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Abstract

Graph entropy is an information—theoretic functional on a graph and a probabil-
ity distribution on its vertex set. It is sub—additive with respect to graph union but
not submodular in general. Here we give necessary and sufficient conditions for sub-
modularity and supermodularity of graph entropy with respect to every probability
distribution in case of those couples of graphs whose union is complete. Equality in
this kind of inequalities can characterize important classes of graphs as shown by
our earlier results with I. Csiszar, L. Lovasz, K. Marton and Zs. Tuza for couples
of edge—disjoint graphs.

*Department of Computer Science, Universita ”La Sapienza”, via Salaria 113, 00198 Roma, Italy

tAlfréd Rényi Institute of Mathematics, HAS, 1364 Budapest, P.O.B. 127, Hungary. Research of this
author was partially supported by the Hungarian National Foundation for Scientific Research OTKA
Grant Nos. F023442 and T016386



1 Introduction

Graph entropy H (G, P) is an information-theoretic functional of a graph G with a proba-
bility distribution P on its vertex set, introduced in [6]. Before giving a formal definition,
we would like to mention briefly those properties of this functional which motivate our
present paper.

A crucial property of H(G, P) is its sub—additivity with respect to graph union [8]; if
F and G are two graphs on the same vertex set V' and F'U G denotes the graph on V
with edge set F(F UG) = E(F)U E(G), then for every P we have

H(FUG,P) < H(F,P)+ H(G, P). (1)

If F' and G are complementary graphs and thus F U G is complete, then equality for
every P above is equivalent to F' and G being perfect, (cf. [2].) This makes one believe
that equality in this kind of inequalities does express relevant structural properties of
graph pairs. This conviction obtains further support from what happens in the case of
two arbitrary edge—disjoint graphs F' and G sharing the same vertex set V. In fact, in
this latter case we have equality in (1) for every distribution P on V' if and only if for
all adjacent pairs of edges {x,y} € E(F) and {y, 2z} € E(G) their “private” endpoints z
and z are adjacent in F'U G, and further F' (and thus G) induce perfect graphs on every
complete subgraph of their union, ([11].) It is therefore interesting to continue on this
road and try to generalize the above results to the case of graphs with some common
edges. This is what we are going to do in this paper for a new case.

Our present situation is, in a certain sense, opposite to the one treated in [11]; two
graphs F' and G whose union is complete. Hence the complements of these graphs are
edge—disjoint and thus if both F' and G were perfect, the aforementioned results (1) and
[2] would immediately yield

H(F,P)+ H(G,P)< H(FNG,P)+ H(P).

(Here (F' N G) stands for the graph with edge set E(F N G) = E(F)N E(G) and vertex
set V.) However, this complementation does not work in the remaining cases; in fact, the
very inequality it would give fails to be true in general. Therefore, to treat our present
problem some new idea will be needed.

Before giving the formal definition of graph entropy we formulate our main results.
Let F and G be two graphs on the same vertex set V' with possibly intersecting edge sets.
We call F' and G a submodular pair if for every probability distribution P on V' we have

H(FUG,P)+ H(FNG,P)< H(F,P) + H(G, P). (2)

Likewise, we call F' and G a supermodular pair if the sense of the last inequality is
reversed.

Our main concern is to find conditions for F' and G to make the graph couple {F, G}
submodular (supermodular) under the additional condition that F'U G = Ky, i.e., the
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complete graph on |V| vertices. It follows from the already mentioned result in [2] that
if FNG is empty and F UG is the complete graph on V' then (strict) submodularity is
equivalent to F' (and thus G) being imperfect. (A graph is called perfect if for each of
its induced subgraphs G’ its chromatic number is equal to its clique number. A graph
is imperfect if it is not perfect.) This implies that F' and G are certainly not a super-
modular pair if on some clique of their union they are edge—disjoint and induce imperfect
graphs. (From the definition we will give this can be seen by concentrating a probability
distribution on this clique.)

On the other hand it takes an easy calculation to show that two different paths consist-
ing of two edges on the same three-element vertex set does not form a submodular pair.
Thus we have two simple conditions that ensure the existence of probability distributions
with strict inequalities in one or the other direction. Our main result states that actually
there are no more conditions. Formally it is given by the following two statements.

Theorem 1 Two graphs F' and G on the same vertex set V with FFUG = K| form a
submodular pair if and only if there is no three—element subset of |V| on which each of
F—G, G- F and F NG has exactly one edge.

Theorem 2 The graphs F and G on the same vertex set |V| with F UG = K)y| form a
supermodular pair if and only if there is no subset U C' V' on which F' and G are imperfect
and edge—disjoint.

These two results immediately yield a full characterization of modularity. The graphs
F and G on the same vertex set form a modular pair if they are both submodular and
supermodular. We have

Corollary 1 The graphs F' and G' on the same vertex set V with F UG = K| form a
modular pair if and only if the following two conditions simultaneously hold:

(1) there is no three—element subset of |V'| on which each of F — G, G — F and FNG
have exactly one edge,

(1) there is no subset U C'V on which F and G are imperfect and edge—disjoint.

O
On the other hand, it must be clear that there are graph pairs that are neither sub-
modular nor supermodular.

In this paper we limit ourselves to prove these results representing a new step in the
analysis of the behavior of the sum of the entropies of two graphs, first raised in the paper
[7] joint with G. Longo, and solved for graphs without common edges in a series of papers
written in collaboration with K. Marton [9] (if one of the graphs is bipartite), with I.
Csiszar, L. Lovasz and K. Marton [2] (in the aforementioned case of two edge—disjoint
graphs whose union is the complete graph on their common vertex set) and with Zs. Tuza
[11] (for arbitrary edge—disjoint graph pairs).



These problems seem to be interesting even for yet another reason, for the sub-—
additivity of graph entropy is at the core of a bounding technique in combinatorics and
computer science that has been succesfully applied by various authors, cf., e. g., Kahn and
Kim [4] and Radhakrishnan [12]. For more applications and details we refer to the survey
article [13]. When not stated otherwise, we adopt the terminology of [1]. In particular,
exp’s and log’s are to the base 2.

2 Graph entropy

Graph entropy is formally defined as
H(G,P)= min I(XN\Y),

XeveSs(@), Px=P
where S(G) denotes the family of the stable sets of vertices in G. (A subset of the vertex
set is called stable if it does not contain any edge.) For the basics in information theory
the reader is referred to the book [1]. We recall that the mutual information (X AY") of
the random variables X and Y equals H(X) + H(Y) — H(X,Y), where e. g. H(X,Y) is
the entropy of the random variable (X,Y"). (Notice that the entropy of a random variable
is the entropy of its distribution.) It is immediate from this definition that if K is a
complete graph and P an arbitrary distribution on its vertex set, then H (K, P) = H(P).
Likewise, the entropy of a graph without edges is 0.

This definition of graph entropy has the merit of being short but it is not particularly
intuitive (for those who are not familiar with information theory). In a later part of this
paper, based on a more complicated but purely combinatorial definition, we shall develop
a combinatorial intuition for this quantity. For the time being we just anticipate that
entropy is a kind of fractional chromatic number.

If E(F) N E(G) # 0, we cannot have equality in 1 for a P concentrated on the two
endpoints of some common edge. This raises the question of whether, introducing as
a correcting term the entropy of the intersection graph F' N G, submodularity of graph
entropy is true for two graphs with non-disjoint edge sets. In general the answer is negative
as shown by the already stated theorems. Their main content is that more can be said.

3 Submodularity

In this section we shall prove Theorem 1. We begin by recalling two earlier results needed
in the proof. The first of these is a theorem of Gallai following from his Decomposition
Theorem in [3] (cf. also [5] and [11].)

Theorem G [3] Let the graphs Hy, Hs, ..., Hy be edge-disjoint with their union being the
complete graph on their common vertex set. If for no 3 vertices does the resulting triangle
have its three edges in three different H;’s then at most two of the H;’s are at the same
time connected and spanning the whole vertex set.



The second result we need establishes a kind of additivity of graph entropy ([11]),
called the Substitution Lemma, cf. also [13]. To state the lemma, we need the concept of
graph substitution. Let A and B be two graphs and consider any v € V(A). Substituting
B for v means to delete v from A and join every vertex of a copy of B to exactly those
vertices of A which were adjacent to v in A. The resulting graph is denoted by A,. 5.
Substitution is also extended to distributions as follows. Let P be a distribution on V' (A)
and @ a distribution on V(B). Then a distribution P,. ¢ is obtained on V(A,.g) by
putting P, o(z) = P(z) if v € V(A) — {v} and P, g(z) = P(v)Q(x) if z € V(B). The
statement we need is the following:

Substitution Lemma [11] Let A and B be two vertex—disjoint graphs with probability
distributions P and ) on their respective vertex sets and v be any vertex of A. Then

H(Ay p,P,g)=H(A P)+ P(v)H(B,Q).
Now we are ready to prove our first result.

Proof of Theorem 1.

Let us call a multicolored triangle (MCT) a configuration of three vertices of V' on
which each of FF — G, G — F and F' N G have exactly one edge. If F' and G induce such
a configuration, then defining P to be the uniform distribution on its 3 vertices an easy
calculation shows that

H(FUG,P)+ H(FNG,P)> H(F,P)+ H(G,P).

We prove the other direction by induction. The statement is trivially true if the vertex
set V= V(F) = V(G) has less than 3 elements and it is also easy to check for |V| = 3.
In fact, in the latter case at least one of the three graphs FNG, F — G and G — F has no
edges. If it is the first one, then F' and G are edge-disjoint and the statement follows by
the sub—additivity of graph entropy. In any other case one of E(F') and E(G) contains
the other and we have equality in (2).

In order to make the induction work, we have to deal separately with the case when
one of the graphs FNG, F—G, G — F has no edges (i.e., it is an empty graph). This case
can be settled analogously to that of |V| = 3. In fact, if F NG is the empty graph, this
means that F' and G are edge-disjoint and we are done by the sub-additivity of graph
entropy (1). In the other cases one of F' and G contains the other and we have equality
in our inequality needed for submodularity.

Assume the statement is true for |V| < n. Let F and G be two graphs on V with
|V| = n such that F UG = K,, and with no MCT (i. e. no triangle having an edge in
each of F — G, G — F, and F N G.) Then by Gallai’s Theorem G above at least one of
T =F—G,T, = G- F and T3 = F N G fails to be connected on V. Let T; be one
of the disconnected graphs among these three and let U C V be the vertex set of some
fixed non—empty connected component of T;. (In case there is none, T; is the empty graph



and we are already done.) Note that |U| < n, and by the foregoing we can also assume
U] > 1.

Let v be an arbitrary vertex in V' — U. Observe that either all edges between v and
the vertices of U belong to T;,; or they all belong to T}, (with addition in the indices
intended modulo 3), otherwise an MCT would occur. This means that in all of the graphs
F, G, FNG, and (trivially) F U G the set U forms a so-called autonomous set (which
means that every vertex outside U is either connected to all or none of the vertices in U).
Let X denote any of the graphs F', G, FNG, FUG. Let Xy be the graph uniquely defined
by the property of inducing the same graph as X on U but with all the points in V' — U
being isolated. Furthermore, let X denote the graph we obtain from X if we replace (by
an “inverse substitution”) the set U by a single vertex u, i.e., V(X) is (V —U) U {u} and
u is connected to exactly those points of V' — U which were adjacent to the vertices of
U in X. Observe that Xy cannot contain any MCT. We set P(u) = P(U) = X,cp P(x)
and with a slight abuse of notation refer to the distribution obtained on V(X ) in this
manner also as P. Now by the Substitution Lemma we have

H(X,P)=H(Xgp, P) + H(Xy, P).

Notice that deleting the edges of Xy from X the entropy of the resulting graph is equal
to the entropy H(Xg, P). (This also follows from the Substitution Lemma and the fact
that the entropy of a graph without edges is zero. Besides, we have used the fact that
H(Xy, P) remains the same if we suppress in it the isolated points of V' — X.) But since
both U and V(Xp) are strictly smaller than n, (in the case of the latter this follows from
|U| > 1), we will be able to use the induction hypothesis on these sets. By adding the
corresponding inequalities we are basically done, still let us formalize what we just said.
Writing F', G, FN G, and F UG in place of X and using the induction hypothesis we
have

H(F,P)+ H(G,P)= (H(Fy,P)+ H(Fy,P))+ (H(Gg,P)+ H(Gy, P)) =

= (H(Fg, P) + H(Gg, P)) + (H(Fy, P) + H(Gy, P)) <
< (H(FUG)g, P)+ H((FNG)g, P))+
+H((FUG)y,P)+ H((FNG)y, P))

=H(FUG,P)+ H(FNG,P)

and this proves the theorem.

4 Supermodularity

In this section we prove Theorem 2. The proof we present here is due to Kati Marton who
suggested the following short proof to replace our original considerably longer argument.
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Later in the paper we also give our original proof for it uses the information theoretic
concepts less extensively. However, the brevity of Kati Marton’s proof convinced us that
this proof should be given first.

Proof of Theorem 2.

The “only if” part of the statement is an immediate consequence of the already men-
tioned information—theoretic characterization of perfect graphs in [2]; if there is a subset
U C V on which F and G induce two edge-disjoint imperfect graphs the union of which
is complete, then by Theorem 2 in [2] there is a distribution P concentrated on U for
which

H(F,P)+ H(G,P)> H(FUG,P).

Since F' N G has no edges in U, the right-hand side is further equal to H(F UG, P) +
H(F NG, P) and thus F and G fail to be a supermodular pair.

To see the ”if” part, let F' and G be two graphs satisfying the conditions in the statement
and let again S(A) denote the family of all stable sets of graph A. Let X and Z be
random variables taking their values in V" and in S(F N G), respectively, such that X € Z
with probability 1 and

HFNG,P)=1(X AZ).

Fix a value U of Z. Then U is a stable set of FF N G. Let Fyy and Gy denote the
subgraphs induced on U in F' and G, respectively, and Py the conditional distribution of
X given Z = U. Since Fy and Gy are edge disjoint, they are perfect. Therefore,

H(X|Z =U)=H(Py) = H(Gy, Py) + H(Fy, Py).

(Here H(X|Z = U) is the entropy of the conditional distribution of X given that
Z =U. H(X|Z) of the next formula is the avarage of these values with respect to the
distribution of Z, called the conditional entropy of X (with respect to Z.) For further
details on these notions the reader is referred again to [1].)

Averaging with respect to the distribution of Z gives
H(X|Z)=> Pr{Z =U}H(Gy,Py)+>_Pr{Z=U}H(Fy, Py).
U U
Adding 2I(X A Z) to both sides we obtain
> Pr{Z=U}H(Gy,Py)+I(X N Z)+
U
+> Pr{Z=U}H(Fy,Py)+ (XA Z) =
U

H(X|Z)+21(XAZ)=H(P)+ (X N Z) =
= H(P)+ H(FNG,P)=H(FUG,P)+ H(FNG,P).



Thus it is enough to show that

S Pr{Z=U}H(Gy, Py)+I(X A Z) > H(G, P).

This will imply the similar inequality for F' and thus the statement.
Let Y € S(G) be a random variable such that the joint distribution of (X,Y,Z)
satisfies the conditions that X € Y C Z with probability 1 and for every value U of Z

H(Gy,Py) =I(X ANY|Z =U).

(These conditions define the conditional distribution of Y given X and Z, and thus the
joint distribution of (X, Z,Y") also.) We have then

S Pr{Z =UYH(Gy, Py) + (X AZ) = (X AY|Z) + I(X A Z) =

=I(XAYZ)>I(XAY)>H(G,P).
Thus the proof is completed.

5 Graph entropy made simple

Much of the remaining part of our paper contains a second proof of Theorem 2, the proof
we originally had. To present it we have to make some preparations.

For any natural n the n’th (co-normal or OR) power of G is the graph with vertex set
V™ in which two vertices, x = x125...2, and ¥ = y1y> ...y, are adjacent if for at least
one i € {1,2,...,n} the relation {z;,y;} € E(G) holds. Given an arbitrary probability
distribution P on the vertex set V of G, let T2 denote the (possibly empty) set of all
sequences x € V" for which

Hi; xi=a, x=mz29...2,}] =nP(a) for every a € V.

Further, let G denote the graph the set 77 induces in G". As usual, we denote by a(G)
the maximum cardinality of a stable set and by x(G) the chromatic number of the graph
G. Graph entropy can be redefined in terms of the above concepts, following the approach
of [6].

We shall call a distribution rational if all its probabilities are rational numbers. Let
k = k(P) be the smallest natural number for which all the numbers kP(x), z € V are
integers. It is well-known (cf. Lemma 1.2.3 in [1]) that

Jim 2 log |77 = H(P) )



Likewise, it is not hard to see (and it is implicit in [6]) that for any simple graph with
vertex set V(G) =V one has

1

n—oo kn,

and, defining S(G, P) = H(P) — H(G, P) also

1
lim -~ log (G = S(G, P). (5)

n—oo kn

More precisely, there exists a sequence of constants r, = r,(|V]) with r, — 0 for which
1
kn

and similarly in the preceding inequalities. The relation (4) could be used to give an
alternative definition of graph entropy. It defines the entropy of a graph for rational
distributions whence the general case would follow by continuity. (The original definition
in [6] is in this spirit.) It easily follows from the above that

loga(G) = S(G, P)| < 1,

max H (G, P) = log x*(G),

where the maximum is for all the probability distributions P on the vertex set of G and
where x*((G) stands for the fractional chromatic number of the graph G. This fact is not
needed in the sequel, and we quote it only to give more intuitive sense to the concept of
graph entropy.

6 A more combinatorial proof

Second proof of Theorem 2.

We reprove only the more difficult ”if” part of the statement. To this end, recall that
S(G,P) = H(P) — H(G, P). Further, one has to remember that since the union graph
F UG is complete, we have S(F UG, P) = 0. Our statement is therefore equivalent to
saying that under the conditions of the theorem

S(FNG,P)<S(F,P)+S(G,P). (6)

Clearly, it is sufficient to prove this statement for rational probability distributions since
the rest follows by continuity. As an easy consequence of (5) one proves (by a simple
“time sharing” argument) that for fixed G the quantity S(G, P) is a cap—convex function
of the distribution P. (The name “time sharing” is standard in information theory for
the kind of argument we need here. What we do to get the proof of cap—convexity is to
consider at first only convex combinations of distributions with rational coefficients, since
the rest will follow by continuity. If we want to prove that

AS(G, P) + (1= N)S(G, Py) < S(G, AP + (1 — \)Py)
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for rational distributions Py and P, on V' (G) and an arbitrary rational number A € [0, 1], it
is sufficient to notice that the Cartesian product of any stable set of maximum cardinality
of the graph induced by G* on Tp™ with any stable set of maximum cardinality of the
graph induced by G!'=Y" on 7}5217)‘)71 defines a stable set in the graph induced by G™ on
2, where P = AP; + (1 — X\) P,. We omit the details needed to guarantee the integrality
of various exponents and similar technicalities.)
Fix some n and let S = S(n) C V" be a maximal stable set of (F'N G)" for which
S NTE achieves a(F N G)%). Clearly, S =IIi~, S; for some stable subsets S; C V of the
graph F'N G. Since the order of the sets in this Cartesian product is indifferent we can
suppose that
S = H [n@n(U) (7)
UeY(FNG)
where Y (F' N @G) is again the family of all the maximal stable sets of the graph F'NG and
Q@ is defined by

@n(U)

Given an arbitrary sequence x € SN 7T} define for every a € V

{i;x; =a,S; = U}|
TS =07 ©)

PX|U(G) =

and let the random variables (RV in the sequel) X and Z have the joint distribution
Pr{X =0a,Z=U} =Q,(U)Pu(a) VYaecV, VYUe€YFNG). (10)

Now consider the set Z, of all the joint distributions on V' x Y(F N G) emerging in this
manner (i. e., with an arbitrary but fixed S as above and for some x € SN T}). An easy
calculation shows that their number is only polynomial in n, and more precisely, (cf. e. g.
Lemma 1.2.2 in [1]) we have

|Zn| < (n + 1)|V||37(FﬂG)|, (11)

and thus
1S(n)NTp| =
o Hx;xe Sm)NTE, Pau(a)Qu(U) = Pxz(a,U) VaeV, YU eVFNG)} <

Pxz€2y,
Y expnH(X|Z)],
Pxz€2Zy

where the last inequality is immediate from Lemma 1.2.5 in [1]. We continue this chain
of inequalities by using (11) to give

|S(n)NTE| < (n+ 1)|V||y(FﬁG)| max exp[nH (X|7)], (12)

Pxz€eZ,



where the constraint Px; € Z, means that the joint distribution of the RV’s X and 7 is
contained in the set of distributions Z,. Notice next that the conditional entropy H(X|Z)
can be written as

H(X|Z) = ; )Qn(U)H(RU) (13)
UeY(FNG

for some distributions Ry on V' satisfying the condition

>, @uU)Ry(a)=Pla) VaeV. (14)
UeY(FNG)

Further recall that by our hypothesis F' and G induce two edge-disjoint perfect graphs
on U and thus by Theorem 2 of [2]

H(Ry) = S(F,Ry) + S(G, Ry). (15)
Substituting (15) into (13) we see that

H(X|Z) = ; )QH(U)[S(F,RU)+S(G,RU)]- (16)
UeY(FNG

At this point we apply the cap—convexity of S(F, R) and S(G, R) and the relation (14)
to imply
H(X|Z)< S(F,P)+ S(G,P).

Substituting this into (12) we see that
S() N TE| < (n+ 1)V exp n[S(F, P) + S(G, P)]}. (17

However,

1S(n) N Tp | = a((FNG)p)

by the definition of S(n), whence recalling the asymptotics of a((F N G)%) from (5) the
inequality (17) implies (6). O

7 Outlook

We have just begun to study the sub—(super)modularity properties of more general graph
pairs than treated above, and at this point all we can report are some rather intriguing
preliminary observations. The entropies of bipartite graphs can be expressed in terms of
the binary entropy function and thus in these cases the relevant inequalities for submod-
ularity might be proved by elementary convexity arguments. We have proved e. g. that
if |[E(F —G)| = |[E(G — F)| =1, and if further FU G is a simple path on k vertices
whose middle edges (those with endpoints of degree 2) belong to F'N G, then the graphs
F and G form a submodular pair for £ = 3,5 and a supermodular pair if £ = 4. We
are not ready to make any conjecture in more generality, yet it is clear already that a
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complete understanding of this kind of properties may put graph pairs into an interesting
new perspective.

Our discussion can be extended to hypergraphs. In terms of applications, e. g., in
computer science the resulting entropy is as natural as graph entropy, since sub—additivity
remains valid [10]. For conditions of additivity of hypergraph entropy in case of uniform
hypergraphs the reader is referred to [14].
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