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1 IntrodutionColoring the verties of a graph so that no adjaent verties reeive the same olor givesrise to the notion of hromati number, one of the entral notions of graph theory. Similaronepts for oriented or direted graphs have also been de�ned. (We make the follow-ing usual distintion between oriented and direted graphs: while a direted graph mayhave edges in both diretions between the same pair of verties, this is not allowed foran oriented graph.) The hromati number of oriented graphs was introdued reentlyby Sopena [11℄. It is de�ned as follows. A legal oloring of an oriented graph is an as-signment of olors to the verties in suh a way that adjaent verties reeive di�erentolors and all edges between any two olor lasses go in the same diretion. The orientedhromati number �!(G) is the minimal number of olors that is enough to legally olorthe oriented graph G. (In other words, it is the size of the smallest tournament T forwhih a homomorphism from G to T is possible.)Another reently well investigated graph parameter is h(G), the hoie number of a(nundireted) graph G. (Cf. [1℄, [6℄.) Assign a list of k olors to eah vertex of G and �nd aproper oloring of its verties from the orresponding lists. The smallest k for whih thisis always possible (whatever the atual lists are) is the hoie number of G.In this paper we introdue the oriented hoie number of an oriented graph in the obviousway (see details in next setion) and the oriented hoie number oh(G) of an undiretedgraph as its minimum over all orientations of the edges of G. We will investigate therelation of oh(G) to other parameters of G. In partiular, we will show that the gapbetween oh(G) and h(G) an be arbitrarily large while oh(G) is both upper and lowerbounded by funtions of �(G), the minimal number of points needed to over all edges.Another notion of hromati number for direted graphs, the so-alled dihromati num-ber, is de�ned by Neumann-Lara, and the dihromati number of an undireted graphby Erd�os and Neumann-Lara, f. [9℄, [2℄, [3℄. In the last setion we investigate the listoloring version of this onept. (A third hromati number type invariant of diretedgraphs is given by Fahini and K�orner [5℄. This is of di�erent nature, however, and we donot investigate it in this paper.) The paper is organized as follows. The next setion isdevoted to the investigation of oh(G) and its relation to other graph parameters. Setion3 deals with misellaneous problems onneted to oh(G). In partiular we onsider thequestion how many transitive triangles are needed to over every tournament on n points.Setion 4 deals with the list oloring analogon of the dihromati number.2 The oriented hoie numberReall that a proper oloring of a graph G is an assignment of olors to its nodes suh thatno adjaent verties reeive the same olor. The minimum number of olors needed for aproper oloring is the hromati number �(G) of G. A graph G is said to be k-hoosable1



if for every possible assignment of lists of size k of olors to its verties there is a properoloring of G where every vertex is assigned one of the olors from its list. For an orientedgraph Sopena [11℄ de�nes a proper oloring to be an assignment of olors to the nodes insuh a way that in addition to the requirement that adjaent verties get di�erent olorswe also have the following. It is not allowed that we have two (oriented) edges in suh away that the tail of one of them is olored the same olor as the head of the other onewhile at the same time the tail of the seond reeives the same olor as the head of the�rst. Now an oriented graph F is said to be k-hoosable if for every possible assignment oflists of size k to its verties there is a proper oloring of F where every vertex is assignedone of the olors of its list. The minimum k for whih the oriented graph F is k-hoosablewill be denoted by h!(F ). Our main onern will be the following graph parameter.De�nition 1 The oriented hoie number oh(G) of the undireted graph G is the small-est k for whih there exists an orientation of the edges of G resulting in a k-hoosableoriented graph.In other words, oh(G) is the minimum of h!(Ĝ) for all possible oriented versions Ĝ ofG. At �rst glane it is not lear whether oh(G) is diferent from h(G). Indeed, if wewould de�ne the oriented hromati number of an undireted graph in a similar manner(i.e., as the minimum value of the oriented hromati number of the di�erent orientations),we would only get a more ompliated de�nition of the hromati number itself.First we give a simple example showing that oh(G) 6= h(G) in general. Consider thehordless yle C6 on six verties. Let the verties be v1; :::; v6 in their yli order (thatis fvi; vi+1g is an edge for every i where addition is intended modulo 6.) It is easy tosee that h(C6) = 2. We show oh(C6) > 2. First observe that if we do not orientthe edges in an alternating way then an oriented path of length 2 appears that alreadyhas oriented hromati number 3 and h!(G) is always at least as large as the orientedhromati number of the same (oriented) graph. (This an be seen by assigning identiallists to the verties.) So the only way h!(F ) ould be less than 3 for an orientedversion F of C6 is if every vertex of F is either a soure or a sink. There is only onesuh orientation up to isomorphism so w.l.o.g. we may assume that the edges of Fare (v1; v2); (v3; v2); (v3; v4); (v5; v4); (v5; v6); (v1; v6). Now assign the following two-elementlists to these verties:L(v1) = L(v4) = f1; 2g; L(v2) = L(v5) = f2; 3g; L(v3) = L(v6) = f1; 3gwhere L(x) stands for the list assigned to vertex x.Claim One annot �nd a proper oloring of the verties of the above oriented graph Ffrom the above lists.Proof. Indeed, if we olor v1 by 2 we are fored to olor v2 by 3, v3 by 1 and v4 by 2.Then oloring v5 by neither of 2 or 3 is allowed. This means we should start oloring v12



by 1 but then v6, v5 and v4 are fored to be olored by 3, 2 and 1, respetively, and nowv3 annot be olored properly. 2This example already shows that oh(G) = h(G) does not hold in general. In fat, muhmore is true.Theorem 1 For every positive integer k there is an integer g(k) suh that if a graph Gontains at least g(k) independent edges then oh(G) > k.Before proving Theorem 1 let us formulate the following immediateCorollary 1 For every positive integer k there exists a graph G suh that h(G) = 2 andoh(G) > k.Proof. Let G be the graph onsisting of g(k) independent edges, where g(k) is thefuntion in Theorem 1. This G has h(G) = 2 and its oriented hoie number is largerthan k by Theorem 1. 2We remark that if we want our graph to be onneted then a path of 2g(k) verties wouldalso do in plae of the graph in the proof of Corollary 1.To prove Theorem 1 we reall the following result from [8℄ (f. Theorem 10. on page 15)attributed to Erd�os-Moser, and Stearns.Theorem EMS: For every n there exists a funtion F (n) suh that every tournament onat least F (n) verties ontains a transitive subtournament on n verties. For the smallestpossible suh F (n) one has 2n�12 � F (n) � 2n.Proof of Theorem 1.Fix some positive integer k. Consider a set of F (2k) olors where F (n) is the funtion inthe above mentioned result about tournaments. The idea of the proof is that we will makeit impossible that any tournament de�ned on F (2k) olors as verties would be onsistentwith a legal oloring from our lists. Take a graph G with m = 2F (2k) independent edgesand �x any orientation of the graph. Let the independent edges be e1; : : : ; em. Considerall the possible 2F (2k) tournaments on the F (2k) olors, let them be alled T1; : : : ; Tm.Now we give the lists assigned to those verties of our graph that are the endpoints ofthe above mentioned independent edges. For giving the lists of the endpoints of ei lookat Ti and �nd a transitive subtournament of 2k points in it. Let the olors orrespondingto this subtournament be 1; : : : ; 2k indexed aording to their ordering in Ti. Thismeans that (j; r) 2 E(Ti) i� j < r. Denote the two endpoints of ei by vi1 and vi2and assume ei is oriented towards the latter. Assign lists L(vi1) = fk+1; k+2; : : : ; 2kgand L(vi2) = f1; 2; : : : ; kg to vi1 and vi2, respetively. Observe that any legal oloringof the endpoints of ei will make it impossible that the oloring is onsistent with (ahomomorphism onto) Ti. Sine every possible tournament on our olors is represented bysome Ti this proves that no valid oloring exists. Thus oh(G) > k. 23



Remark: The proof above does not really use that the Ti's ontain large transitive sub-tournaments, only a bipartite subgraph of these is needed. Thus some smaller numberreplaing F (2k) ould be used in the argument.Using the monotoniity of oh(G) (i.e., the fat that adding new edges to a graph oh(G)annot derease) Theorem 1 shows that oh(G) is linked to the mathing number �(G)of G in the sense that a lower bound on oh(G) an be formulated in terms of �(G). Thefollowing observation shows that these two quantities are related, indeed, in the sensethat an upper bound on oh(G) an also be given in terms of �(G). Let �(G) denote theminimum number of verties overing all edges of G. It is obvious that 2�(G) � �(G)sine the endpoints of edges in a maximum size mathing over every edge. Thus thefollowing observation gives oh(G) � 2�(G) + 1.Proposition 1 For every graph G one has oh(G) � �(G) + 1.Proof. Consider G and a minimal set T of points overing all the edges. Orient all edgesbetween a point in T and a point in V (G)� T towards T and orient the rest of the edgesarbitrarily. If we assign lists of �(G) + 1 olors to every node then we an olor everyelement of T �rst then delete the already used olors from every list in V (G) � T andolor the elements of V (G)�T from the remaining lists. Sine jT j = �(G) (so at least oneelement remained on every list after oloring T ) and V (G)� T must be an independentset (otherwise some edge would not be overed) this is ertainly possible thus proving thestatement. 2Remark: There are ases when oh(G) = �(G) + 1 indeed. This happens for ompletegraphs and also for omplete bipartite graphs with olor lasses of size t = �(G) and ttwhere already h(G) = �(G) + 1. The latter an be seen by assigning disjoint t-elementlists to the verties of the smaller olor lass and all their transversals as lists to theverties in the larger olor lass.Theorem 1 is formulated in suh a way that the existene of g(k) is emphasized. It shouldbe lear, however, that g(k) is a well-de�ned funtion, namely, its value is the least integerm for whih we have oh(G) = k if G = mK2, i.e., the union of m independent edges.The proof of Theorem 1 and the statement of Proposition 1 give bounds on g(k) but todetermine the atual value seems to be an intriguing problem. We say a bit more aboutit later.3 Covering tournamentsLet C(k) mean the lass of graphs G with oh(G) = k and let its superlass C(k; r) bede�ned as follows. A graph G belongs to C(k; r) if there exists an orientation of G suhthat for any assignment of k-element lists of olors out of not more than r olors a properoriented oloring from the lists is possible. 4



Clearly C(k; r) � C(k; r + 1) and C(k) = \1r=kC(k; r). It is also lear that C(k; k) isidential to the lass of k-hromati graphs.In the following we take a loser look on C(2). A omplete haraterization of graphsbelonging to this lass seems rather tedious therefore we do not intend to give a ompleteharaterization, but some more interesting remarks instead. It is lear that any graph inC(2) should be bipartite, in fat, even its hoie number should be 2. A haraterizationof 2-hoosable graphs is given by Erd}os, Rubin, and Taylor [4℄ as follows. They denoteby �k;l;m the graph onsisting of three vertex disjoint paths of length k; l;m, respetively,between the same two distinguished endpoints. Their theorem states that deleting sues-sively all degree one points of a 2-hoosable graph the remaining part of eah omponentmust be (at most) a �2;2;2m, where m is a positive integer.If a graph G has oh(G) = 2 than it must be ahieved by an orientation ontainingno two-edge oriented path. This means that for some 2-oloring of suh a (neessarily2-hromati) graph all edges are oriented from one olor lass to the other. Thus for abipartite graph with a given bipartition there is essentially only one orientation to beinvestigated when we want to deide whether its oriented hoie number is 2 or not.We will all this orientation the alternating orientation. (Cf. the example of C6 in theprevious setion.)We believe that C(2) = C(2; 4). (Note that it is not lear whether there exists for every ksome �nite rk suh that C(k) = C(k; rk).) One way to see the fat that C(2) 6= C(2; 3) isto realize that any graph onsisting of independent edges only is in C(2; 3) but, for manyedges, not in C(2; 4). We prove this next.Proposition 2 Let F be a graph onsisting of k independent edges. Then F 2 C(2; 3).On the other hand, there exists k0 for whih k � k0 implies F =2 C(2; 4).Proof. We prove the �rst statement �rst. Assume we have three olors available, allthem a; b; . Consider the yli tournament K given by a! b! ! a on these olors.Now take the edges of F one by one. (Notie that the orientation is onsidered already�xed when the lists are assigned to the verties.) If an edge has idential lists on its twoendpoints then the two olors ouring in these lists an be put on the verties in suh away that their order given by the orientation of the edge is onsistent with K. If, on theother hand, the two lists are di�erent then put a olor on one of the endpoints that is notpresent in the other list. Now sine K is yli, one of the olors in the other list an beused to olor the other node properly. Sine all edges of F an be olored this way, the�rst statement is proven.Now we prove the seond statement. Let T0 denote the tournament on the available olorsonsistent with the proper oloring we are to �nd. Observe that the endpoints of an edgewith list fa; bg at the tail and list fb; g at the head annot be properly olored if andonly if the indued subtournament of T0 on olors a; b;  is a transitive triangle with being its soure and a its sink. This means that an edge of the above type ensures that T0annot ontain this transitive triangle. Sine any tournament on four points ontains some5



transitive triangle, this way we an exlude every tournament from being a andidate forT0 if we have enough edges to exlude at least one transitive triangle for eah of them.This proves the seond statement. 2The k0 in the above theorem need not be very large, in fat its optimal value is at most12. We will explain this in what follows. First we introdue a new notion inspired by theforegoing.De�nition 2 Let T be a tournament on n labelled verties. We say that a transitivetriangle H overs T if it is on three verties of T and those three verties indue H in T .Remark Note that De�nition 2 requires more that H be a subtournament. It is importantthat the verties of H are labelled and it oures in T on the triplet of verties labelledsame.It seems to be a question of independent interest what is the minimum number of transitivetriangles that over every possible tournament on n points. More preisely we mean thefollowing. Let Q be a set of transitive triangles on the verties 1; 2; : : : ; n suh that everypossible tournament on f1; : : : ; ng ontains at least one element of Q. Let q(n) denotethe minimum possible size of suh a set Q. Our question is the value of q(n). It is learthat q(n) is not meaningful (or equals to in�nity) for n = 3 sine there are tournamentson three points not ontaining a transitive triangle. But q(n) is well de�ned for all n � 4.Two easy observations are as follows.1) q(n) � 9 for all n � 4.Reason: The number of n-vertex tournaments is exatly eight times the number of thoseany transitive triangle an over. On the other hand, the two sets of tournaments overedby two di�erent transitive triangles is disjoint i� the two triangles are on the same threeverties. Sine the ars in a given triple of verties an be oriented ylially one annotover all n-point tournaments by using triangles on only one triple of the points.2) q(n+ 1) � q(n) for every n.Reason: If we over all tournaments on f1; : : : ; ng then all tournaments on f1; : : : ; n+1gare also overed.It is somewhat frustrating that we do not know the exat value of q(n) for every n. Webeleive it is 12 for all n � 4 but ould not prove it for n > 5.Proposition 3 q(4) = q(5) = 12.Proof. By the seond observation above it is enough to prove q(4) � 12 and q(5) � 12:q(4) � 12: Consider all transitive triangles on V4 = f1; 2; 3; 4g in whih 1 appears as asoure or a sink. The number of suh triangles is 12. Sine either the outdegree or theindegree of 1 is at least two in any tournament on V4 this system of transitive trianglesovers all possible tournaments on V4. 6



q(5) � 12: Consider those tournaments on V5 = f1; 2; 3; 4; 5g that are the union oftwo oriented Hamiltonian yles. The number of suh tournaments equals the numberof yli permutations of 1; : : : ; 5, that is 24. One an easily hek that any transitivetriangle appears in at most (in fat, exatly) two of the above tournaments, thus at least12 transitive triangles are needed to over all of them. 2Proposition 3 shows that the k0 of Proposition 2 need not be more than 12. (It doesnot neessarily give the optimum beause of the possibility of edges with non-interseting2-element lists at their endpoints. More ompliated tournament overing questions anbe de�ned if we want to give an equivalent translation of the problem of determiningthe funtion g(k) of the previous setion. These problems, however seem to be moreompliated than relevant therefore we do not disuss them.)Let us onsider the lass of C(2; 3) one more. We sketh a way to haraterize thislass. We will all an edge an edge of type (xy; zt) if its tail is assigned the list of olorsfx; yg while its head is assigned the list of olors fz; tg. Considering C(2; 3) we have 3olors available, let us all them a; b and . Let G be a bipartite graph not in C(2; 3).Consider (one of) its alternating orientation(s) and an assignment of two element listsof the available olors to its verties suh that no proper oloring exists from these lists.(Suh an assignment should exist if G =2 C(2; 3).) In the following we refer to our orientedgraph with this assignment of olor lists simply as G (or sometimes the assigned G toavoid onfusion).Claim: G must have an edge of eah of the following six types:(ab; a); (a; ab); (ab; b); (b; ab); (a; b); (b; a).Proof. By our assumptions there is no tournament on U = fa; b; g to whih G ould behomomorphially mapped (in a way onsistent also with the list assignment). Considera transitive triangle on U let x be its soure and z its sink and y its middle point wherex; y; z is some permutation of the elements of U . One an easily hek that the onlyobstale of a homomorpism to this tournament an be an edge of type (yz; xy). Thisapplies to all the six possible transitive triangles on U thus the six edges above must bepresent. 2Observe that one we have a bipartite graph with alternating orientation, then eah ofits points is either a soure or a sink. Thus the Claim above implies that the assignedG must have at least six points: a soure and a sink for eah of the three possible listsab; a; b. In fat, we have the six edges given in the Claim and eah of these six typepoints appear as an endpoint of two of them. These same type points an be identi�ed inan arbitrary manner and then the resulting six edge graph investigated whether or not itis still possible to �nd a legal homomorphism of it onto a ylially oriented triangle onthe three olors. If, for example, we make all the the possible identi�ations we arrive toC6, our �rst example with oh(G) > h(G). If fewer identi�ations are made then we mayneed additional edges to exlude homomorphisms to the yli triangular tournaments of3 olors. A three edge path with edges of type (xy; yz); (xz; yz); (xz; xy) exludes a yli7
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4Figure 1.triangle and exhanging diretions the other yli triangle an be exluded. Thus thetwo paths of length three into whih the C6 above an be broken exlude all three vertextournaments on the olors. If a yli triangle is not exluded by suh a three edge pathit an also be exluded by two onneting edges of type (xy; xz) and (xy; xy). Thus herewe need some additional edge (to the previous six ones) whih will have the same list onboth of its endpoints. To exlude both yli triangles we either need two suh two orthree edge on�gurations or two an be glued together at a degree three point. (Thuswe an exlude both yli triangles on a three edge star, for example.) This means thatwe have six edges to exlude the six transitive triangles and at most two additional edges(in appropriate loations) are needed to exlude the two yli triangles. Thus deidingwhether a graph is in C(2; 3) needs only to deide whether ertain on�garations of atmost eight edges appear in the graph or not. This is easy to hek in polynomial time,say.Finally in this setion we give an example of a onneted graph that belongs to C(2; 3)but not to C(2; 4).Example Let T be the tree de�ned by V (T ) = fa; b; ; u1; : : : um1 ; v1; : : : vm2g with mi � 3and E(T ) = ffa; bg; fb; g; fa; uig; f; vjgg where i = 1; : : : ; m1; j = 1; : : : ; m2. (In short:T is the union of two stars having a non-entral vertex in ommon.) See Figure 1.Consider the alternating orientation of T determined by (a; b) being an edge. We assignthe following 2-element lists of olors x; y; z; t to the verties. L(a) = fx; yg; L(b) =fx; zg; L() = fz; tg,L(u1) = fx; tg; L(u2) = fy; zg; L(u3) = fy; tg,L(v1) = fx; tg; L(v2) =fy; zg; L(v3) = fy; tg. Simple ase heking shows that no proper oriented oloring fromthese lists is possible. On the other hand, if we have only three olors, than T an alwaysbe olored properly sine only a and  are soures of the onsidered oriented version of Tand we have seen that a graph not in C(2; 3) must have at least three soures.We remark that there are in�nitely many graphs in C(2) having arbitrarily many souresand sinks in their alternating orientations. Suh an in�nite family of graphs an beonstruted by putting arbitrarily large stars on two verties of a K2;3 that are not in thesame olor lass. The reason of these graphs belonging to C(2) is this. The given graphs8



have hoie number 2 and one an easily hek that any oloring that is proper as anordinary oloring will also be legal as an oriented oloring for these graphs.4 Dihoie numberIn the previous setions we investigated the hoie number analogon of the oriented hro-mati number de�ned in [11℄. In this setion we do similarly with a di�erent hromatinumber type invariant of a direted graph de�ned by Neumann-Lara [9℄ and (its undi-reted version by) Erd}os and Neumann-Lara, f. [2℄ and also [3℄.LetD be a direted graph. Its dihromati number d(D) is the smallest integer k for whihthe vertex set of D an be partitioned into k lasses suh that none of the lasses ontainsan oriented yle. For an undireted graph G its dihromati number d(G) is de�ned asthe maximum of the dihromati numbers of all oriented versions of G. Here we allowthe orientation of eah edge only in one diretion; observe however that the dihromatinumber of a symmetrially direted graph (where eah edge is present in both diretions)is equal to the hromati number of the underlying undireted graph. It follows thatd(G) � �(G) and it is remarkable that it is not known whether the gap between the twoinvariants an be arbitrarily large. More preisely, even that is not known whether thereexists some k0 suh that �(G) > k0 would imply d(G) > 2, f. [2℄.Here we introdue the hoie number analogon dh(G) of the undireted graph G andall it the dihoie number of G.De�nition 3 Let G be an undireted graph. Its dihoie number dh(G) is the smallestinteger k satisfying the following onditions. For any assignment of k-element lists ofolors for the verties and any orientation of the edges of G there exists a oloring of theverties from their lists suh that no olor lass ontains an oriented yle.It is lear that dh(G) is upper bounded by h(G). For any tree T we have dh(G) = 1so the dihoie number an even be smaller than the hromati number. The main resultin this setion is that we show the existene of bipartite graphs with arbitrarily largedihoie number. Our onstrution is an extension of that of Erd}os, Rubin, and Taylor[4℄ by whih they showed the existene of bipartite graphs with arbitrarily large hoienumber.Theorem 2 For any positive integer k there exists graph G with �(G) = 2 and dh(G) >k.Proof. Let m = 2k�2k�1k � and G be the omplete bipartite graph Km;m. We show thatthis G satis�es the requirements in the statement, that is its dihoie number is largerthan k. To this end we give an orientation of its edges that has the property that wean assign k-element lists to the verties for whih no proper "dioloring" exists from thelists. Let the olor lasses of G be alled A and B. To de�ne the orientation partition9



both A and B into �2k�1k �parts of size 2k eah. Within eah suh lass label the vertieswith 1; : : : ; 2k. Now orient those edges of G from A to B that have di�erent labels ontheir two endpoints and orient the rest from B to A.Observe that verties having the same label indue omplete bipartite graphs isomorphito K(2k�1k );(2k�1k ). For these subgraphs of G we use the idea of Erd}os, Rubin, and Taylor.Consider all possible k-element lists formed from a given set of 2k � 1 olors and assigneah of these lists to exatly two verties of eah of the above mentioned subgraphs (i.e.,those indued by verties of idential labels), one in A and one in B, respetively.Consider any oloring from the above lists. We show that there exists some olor lassontaining an oriented yle. By the argument in [4℄ for every i the graph indued byverties labelled i must ontain an edge whose two endpoints are olored by the sameolor. (This is beause eah k� 1 element subset of the 2k� 1 olors are missing at someof these verties thus at least k olors are used altogether both in A and B. But sinethere are only 2k�1 olors they annot all be di�erent, thus some point in A got the sameolor as another one in B and they are adjaent.) Consider the edges with the same oloron their endpoints for every i. This means 2k edges. Sine we have only 2k�1 olors thereare two of these edges that have the same olor on their altogether four endpoints. Thesetwo edges are oriented from B to A sine they both onnet identially labelled verties.These labels are di�erent for the two edges, so the two other edges present among the fourendpoints are oriented from A to B. This means that these verties indue an oriented4-yle and the proof is omplete. 2Referenes[1℄ N. Alon, Restrited olorings of graphs, in: "Surveys in Combinatoris, 1993, Pro-eedings, 14th British Combinatorial Conferene"(K. Walker, ed.), 1{33, LondonMathematial Soiety Leture Notes, Vol. 187,Cambridge Univ. Press, Cambridge,UK, 1993.[2℄ P. Erd}os, Problems and results in number theory and graph theory, Congress. Numer.27 (1979), 3{21.[3℄ P. Erd}os, J. Gimbel, D. Kratsh, Some extremal results in ohromati and dihro-mati theory, J. Graph Theory 15 (1991) 579{585.[4℄ P. Erd}os, A. L. Rubin, H. Taylor, Choosability in graphs, Congr. Numer. 26 (1980),122{157.[5℄ E. Fahini, J. K�orner, Chromati number, apaity and perfetness of diretedgraphs, submitted to Graphs and Combinatoris.[6℄ T. R. Jensen, B. Toft, Graph Coloring Problems, Wiley, New York, 1995.10
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