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1 IntrodutionGraph entropy H(G;P ) is an information{theoreti funtional of a graph G with a proba-bility distribution P on its vertex set, introdued in [6℄. Before giving a formal de�nition,we would like to mention briey those properties of this funtional whih motivate ourpresent paper.A ruial property of H(G;P ) is its sub{additivity with respet to graph union [8℄; ifF and G are two graphs on the same vertex set V and F [ G denotes the graph on Vwith edge set E(F [G) = E(F ) [ E(G), then for every P we haveH(F [G;P ) � H(F; P ) +H(G;P ): (1)If F and G are omplementary graphs and thus F [ G is omplete, then equality forevery P above is equivalent to F and G being perfet, (f. [2℄.) This makes one believethat equality in this kind of inequalities does express relevant strutural properties ofgraph pairs. This onvition obtains further support from what happens in the ase oftwo arbitrary edge{disjoint graphs F and G sharing the same vertex set V . In fat, inthis latter ase we have equality in (1) for every distribution P on V if and only if forall adjaent pairs of edges fx; yg 2 E(F ) and fy; zg 2 E(G) their \private" endpoints xand z are adjaent in F [G, and further F (and thus G) indue perfet graphs on everyomplete subgraph of their union, ([11℄.) It is therefore interesting to ontinue on thisroad and try to generalize the above results to the ase of graphs with some ommonedges. This is what we are going to do in this paper for a new ase.Our present situation is, in a ertain sense, opposite to the one treated in [11℄; twographs F and G whose union is omplete. Hene the omplements of these graphs areedge{disjoint and thus if both F and G were perfet, the aforementioned results (1) and[2℄ would immediately yieldH(F; P ) +H(G;P ) � H(F \G;P ) +H(P ):(Here (F \ G) stands for the graph with edge set E(F \ G) = E(F ) \ E(G) and vertexset V .) However, this omplementation does not work in the remaining ases; in fat, thevery inequality it would give fails to be true in general. Therefore, to treat our presentproblem some new idea will be needed.Before giving the formal de�nition of graph entropy we formulate our main results.Let F and G be two graphs on the same vertex set V with possibly interseting edge sets.We all F and G a submodular pair if for every probability distribution P on V we haveH(F [G;P ) +H(F \G;P ) � H(F; P ) +H(G;P ): (2)Likewise, we all F and G a supermodular pair if the sense of the last inequality isreversed.Our main onern is to �nd onditions for F and G to make the graph ouple fF;Ggsubmodular (supermodular) under the additional ondition that F [ G = KjV j, i.e., the1



omplete graph on jV j verties. It follows from the already mentioned result in [2℄ thatif F \ G is empty and F [ G is the omplete graph on V then (strit) submodularity isequivalent to F (and thus G) being imperfet. (A graph is alled perfet if for eah ofits indued subgraphs G0 its hromati number is equal to its lique number. A graphis imperfet if it is not perfet.) This implies that F and G are ertainly not a super-modular pair if on some lique of their union they are edge{disjoint and indue imperfetgraphs. (From the de�nition we will give this an be seen by onentrating a probabilitydistribution on this lique.)On the other hand it takes an easy alulation to show that two di�erent paths onsist-ing of two edges on the same three-element vertex set does not form a submodular pair.Thus we have two simple onditions that ensure the existene of probability distributionswith strit inequalities in one or the other diretion. Our main result states that atuallythere are no more onditions. Formally it is given by the following two statements.Theorem 1 Two graphs F and G on the same vertex set V with F [ G = KjV j form asubmodular pair if and only if there is no three{element subset of jV j on whih eah ofF �G, G� F and F \G has exatly one edge.Theorem 2 The graphs F and G on the same vertex set jV j with F [G = KjV j form asupermodular pair if and only if there is no subset U � V on whih F and G are imperfetand edge{disjoint.These two results immediately yield a full haraterization of modularity. The graphsF and G on the same vertex set form a modular pair if they are both submodular andsupermodular. We haveCorollary 1 The graphs F and G on the same vertex set V with F [ G = KjV j form amodular pair if and only if the following two onditions simultaneously hold:(i) there is no three{element subset of jV j on whih eah of F �G, G� F and F \Ghave exatly one edge,(ii) there is no subset U � V on whih F and G are imperfet and edge{disjoint. 2On the other hand, it must be lear that there are graph pairs that are neither sub-modular nor supermodular.In this paper we limit ourselves to prove these results representing a new step in theanalysis of the behavior of the sum of the entropies of two graphs, �rst raised in the paper[7℄ joint with G. Longo, and solved for graphs without ommon edges in a series of paperswritten in ollaboration with K. Marton [9℄ (if one of the graphs is bipartite), with I.Csisz�ar, L. Lov�asz and K. Marton [2℄ (in the aforementioned ase of two edge{disjointgraphs whose union is the omplete graph on their ommon vertex set) and with Zs. Tuza[11℄ (for arbitrary edge{disjoint graph pairs).2



These problems seem to be interesting even for yet another reason, for the sub{additivity of graph entropy is at the ore of a bounding tehnique in ombinatoris andomputer siene that has been suesfully applied by various authors, f., e. g., Kahn andKim [4℄ and Radhakrishnan [12℄. For more appliations and details we refer to the surveyartile [13℄. When not stated otherwise, we adopt the terminology of [1℄. In partiular,exp's and log's are to the base 2.2 Graph entropyGraph entropy is formally de�ned asH(G;P ) = minX2Y 2S(G); PX=P I(X ^ Y );where S(G) denotes the family of the stable sets of verties in G. (A subset of the vertexset is alled stable if it does not ontain any edge.) For the basis in information theorythe reader is referred to the book [1℄. We reall that the mutual information I(X ^ Y ) ofthe random variables X and Y equals H(X) +H(Y )�H(X; Y ); where e. g. H(X; Y ) isthe entropy of the random variable (X; Y ). (Notie that the entropy of a random variableis the entropy of its distribution.) It is immediate from this de�nition that if K is aomplete graph and P an arbitrary distribution on its vertex set, then H(K;P ) = H(P ):Likewise, the entropy of a graph without edges is 0.This de�nition of graph entropy has the merit of being short but it is not partiularlyintuitive (for those who are not familiar with information theory). In a later part of thispaper, based on a more ompliated but purely ombinatorial de�nition, we shall developa ombinatorial intuition for this quantity. For the time being we just antiipate thatentropy is a kind of frational hromati number.If E(F ) \ E(G) 6= ;, we annot have equality in 1 for a P onentrated on the twoendpoints of some ommon edge. This raises the question of whether, introduing asa orreting term the entropy of the intersetion graph F \ G, submodularity of graphentropy is true for two graphs with non-disjoint edge sets. In general the answer is negativeas shown by the already stated theorems. Their main ontent is that more an be said.3 SubmodularityIn this setion we shall prove Theorem 1. We begin by realling two earlier results neededin the proof. The �rst of these is a theorem of Gallai following from his DeompositionTheorem in [3℄ (f. also [5℄ and [11℄.)Theorem G [3℄ Let the graphs H1; H2; : : : ; Hk be edge-disjoint with their union being theomplete graph on their ommon vertex set. If for no 3 verties does the resulting trianglehave its three edges in three di�erent Hi's then at most two of the Hi's are at the sametime onneted and spanning the whole vertex set.3



The seond result we need establishes a kind of additivity of graph entropy ([11℄),alled the Substitution Lemma, f. also [13℄. To state the lemma, we need the onept ofgraph substitution. Let A and B be two graphs and onsider any v 2 V (A). SubstitutingB for v means to delete v from A and join every vertex of a opy of B to exatly thoseverties of A whih were adjaent to v in A. The resulting graph is denoted by Av B.Substitution is also extended to distributions as follows. Let P be a distribution on V (A)and Q a distribution on V (B). Then a distribution Pv Q is obtained on V (Av B) byputting Pv Q(x) = P (x) if x 2 V (A)� fvg and Pv Q(x) = P (v)Q(x) if x 2 V (B). Thestatement we need is the following:Substitution Lemma [11℄ Let A and B be two vertex{disjoint graphs with probabilitydistributions P and Q on their respetive vertex sets and v be any vertex of A. ThenH(Av B; Pv Q) = H(A; P ) + P (v)H(B;Q):Now we are ready to prove our �rst result.Proof of Theorem 1.Let us all a multiolored triangle (MCT) a on�guration of three verties of V onwhih eah of F �G, G� F and F \G have exatly one edge. If F and G indue suha on�guration, then de�ning P to be the uniform distribution on its 3 verties an easyalulation shows thatH(F [G;P ) +H(F \G;P ) > H(F; P ) +H(G;P ):We prove the other diretion by indution. The statement is trivially true if the vertexset V = V (F ) = V (G) has less than 3 elements and it is also easy to hek for jV j = 3.In fat, in the latter ase at least one of the three graphs F \G, F �G and G�F has noedges. If it is the �rst one, then F and G are edge{disjoint and the statement follows bythe sub{additivity of graph entropy. In any other ase one of E(F ) and E(G) ontainsthe other and we have equality in (2).In order to make the indution work, we have to deal separately with the ase whenone of the graphs F \G, F �G, G�F has no edges (i.e., it is an empty graph). This asean be settled analogously to that of jV j = 3: In fat, if F \ G is the empty graph, thismeans that F and G are edge{disjoint and we are done by the sub{additivity of graphentropy (1). In the other ases one of F and G ontains the other and we have equalityin our inequality needed for submodularity.Assume the statement is true for jV j < n. Let F and G be two graphs on V withjV j = n suh that F [ G = Kn and with no MCT (i. e. no triangle having an edge ineah of F � G, G � F , and F \ G.) Then by Gallai's Theorem G above at least one ofT1 = F � G, T2 = G � F and T3 = F \ G fails to be onneted on V . Let Ti be oneof the disonneted graphs among these three and let U � V be the vertex set of some�xed non{empty onneted omponent of Ti. (In ase there is none, Ti is the empty graph4



and we are already done.) Note that jU j < n; and by the foregoing we an also assumejU j > 1:Let v be an arbitrary vertex in V � U . Observe that either all edges between v andthe verties of U belong to Ti+1 or they all belong to Ti+2 (with addition in the indiesintended modulo 3), otherwise an MCT would our. This means that in all of the graphsF , G, F \ G, and (trivially) F [ G the set U forms a so-alled autonomous set (whihmeans that every vertex outside U is either onneted to all or none of the verties in U).Let X denote any of the graphs F , G, F \G, F [G. Let XU be the graph uniquely de�nedby the property of induing the same graph as X on U but with all the points in V � Ubeing isolated. Furthermore, let X �U denote the graph we obtain from X if we replae (byan \inverse substitution") the set U by a single vertex u, i.e., V (X) is (V �U)[ fug andu is onneted to exatly those points of V � U whih were adjaent to the verties ofU in X. Observe that X �U annot ontain any MCT. We set P (u) = P (U) = �x2UP (x)and with a slight abuse of notation refer to the distribution obtained on V (X �U) in thismanner also as P . Now by the Substitution Lemma we haveH(X;P ) = H(X �U ; P ) +H(XU ; P ):Notie that deleting the edges of XU from X the entropy of the resulting graph is equalto the entropy H(X �U ; P ). (This also follows from the Substitution Lemma and the fatthat the entropy of a graph without edges is zero. Besides, we have used the fat thatH(XU ; P ) remains the same if we suppress in it the isolated points of V �X.) But sineboth U and V (X �U) are stritly smaller than n, (in the ase of the latter this follows fromjU j > 1), we will be able to use the indution hypothesis on these sets. By adding theorresponding inequalities we are basially done, still let us formalize what we just said.Writing F , G, F \ G, and F [ G in plae of X and using the indution hypothesis wehave H(F; P ) +H(G;P ) = (H(F �U ; P ) +H(FU ; P )) + (H(G �U ; P ) +H(GU ; P )) == (H(F �U ; P ) +H(G �U ; P )) + (H(FU ; P ) +H(GU ; P )) �� (H((F [G) �U ; P ) +H((F \G) �U ; P ))++(H((F [G)U ; P ) +H((F \G)U ; P )) == H(F [G;P ) +H(F \G;P )and this proves the theorem. 24 SupermodularityIn this setion we prove Theorem 2. The proof we present here is due to Kati Marton whosuggested the following short proof to replae our original onsiderably longer argument.5



Later in the paper we also give our original proof for it uses the information theoretionepts less extensively. However, the brevity of Kati Marton's proof onvined us thatthis proof should be given �rst.Proof of Theorem 2.The \only if" part of the statement is an immediate onsequene of the already men-tioned information{theoreti haraterization of perfet graphs in [2℄; if there is a subsetU � V on whih F and G indue two edge{disjoint imperfet graphs the union of whihis omplete, then by Theorem 2 in [2℄ there is a distribution P onentrated on U forwhih H(F; P ) +H(G;P ) > H(F [G;P ):Sine F \ G has no edges in U , the right{hand side is further equal to H(F [ G;P ) +H(F \G;P ) and thus F and G fail to be a supermodular pair.To see the "if" part, let F and G be two graphs satisfying the onditions in the statementand let again S(A) denote the family of all stable sets of graph A. Let X and Z berandom variables taking their values in V and in S(F \G), respetively, suh that X 2 Zwith probability 1 and H(F \G;P ) = I(X ^ Z):Fix a value U of Z. Then U is a stable set of F \ G. Let FU and GU denote thesubgraphs indued on U in F and G, respetively, and PU the onditional distribution ofX given Z = U . Sine FU and GU are edge disjoint, they are perfet. Therefore,H(XjZ = U) = H(PU) = H(GU ; PU) +H(FU ; PU):(Here H(XjZ = U) is the entropy of the onditional distribution of X given thatZ = U . H(XjZ) of the next formula is the avarage of these values with respet to thedistribution of Z, alled the onditional entropy of X (with respet to Z.) For furtherdetails on these notions the reader is referred again to [1℄.)Averaging with respet to the distribution of Z givesH(XjZ) =XU PrfZ = UgH(GU ; PU) +XU PrfZ = UgH(FU ; PU):Adding 2I(X ^ Z) to both sides we obtainXU PrfZ = UgH(GU ; PU) + I(X ^ Z)++XU PrfZ = UgH(FU ; PU) + I(X ^ Z) =H(XjZ) + 2I(X ^ Z) = H(P ) + I(X ^ Z) == H(P ) +H(F \G;P ) = H(F [G;P ) +H(F \G;P ):6



Thus it is enough to show thatXU PrfZ = UgH(GU ; PU) + I(X ^ Z) � H(G;P ):This will imply the similar inequality for F and thus the statement.Let Y 2 S(G) be a random variable suh that the joint distribution of (X; Y; Z)satis�es the onditions that X 2 Y � Z with probability 1 and for every value U of ZH(GU ; PU) = I(X ^ Y jZ = U):(These onditions de�ne the onditional distribution of Y given X and Z, and thus thejoint distribution of (X;Z; Y ) also.) We have thenXU PrfZ = UgH(GU ; PU) + I(X ^ Z) = I(X ^ Y jZ) + I(X ^ Z) == I(X ^ Y Z) � I(X ^ Y ) � H(G;P ):Thus the proof is ompleted. 25 Graph entropy made simpleMuh of the remaining part of our paper ontains a seond proof of Theorem 2, the proofwe originally had. To present it we have to make some preparations.For any natural n the n'th (o{normal or OR) power of G is the graph with vertex setV n in whih two verties, x = x1x2 : : : xn and y = y1y2 : : : yn are adjaent if for at leastone i 2 f1; 2; : : : ; ng the relation fxi; yig 2 E(G) holds. Given an arbitrary probabilitydistribution P on the vertex set V of G, let T nP denote the (possibly empty) set of allsequenes x 2 V n for whihjfi; xi = a ; x = x1x2 : : : xngj = nP (a) for every a 2 V:Further, let GnP denote the graph the set T nP indues in Gn: As usual, we denote by �(G)the maximum ardinality of a stable set and by �(G) the hromati number of the graphG. Graph entropy an be rede�ned in terms of the above onepts, following the approahof [6℄.We shall all a distribution rational if all its probabilities are rational numbers. Letk = k(P ) be the smallest natural number for whih all the numbers kP (x), x 2 V areintegers. It is well{known (f. Lemma 1.2.3 in [1℄) thatlimn!1 1kn log jT knP j = H(P ): (3)7



Likewise, it is not hard to see (and it is impliit in [6℄) that for any simple graph withvertex set V (G) = V one has limn!1 1kn log�(GknP ) = H(G;P ); (4)and, de�ning S(G;P ) = H(P )�H(G;P ) alsolimn!1 1kn log�(GknP ) = S(G;P ): (5)More preisely, there exists a sequene of onstants rn = rn(jV j) with rn ! 0 for whih���� 1kn log�(GknP )� S(G;P )���� � rn;and similarly in the preeding inequalities. The relation (4) ould be used to give analternative de�nition of graph entropy. It de�nes the entropy of a graph for rationaldistributions whene the general ase would follow by ontinuity. (The original de�nitionin [6℄ is in this spirit.) It easily follows from the above thatmaxH(G;P ) = log��(G);where the maximum is for all the probability distributions P on the vertex set of G andwhere ��(G) stands for the frational hromati number of the graph G. This fat is notneeded in the sequel, and we quote it only to give more intuitive sense to the onept ofgraph entropy.6 A more ombinatorial proofSeond proof of Theorem 2.We reprove only the more diÆult "if" part of the statement. To this end, reall thatS(G;P ) = H(P ) � H(G;P ): Further, one has to remember that sine the union graphF [ G is omplete, we have S(F [ G;P ) = 0: Our statement is therefore equivalent tosaying that under the onditions of the theoremS(F \G;P ) � S(F; P ) + S(G;P ): (6)Clearly, it is suÆient to prove this statement for rational probability distributions sinethe rest follows by ontinuity. As an easy onsequene of (5) one proves (by a simple\time sharing" argument) that for �xed G the quantity S(G;P ) is a ap{onvex funtionof the distribution P: (The name \time sharing" is standard in information theory forthe kind of argument we need here. What we do to get the proof of ap{onvexity is toonsider at �rst only onvex ombinations of distributions with rational oeÆients, sinethe rest will follow by ontinuity. If we want to prove that�S(G;P1) + (1� �)S(G;P2) � S(G; �P1 + (1� �)P2)8



for rational distributions P1 and P2 on V (G) and an arbitrary rational number � 2 [0; 1℄; itis suÆient to notie that the Cartesian produt of any stable set of maximum ardinalityof the graph indued by G�n on T �nP1 with any stable set of maximum ardinality of thegraph indued by G(1��)n on T (1��)nP2 de�nes a stable set in the graph indued by Gn onT nP ; where P = �P1 + (1� �)P2: We omit the details needed to guarantee the integralityof various exponents and similar tehnialities.)Fix some n and let S = S(n) � V n be a maximal stable set of (F \ G)n for whihS \ T nP ahieves �((F \G)nP ): Clearly, S = Qni=1 Si for some stable subsets Si � V of thegraph F \ G: Sine the order of the sets in this Cartesian produt is indi�erent we ansuppose that S = YU2Y(F\G)UnQn(U) (7)where Y(F \G) is again the family of all the maximal stable sets of the graph F \G andQn is de�ned by Qn(U) = jfi;Si = Ugjn : (8)Given an arbitrary sequene x 2 S \ T nP de�ne for every a 2 VPxjU(a) = jfi; xi = a; Si = Ugjjfi;Si = Ugj (9)and let the random variables (RV in the sequel) X and Z have the joint distributionPrfX = a; Z = Ug = Qn(U)PxjU(a) 8a 2 V; 8U 2 Y(F \G): (10)Now onsider the set Zn of all the joint distributions on V � Y(F \G) emerging in thismanner (i. e., with an arbitrary but �xed S as above and for some x 2 S \ T nP ). An easyalulation shows that their number is only polynomial in n, and more preisely, (f. e. g.Lemma 1.2.2 in [1℄) we have jZnj � (n+ 1)jV jjY(F\G)j; (11)and thus jS(n) \ T nP j =XPXZ2Zn jfx; x 2 S(n)\ T nP ; PxjU(a)Qn(U) = PXZ(a; U) 8a 2 V; 8U 2 Y(F \G)gj �XPXZ2Zn exp[nH(XjZ)℄;where the last inequality is immediate from Lemma 1.2.5 in [1℄. We ontinue this hainof inequalities by using (11) to givejS(n) \ T nP j � (n+ 1)jV jjY(F\G)j maxPXZ2Zn exp[nH(XjZ)℄; (12)9



where the onstraint PXZ 2 Zn means that the joint distribution of the RV's X and Z isontained in the set of distributions Zn. Notie next that the onditional entropy H(XjZ)an be written as H(XjZ) = XU2Y(F\G)Qn(U)H(RU) (13)for some distributions RU on V satisfying the onditionXU2Y(F\G)Qn(U)RU (a) = P (a) 8a 2 V: (14)Further reall that by our hypothesis F and G indue two edge{disjoint perfet graphson U and thus by Theorem 2 of [2℄H(RU) = S(F;RU) + S(G;RU): (15)Substituting (15) into (13) we see thatH(XjZ) = XU2Y(F\G)Qn(U)[S(F;RU) + S(G;RU)℄: (16)At this point we apply the ap{onvexity of S(F;R) and S(G;R) and the relation (14)to imply H(XjZ) � S(F; P ) + S(G;P ):Substituting this into (12) we see thatjS(n) \ T nP j � (n+ 1)jV jjY(F\G)j expfn[S(F; P ) + S(G;P )℄g: (17)However, jS(n) \ T nP j = �((F \G)nP )by the de�nition of S(n); whene realling the asymptotis of �((F \ G)nP ) from (5) theinequality (17) implies (6). 27 OutlookWe have just begun to study the sub{(super)modularity properties of more general graphpairs than treated above, and at this point all we an report are some rather intriguingpreliminary observations. The entropies of bipartite graphs an be expressed in terms ofthe binary entropy funtion and thus in these ases the relevant inequalities for submod-ularity might be proved by elementary onvexity arguments. We have proved e. g. thatif jE(F � G)j = jE(G � F )j = 1, and if further F [ G is a simple path on k vertieswhose middle edges (those with endpoints of degree 2) belong to F \G, then the graphsF and G form a submodular pair for k = 3; 5 and a supermodular pair if k = 4: Weare not ready to make any onjeture in more generality, yet it is lear already that a10



omplete understanding of this kind of properties may put graph pairs into an interestingnew perspetive.Our disussion an be extended to hypergraphs. In terms of appliations, e. g., inomputer siene the resulting entropy is as natural as graph entropy, sine sub{additivityremains valid [10℄. For onditions of additivity of hypergraph entropy in ase of uniformhypergraphs the reader is referred to [14℄.8 AknowledgementWe thank Kati Marton for suggesting the simple proof of Theorem 2 presented in Setion4.

11



Referenes[1℄ I. Csisz�ar, J. K�orner, Information theory: Coding theorems for disrete memorylesssystems. Aademi Press, New York, 1982 and Akad�emiai Kiad�o, Budapest, 1981.[2℄ I. Csisz�ar, J. K�orner, L. Lov�asz, K. Marton, G. Simonyi, Entropy splitting for an-tibloking pairs and perfet graphs, Combinatoria, 10 (1) (1990), 27{40.[3℄ T. Gallai, Transitiv orientierbare Graphen, Ata Math. Aad. Si. Hung. 18(1967),25{66.[4℄ J. Kahn, J. H. Kim, Entropy and sorting, J. Computer and System Sienes,51(1995), 390{399.[5℄ D. Kelly, Comparability graphs, in: Graphs and Orders (I. Rival ed.), D. Reidel Publ.Co. (1985), 3{40.[6℄ J. K�orner, Coding of an information soure having ambiguous alphabet and theentropy of graphs. Transations of the 6th Prague onferene on Information Theory,et., 1971, Aademia, Prague, (1973), 411{425.[7℄ J. K�orner, G. Longo, Two-step enoding of �nite soures, IEEE Trans. Inform. The-ory 19, Nov. 1973, 778{782.[8℄ J. K�orner, Fredman-Koml�os bounds and information theory, SIAM J. Algebrai andDisrete Methods, 7 (4), (1986), 560{570.[9℄ J. K�orner, K. Marton, Graphs that split entropies, SIAM J. Disrete Math., 1 (1),(1988), 71{79.[10℄ J. K�orner, K. Marton, New bounds for perfet hashing via information theory, Eu-ropean J. Combinatoris, 9(1988), 523{530.[11℄ J. K�orner, G. Simonyi, Zs. Tuza, Perfet ouples of graphs, Combinatoria, 12 (2)(1992), 179{192.[12℄ J. Radhakrishnan, ��� threshold formulas, Combinatoria, 14 (3) (1994), 345{374.[13℄ G. Simonyi, Graph entropy: a survey, in Combinatorial Optimization, DIMACSSeries on Disrete Math. and Computer Siene Vol. 20 (W. Cook, L. Lov�asz, P.D. Seymour eds.), AMS, 1995, 399{441.[14℄ G. Simonyi, Entropy splitting hypergraphs, J. Combin. Theory Ser. B 66(1996), pp.310{323.
12


