is an as-
signment of colors to the vertices in such a way that adjacent vertices receive different
colors and all edges between any two color classes go in the same direction. The oriented
chromatic number x7(G) is the minimal number of colors that is enough to legally color
the oriented graph G. (In other words, it is the size of the smallest tournament 7' for
which a homomorphism from G to T is possible.)

Another recently well investigated graph parameter is ch(G), the choice number of a(n
undirected) graph G. (Cf. [1], [6].) Assign a list of k colors to each vertex of G and find a
proper coloring of its vertices from the corresponding lists. The smallest k& for which this
is always possible (whatever the actual lists are) is the choice number of G.

In this paper we introduce the oriented choice number of an oriented graph in the obvious
way (see details in next section) and the oriented choice number och(G) of an undirected
graph as its minimum over all orientations of the edges of G. We will investigate the
relation of och(G) to other parameters of G. In particular, we will show that the gap
between och(G) and ch(G) can be arbitrarily large while och(G) is both upper and lower
bounded by functions of 7(G), the minimal number of points needed to cover all edges.

Another notion of chromatic number for directed graphs, the so-called dichromatic num-
ber, is defined by Neumann-Lara, and the dichromatic number of an undirected graph
by Erdés and Neumann-Lara, cf. [9], [2], [3]. In the last section we investigate the list
coloring version of this concept. (A third chromatic number type invariant of directed
graphs is given by Fachini and Kérner [5]. This is of different nature, however, and we do
not investigate it in this paper.) The paper is organized as follows. The next section is
devoted to the investigation of och(G) and its relation to other graph parameters. Section
3 deals with miscellaneous problems connected to och(G). In particular we consider the
question how many transitive triangles are needed to cover every tournament on n points.
Section 4 deals with the list coloring analogon of the dichromatic number.

2 The oriented choice number

Recall that a proper coloring of a graph G is an assignment of colors to its nodes such that
no adjacent vertices receive the same color. The minimum number of colors needed for a
proper coloring is the chromatic number x(G) of G. A graph G is said to be k-choosable



if for every possible assignment of lists of size k of colors to its vertices there is a proper
coloring of G where every vertex is assigned one of the colors from its list. For an oriented
graph Sopena [11] defines a proper coloring to be an assignment of colors to the nodes in
such a way that in addition to the requirement that adjacent vertices get different colors
we also have the following. It is not allowed that we have two (oriented) edges in such a
way that the tail of one of them is colored the same color as the head of the other one
while at the same time the tail of the second receives the same color as the head of the
first. Now an oriented graph F'is said to be k-choosable if for every possible assignment of
lists of size k to its vertices there is a proper coloring of F' where every vertex is assigned
one of the colors of its list. The minimum k for which the oriented graph F' is k-choosable
will be denoted by ch™(F'). Our main concern will be the following graph parameter.

Definition 1 The oriented choice number och(G) of the undirected graph G is the small-
est k for which there exists an orientation of the edges of G resulting in a k-choosable
oriented graph.

In other words, och(G) is the minimum of ¢h™(G) for all possible oriented versions G' of

G.

At first glance it is not clear whether och(G) is diferent from ch(G). Indeed, if we
would define the oriented chromatic number of an undirected graph in a similar manner
(i.e., as the minimum value of the oriented chromatic number of the different orientations),
we would only get a more complicated definition of the chromatic number itself.

First we give a simple example showing that och(G) # ch(G) in general. Consider the
chordless cycle Cg on six vertices. Let the vertices be vy, ..., v in their cyclic order (that
is {v;,v;11} is an edge for every i where addition is intended modulo 6.) It is easy to
see that ch(Cs) = 2. We show och(Cs) > 2. First observe that if we do not orient
the edges in an alternating way then an oriented path of length 2 appears that already
has oriented chromatic number 3 and ch™(G) is always at least as large as the oriented
chromatic number of the same (oriented) graph. (This can be seen by assigning identical
lists to the vertices.) So the only way ch™(F) could be less than 3 for an oriented
version F' of Cjg is if every vertex of F' is either a source or a sink. There is only one
such orientation up to isomorphism so w.l.o.g. we may assume that the edges of F'
are (vq, v2), (vs, v2), (v3,v4), (s, v4), (vs,v6), (v1,v6). Now assign the following two-element
lists to these vertices:

L(v1) = L(vy) = {1,2}, L(ve) = L(vs) ={2,3}, L(v3) = L(vg) = {1, 3}

where L(z) stands for the list assigned to vertex x.

Claim One cannot find a proper coloring of the vertices of the above oriented graph F
from the above lists.

Proof. Indeed, if we color vy by 2 we are forced to color v, by 3, vz by 1 and v, by 2.
Then coloring vs by neither of 2 or 3 is allowed. This means we should start coloring v,



by 1 but then wvg, v5 and vy are forced to be colored by 3, 2 and 1, respectively, and now
vy cannot be colored properly. O

This example already shows that och(G) = ch(G) does not hold in general. In fact, much
more is true.

Theorem 1 For every positive integer k there is an integer g(k) such that if a graph G
contains at least g(k) independent edges then och(G) > k.

Before proving Theorem 1 let us formulate the following immediate

Corollary 1 For every positive integer k there exists a graph G such that ch(G) = 2 and
och(G) > k.

Proof. Let G be the graph consisting of g(k) independent edges, where g(k) is the
function in Theorem 1. This G has ch(G) = 2 and its oriented choice number is larger
than k& by Theorem 1. a

We remark that if we want our graph to be connected then a path of 2¢g(k) vertices would
also do in place of the graph in the proof of Corollary 1.

To prove Theorem 1 we recall the following result from [8] (cf. Theorem 10. on page 15)
attributed to Erdos-Moser, and Stearns.

Theorem EMS: For every n there exists a function F'(n) such that every tournament on
at least F'(n) vertices contains a transitive subtournament on n vertices. For the smallest

possible such F(n) one has 2"3 < F(n) < 2".

Proof of Theorem 1.

Fix some positive integer k. Consider a set of F'(2k) colors where F'(n) is the function in
the above mentioned result about tournaments. The idea of the proof is that we will make
it impossible that any tournament defined on F'(2k) colors as vertices would be consistent
with a legal coloring from our lists. Take a graph G with m = 27(*) independent edges
and fix any orientation of the graph. Let the independent edges be ey, ..., e,. Consider
all the possible 2F%) tournaments on the F(2k) colors, let them be called T1, ..., T},.
Now we give the lists assigned to those vertices of our graph that are the endpoints of
the above mentioned independent edges. For giving the lists of the endpoints of e; look
at T; and find a transitive subtournament of 2k points in it. Let the colors corresponding
to this subtournament be cq,...,cy; indexed according to their ordering in 7;. This
means that (¢;,¢,) € E(T;) iff j < r. Denote the two endpoints of e; by v;; and v;o
and assume e; is oriented towards the latter. Assign lists L(v;) = {Ckr1, Chiay-- -, Cor}
and L(vs) = {c1,¢a,...,c} to v;; and v;e, respectively. Observe that any legal coloring
of the endpoints of e; will make it impossible that the coloring is consistent with (a
homomorphism onto) T;. Since every possible tournament on our colors is represented by
some T; this proves that no valid coloring exists. Thus och(G) > k. O



Remark: The proof above does not really use that the 7;’s contain large transitive sub-
tournaments, only a bipartite subgraph of these is needed. Thus some smaller number
replacing F(2k) could be used in the argument.

Using the monotonicity of och(G) (i.e., the fact that adding new edges to a graph och(G)
cannot decrease) Theorem 1 shows that och(G) is linked to the matching number v(G)
of G in the sense that a lower bound on och(G) can be formulated in terms of v(G). The
following observation shows that these two quantities are related, indeed, in the sense
that an upper bound on och(G) can also be given in terms of v(G). Let 7(G) denote the
minimum number of vertices covering all edges of G. It is obvious that 2v(G) > 7(G)
since the endpoints of edges in a maximum size matching cover every edge. Thus the
following observation gives och(G) < 2v(G) + 1.

Proposition 1 For every graph G one has och(G) < 7(G) + 1.

Proof. Consider G and a minimal set 7" of points covering all the edges. Orient all edges
between a point in 7" and a point in V(G) — T towards T and orient the rest of the edges
arbitrarily. If we assign lists of 7(G) + 1 colors to every node then we can color every
element of T first then delete the already used colors from every list in V(G) — T and
color the elements of V(G) —T from the remaining lists. Since |T'| = 7(G) (so at least one
element remained on every list after coloring T') and V(G) — T must be an independent
set (otherwise some edge would not be covered) this is certainly possible thus proving the
statement. O

Remark: There are cases when och(G) = 7(G) + 1 indeed. This happens for complete
graphs and also for complete bipartite graphs with color classes of size t = 7(G) and ¢
where already ch(G) = 7(G) + 1. The latter can be seen by assigning disjoint ¢-element
lists to the vertices of the smaller color class and all their transversals as lists to the
vertices in the larger color class.

Theorem 1 is formulated in such a way that the existence of g(k) is emphasized. It should
be clear, however, that g(k) is a well-defined function, namely, its value is the least integer
m for which we have och(G) = k if G = mK,, i.e., the union of m independent edges.
The proof of Theorem 1 and the statement of Proposition 1 give bounds on g(k) but to
determine the actual value seems to be an intriguing problem. We say a bit more about
it later.

3 Covering tournaments

Let C'(k) mean the class of graphs G with och(G) = k and let its superclass C'(k,r) be
defined as follows. A graph G belongs to C'(k,r) if there exists an orientation of G such
that for any assignment of k-element lists of colors out of not more than r colors a proper
oriented coloring from the lists is possible.



Clearly C'(k,r) C C(k,r + 1) and C(k) = N>, C(k,r). It is also clear that C'(k,k) is
identical to the class of k-chromatic graphs.

In the following we take a closer look on C'(2). A complete characterization of graphs
belonging to this class seems rather tedious therefore we do not intend to give a complete
characterization, but some more interesting remarks instead. It is clear that any graph in
C'(2) should be bipartite, in fact, even its choice number should be 2. A characterization
of 2-choosable graphs is given by Erdds, Rubin, and Taylor [4] as follows. They denote
by Oy .m the graph consisting of three vertex disjoint paths of length k, [, m, respectively,
between the same two distinguished endpoints. Their theorem states that deleting succes-
sively all degree one points of a 2-choosable graph the remaining part of each component
must be (at most) a © 29, where m is a positive integer.

If a graph G has och(G) = 2 than it must be achieved by an orientation containing
no two-edge oriented path. This means that for some 2-coloring of such a (necessarily
2-chromatic) graph all edges are oriented from one color class to the other. Thus for a
bipartite graph with a given bipartition there is essentially only one orientation to be
investigated when we want to decide whether its oriented choice number is 2 or not.
We will call this orientation the alternating orientation. (Cf. the example of Cj in the
previous section.)

We believe that C'(2) = C'(2,4). (Note that it is not clear whether there exists for every k
some finite 7 such that C'(k) = C(k,ry).) One way to see the fact that C(2) # C(2,3) is
to realize that any graph consisting of independent edges only is in C'(2, 3) but, for many
edges, not in C'(2,4). We prove this next.

Proposition 2 Let F be a graph consisting of k independent edges. Then F € C(2,3).
On the other hand, there exists ko for which k > ko implies F' ¢ C(2,4).

Proof. We prove the first statement first. Assume we have three colors available, call
them a, b, c. Consider the cyclic tournament K given by a — b — ¢ — a on these colors.
Now take the edges of F' one by one. (Notice that the orientation is considered already
fixed when the lists are assigned to the vertices.) If an edge has identical lists on its two
endpoints then the two colors occuring in these lists can be put on the vertices in such a
way that their order given by the orientation of the edge is consistent with K. If, on the
other hand, the two lists are different then put a color on one of the endpoints that is not
present in the other list. Now since K is cyclic, one of the colors in the other list can be
used to color the other node properly. Since all edges of F' can be colored this way, the
first statement is proven.

Now we prove the second statement. Let T denote the tournament on the available colors
consistent with the proper coloring we are to find. Observe that the endpoints of an edge
with list {a,b} at the tail and list {b, ¢} at the head cannot be properly colored if and
only if the induced subtournament of 7y on colors a, b, c is a transitive triangle with ¢
being its source and a its sink. This means that an edge of the above type ensures that Tj
cannot contain this transitive triangle. Since any tournament on four points contains some



transitive triangle, this way we can exclude every tournament from being a candidate for
T, if we have enough edges to exclude at least one transitive triangle for each of them.
This proves the second statement. O

The ky in the above theorem need not be very large, in fact its optimal value is at most
12. We will explain this in what follows. First we introduce a new notion inspired by the
foregoing.

Definition 2 Let T be a tournament on n labelled vertices. We say that a transitive
triangle H covers T if it is on three vertices of T and those three vertices induce H in T.

Remark Note that Definition 2 requires more that H be a subtournament. It is important
that the vertices of H are labelled and it occures in T on the triplet of vertices labelled
same.

It seems to be a question of independent interest what is the minimum number of transitive
triangles that cover every possible tournament on n points. More precisely we mean the
following. Let @ be a set of transitive triangles on the vertices 1,2,...,n such that every
possible tournament on {1,...,n} contains at least one element of Q). Let ¢(n) denote
the minimum possible size of such a set Q. Our question is the value of ¢(n). It is clear
that ¢(n) is not meaningful (or equals to infinity) for n = 3 since there are tournaments
on three points not containing a transitive triangle. But ¢(n) is well defined for all n > 4.

Two easy observations are as follows.

1) ¢(n) > 9 for all n > 4.

Reason: The number of n-vertex tournaments is exactly eight times the number of those
any transitive triangle can cover. On the other hand, the two sets of tournaments covered
by two different transitive triangles is disjoint iff the two triangles are on the same three
vertices. Since the arcs in a given triple of vertices can be oriented cyclically one cannot
cover all n-point tournaments by using triangles on only one triple of the points.

2) q(n+ 1) < ¢(n) for every n.
Reason: If we cover all tournaments on {1,...,n} then all tournaments on {1,...,n+1}
are also covered.

It is somewhat frustrating that we do not know the exact value of ¢(n) for every n. We
beleive it is 12 for all n > 4 but could not prove it for n > 5.

Proposition 3 ¢(4) = ¢(5) = 12.

Proof. By the second observation above it is enough to prove ¢(4) < 12 and ¢(5) > 12.

q(4) < 12: Consider all transitive triangles on V; = {1,2,3,4} in which 1 appears as a
source or a sink. The number of such triangles is 12. Since either the outdegree or the
indegree of 1 is at least two in any tournament on V; this system of transitive triangles
covers all possible tournaments on V.



q(5) > 12: Consider those tournaments on Vs = {1,2,3,4,5} that are the union of
two oriented Hamiltonian cycles. The number of such tournaments equals the number

of cyclic permutations of 1,...,5, that is 24. One can easily check that any transitive
triangle appears in at most (in fact, exactly) two of the above tournaments, thus at least
12 transitive triangles are needed to cover all of them. O

Proposition 3 shows that the ky of Proposition 2 need not be more than 12. (It does
not necessarily give the optimum because of the possibility of edges with non-intersecting
2-element lists at their endpoints. More complicated tournament covering questions can
be defined if we want to give an equivalent translation of the problem of determining
the function g(k) of the previous section. These problems, however seem to be more
complicated than relevant therefore we do not discuss them.)

Let us consider the class of C'(2,3) once more. We sketch a way to characterize this
class. We will call an edge an edge of type (zy, zt) if its tail is assigned the list of colors
{z,y} while its head is assigned the list of colors {z,¢}. Considering C'(2,3) we have 3
colors available, let us call them a,b and c¢. Let G be a bipartite graph not in C(2,3).
Consider (one of) its alternating orientation(s) and an assignment of two element lists
of the available colors to its vertices such that no proper coloring exists from these lists.
(Such an assignment should exist if G ¢ C(2,3).) In the following we refer to our oriented
graph with this assignment of color lists simply as G (or sometimes the assigned G to
avoid confusion).

Claim: G must have an edge of each of the following six types:
(ab, ac), (ac, ab), (ab, be), (be, ab), (ac, be), (be, ac).

Proof. By our assumptions there is no tournament on U = {a, b, ¢} to which G could be
homomorphically mapped (in a way consistent also with the list assignment). Consider
a transitive triangle on U let x be its source and z its sink and y its middle point where
x,y,z is some permutation of the elements of U. One can easily check that the only
obstacle of a homomorpism to this tournament can be an edge of type (yz,zy). This
applies to all the six possible transitive triangles on U thus the six edges above must be
present. O

Observe that once we have a bipartite graph with alternating orientation, then each of
its points is either a source or a sink. Thus the Claim above implies that the assigned
G must have at least six points: a source and a sink for each of the three possible lists
ab, ac,bc. In fact, we have the six edges given in the Claim and each of these six type
points appear as an endpoint of two of them. These same type points can be identified in
an arbitrary manner and then the resulting six edge graph investigated whether or not it
is still possible to find a legal homomorphism of it onto a cyclically oriented triangle on
the three colors. If, for example, we make all the the possible identifications we arrive to
Cs, our first example with och(G) > ch(G). If fewer identifications are made then we may
need additional edges to exclude homomorphisms to the cyclic triangular tournaments of
3 colors. A three edge path with edges of type (zy,yz), (zz,yz), (xz,zy) excludes a cyclic
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triangle and exchanging directions the other cyclic triangle can be excluded. Thus the
two paths of length three into which the C's above can be broken exclude all three vertex
tournaments on the colors. If a cyclic triangle is not excluded by such a three edge path
it can also be excluded by two connecting edges of type (zy,zz) and (xy, zy). Thus here
we need some additional edge (to the previous six ones) which will have the same list on
both of its endpoints. To exclude both cyclic triangles we either need two such two or
three edge configurations or two can be glued together at a degree three point. (Thus
we can exclude both cyclic triangles on a three edge star, for example.) This means that
we have six edges to exclude the six transitive triangles and at most two additional edges
(in appropriate locations) are needed to exclude the two cyclic triangles. Thus deciding
whether a graph is in C'(2,3) needs only to decide whether certain configarations of at
most eight edges appear in the graph or not. This is easy to check in polynomial time,
say.

Finally in this section we give an example of a connected graph that belongs to C'(2, 3)
but not to C'(2,4).

Ezample Let T be the tree defined by V(T') = {a, b, ¢, u1, ... Up,, V1, ... Up, } With m; >3
and E(T) = {{a, b}, {b,c}, {a,u;},{c,v;}} where i =1,...,my,j =1,...,mo. (In short:
T is the union of two stars having a non-central vertex in common.) See Figure 1.
Consider the alternating orientation of T' determined by (a, b) being an edge. We assign
the following 2-element lists of colors xz,y, z,t to the vertices. L(a) = {z,y},L(b) =
{LE,Z}, L(C) = {Zat}vL(ul) = {:L‘,t}, L(UQ) = {y,z}, L(U3) = {yat}vL(Ul) = {:L‘,t}, L(UQ) =
{y, 2}, L(v3) = {y,t}. Simple case checking shows that no proper oriented coloring from
these lists is possible. On the other hand, if we have only three colors, than T can always
be colored properly since only a and ¢ are sources of the considered oriented version of T
and we have seen that a graph not in C'(2,3) must have at least three sources.

We remark that there are infinitely many graphs in C'(2) having arbitrarily many sources
and sinks in their alternating orientations. Such an infinite family of graphs can be
constructed by putting arbitrarily large stars on two vertices of a K5 5 that are not in the
same color class. The reason of these graphs belonging to C'(2) is this. The given graphs



have choice number 2 and one can easily check that any coloring that is proper as an
ordinary coloring will also be legal as an oriented coloring for these graphs.

4 Dichoice number

In the previous sections we investigated the choice number analogon of the oriented chro-
matic number defined in [11]. In this section we do similarly with a different chromatic
number type invariant of a directed graph defined by Neumann-Lara [9] and (its undi-
rected version by) Erdés and Neumann-Lara, cf. [2] and also [3].

Let D be a directed graph. Its dichromatic number d(D) is the smallest integer & for which
the vertex set of D can be partitioned into k£ classes such that none of the classes contains
an oriented cycle. For an undirected graph G its dichromatic number d(G) is defined as
the maximum of the dichromatic numbers of all oriented versions of G. Here we allow
the orientation of each edge only in one direction; observe however that the dichromatic
number of a symmetrically directed graph (where each edge is present in both directions)
is equal to the chromatic number of the underlying undirected graph. It follows that
d(G) < x(G) and it is remarkable that it is not known whether the gap between the two
invariants can be arbitrarily large. More precisely, even that is not known whether there
exists some kg such that x(G) > ko would imply d(G) > 2, cf. [2].

Here we introduce the choice number analogon dch(G) of the undirected graph G and
call it the dichoice number of G.

Definition 3 Let G be an undirected graph. Its dichoice number dch(G) is the smallest
integer k satisfying the following conditions. For any assignment of k-element lists of
colors for the vertices and any orientation of the edges of G' there exists a coloring of the
vertices from their lists such that no color class contains an oriented cycle.

It is clear that dch(G) is upper bounded by ch(G). For any tree T we have dch(G) =1
so the dichoice number can even be smaller than the chromatic number. The main result
in this section is that we show the existence of bipartite graphs with arbitrarily large
dichoice number. Our construction is an extension of that of Erdés, Rubin, and Taylor
[4] by which they showed the existence of bipartite graphs with arbitrarily large choice
number.

Theorem 2 For any positive integer k there exists graph G with x(G) = 2 and dch(G) >
k.

Proof. Let m = 2k (2’“];1) and G be the complete bipartite graph K,,,,. We show that
this G satisfies the requirements in the statement, that is its dichoice number is larger
than k. To this end we give an orientation of its edges that has the property that we
can assign k-element lists to the vertices for which no proper ”dicoloring” exists from the
lists. Let the color classes of G be called A and B. To define the orientation partition



both A and B into (Qkk_l)parts of size 2k each. Within each such class label the vertices
with 1,...,2k. Now orient those edges of G from A to B that have different labels on
their two endpoints and orient the rest from B to A.

Observe that vertices having the same label induce complete bipartite graphs isomorphic

to K(2k-k—1)’(2k—1). For these subgraphs of G we use the idea of Erdos, Rubin, and Taylor.

k
Consider all possible k-element lists formed from a given set of 2k — 1 colors and assign

each of these lists to exactly two vertices of each of the above mentioned subgraphs (i.e.,
those induced by vertices of identical labels), one in A and one in B, respectively.

Consider any coloring from the above lists. We show that there exists some color class
containing an oriented cycle. By the argument in [4] for every i the graph induced by
vertices labelled 7 must contain an edge whose two endpoints are colored by the same
color. (This is because each k — 1 element subset of the 2k — 1 colors are missing at some
of these vertices thus at least k£ colors are used altogether both in A and B. But since
there are only 2k — 1 colors they cannot all be different, thus some point in A got the same
color as another one in B and they are adjacent.) Consider the edges with the same color
on their endpoints for every 7. This means 2k edges. Since we have only 2k —1 colors there
are two of these edges that have the same color on their altogether four endpoints. These
two edges are oriented from B to A since they both connect identically labelled vertices.
These labels are different for the two edges, so the two other edges present among the four
endpoints are oriented from A to B. This means that these vertices induce an oriented
4-cycle and the proof is complete. O
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