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1 Introdu
tionGraph entropy H(G;P ) is an information{theoreti
 fun
tional of a graph G with a proba-bility distribution P on its vertex set, introdu
ed in [6℄. Before giving a formal de�nition,we would like to mention brie
y those properties of this fun
tional whi
h motivate ourpresent paper.A 
ru
ial property of H(G;P ) is its sub{additivity with respe
t to graph union [8℄; ifF and G are two graphs on the same vertex set V and F [ G denotes the graph on Vwith edge set E(F [G) = E(F ) [ E(G), then for every P we haveH(F [G;P ) � H(F; P ) +H(G;P ): (1)If F and G are 
omplementary graphs and thus F [ G is 
omplete, then equality forevery P above is equivalent to F and G being perfe
t, (
f. [2℄.) This makes one believethat equality in this kind of inequalities does express relevant stru
tural properties ofgraph pairs. This 
onvi
tion obtains further support from what happens in the 
ase oftwo arbitrary edge{disjoint graphs F and G sharing the same vertex set V . In fa
t, inthis latter 
ase we have equality in (1) for every distribution P on V if and only if forall adja
ent pairs of edges fx; yg 2 E(F ) and fy; zg 2 E(G) their \private" endpoints xand z are adja
ent in F [G, and further F (and thus G) indu
e perfe
t graphs on every
omplete subgraph of their union, ([11℄.) It is therefore interesting to 
ontinue on thisroad and try to generalize the above results to the 
ase of graphs with some 
ommonedges. This is what we are going to do in this paper for a new 
ase.Our present situation is, in a 
ertain sense, opposite to the one treated in [11℄; twographs F and G whose union is 
omplete. Hen
e the 
omplements of these graphs areedge{disjoint and thus if both F and G were perfe
t, the aforementioned results (1) and[2℄ would immediately yieldH(F; P ) +H(G;P ) � H(F \G;P ) +H(P ):(Here (F \ G) stands for the graph with edge set E(F \ G) = E(F ) \ E(G) and vertexset V .) However, this 
omplementation does not work in the remaining 
ases; in fa
t, thevery inequality it would give fails to be true in general. Therefore, to treat our presentproblem some new idea will be needed.Before giving the formal de�nition of graph entropy we formulate our main results.Let F and G be two graphs on the same vertex set V with possibly interse
ting edge sets.We 
all F and G a submodular pair if for every probability distribution P on V we haveH(F [G;P ) +H(F \G;P ) � H(F; P ) +H(G;P ): (2)Likewise, we 
all F and G a supermodular pair if the sense of the last inequality isreversed.Our main 
on
ern is to �nd 
onditions for F and G to make the graph 
ouple fF;Ggsubmodular (supermodular) under the additional 
ondition that F [ G = KjV j, i.e., the1




omplete graph on jV j verti
es. It follows from the already mentioned result in [2℄ thatif F \ G is empty and F [ G is the 
omplete graph on V then (stri
t) submodularity isequivalent to F (and thus G) being imperfe
t. (A graph is 
alled perfe
t if for ea
h ofits indu
ed subgraphs G0 its 
hromati
 number is equal to its 
lique number. A graphis imperfe
t if it is not perfe
t.) This implies that F and G are 
ertainly not a super-modular pair if on some 
lique of their union they are edge{disjoint and indu
e imperfe
tgraphs. (From the de�nition we will give this 
an be seen by 
on
entrating a probabilitydistribution on this 
lique.)On the other hand it takes an easy 
al
ulation to show that two di�erent paths 
onsist-ing of two edges on the same three-element vertex set does not form a submodular pair.Thus we have two simple 
onditions that ensure the existen
e of probability distributionswith stri
t inequalities in one or the other dire
tion. Our main result states that a
tuallythere are no more 
onditions. Formally it is given by the following two statements.Theorem 1 Two graphs F and G on the same vertex set V with F [ G = KjV j form asubmodular pair if and only if there is no three{element subset of jV j on whi
h ea
h ofF �G, G� F and F \G has exa
tly one edge.Theorem 2 The graphs F and G on the same vertex set jV j with F [G = KjV j form asupermodular pair if and only if there is no subset U � V on whi
h F and G are imperfe
tand edge{disjoint.These two results immediately yield a full 
hara
terization of modularity. The graphsF and G on the same vertex set form a modular pair if they are both submodular andsupermodular. We haveCorollary 1 The graphs F and G on the same vertex set V with F [ G = KjV j form amodular pair if and only if the following two 
onditions simultaneously hold:(i) there is no three{element subset of jV j on whi
h ea
h of F �G, G� F and F \Ghave exa
tly one edge,(ii) there is no subset U � V on whi
h F and G are imperfe
t and edge{disjoint. 2On the other hand, it must be 
lear that there are graph pairs that are neither sub-modular nor supermodular.In this paper we limit ourselves to prove these results representing a new step in theanalysis of the behavior of the sum of the entropies of two graphs, �rst raised in the paper[7℄ joint with G. Longo, and solved for graphs without 
ommon edges in a series of paperswritten in 
ollaboration with K. Marton [9℄ (if one of the graphs is bipartite), with I.Csisz�ar, L. Lov�asz and K. Marton [2℄ (in the aforementioned 
ase of two edge{disjointgraphs whose union is the 
omplete graph on their 
ommon vertex set) and with Zs. Tuza[11℄ (for arbitrary edge{disjoint graph pairs).2



These problems seem to be interesting even for yet another reason, for the sub{additivity of graph entropy is at the 
ore of a bounding te
hnique in 
ombinatori
s and
omputer s
ien
e that has been su

esfully applied by various authors, 
f., e. g., Kahn andKim [4℄ and Radhakrishnan [12℄. For more appli
ations and details we refer to the surveyarti
le [13℄. When not stated otherwise, we adopt the terminology of [1℄. In parti
ular,exp's and log's are to the base 2.2 Graph entropyGraph entropy is formally de�ned asH(G;P ) = minX2Y 2S(G); PX=P I(X ^ Y );where S(G) denotes the family of the stable sets of verti
es in G. (A subset of the vertexset is 
alled stable if it does not 
ontain any edge.) For the basi
s in information theorythe reader is referred to the book [1℄. We re
all that the mutual information I(X ^ Y ) ofthe random variables X and Y equals H(X) +H(Y )�H(X; Y ); where e. g. H(X; Y ) isthe entropy of the random variable (X; Y ). (Noti
e that the entropy of a random variableis the entropy of its distribution.) It is immediate from this de�nition that if K is a
omplete graph and P an arbitrary distribution on its vertex set, then H(K;P ) = H(P ):Likewise, the entropy of a graph without edges is 0.This de�nition of graph entropy has the merit of being short but it is not parti
ularlyintuitive (for those who are not familiar with information theory). In a later part of thispaper, based on a more 
ompli
ated but purely 
ombinatorial de�nition, we shall developa 
ombinatorial intuition for this quantity. For the time being we just anti
ipate thatentropy is a kind of fra
tional 
hromati
 number.If E(F ) \ E(G) 6= ;, we 
annot have equality in 1 for a P 
on
entrated on the twoendpoints of some 
ommon edge. This raises the question of whether, introdu
ing asa 
orre
ting term the entropy of the interse
tion graph F \ G, submodularity of graphentropy is true for two graphs with non-disjoint edge sets. In general the answer is negativeas shown by the already stated theorems. Their main 
ontent is that more 
an be said.3 SubmodularityIn this se
tion we shall prove Theorem 1. We begin by re
alling two earlier results neededin the proof. The �rst of these is a theorem of Gallai following from his De
ompositionTheorem in [3℄ (
f. also [5℄ and [11℄.)Theorem G [3℄ Let the graphs H1; H2; : : : ; Hk be edge-disjoint with their union being the
omplete graph on their 
ommon vertex set. If for no 3 verti
es does the resulting trianglehave its three edges in three di�erent Hi's then at most two of the Hi's are at the sametime 
onne
ted and spanning the whole vertex set.3



The se
ond result we need establishes a kind of additivity of graph entropy ([11℄),
alled the Substitution Lemma, 
f. also [13℄. To state the lemma, we need the 
on
ept ofgraph substitution. Let A and B be two graphs and 
onsider any v 2 V (A). SubstitutingB for v means to delete v from A and join every vertex of a 
opy of B to exa
tly thoseverti
es of A whi
h were adja
ent to v in A. The resulting graph is denoted by Av B.Substitution is also extended to distributions as follows. Let P be a distribution on V (A)and Q a distribution on V (B). Then a distribution Pv Q is obtained on V (Av B) byputting Pv Q(x) = P (x) if x 2 V (A)� fvg and Pv Q(x) = P (v)Q(x) if x 2 V (B). Thestatement we need is the following:Substitution Lemma [11℄ Let A and B be two vertex{disjoint graphs with probabilitydistributions P and Q on their respe
tive vertex sets and v be any vertex of A. ThenH(Av B; Pv Q) = H(A; P ) + P (v)H(B;Q):Now we are ready to prove our �rst result.Proof of Theorem 1.Let us 
all a multi
olored triangle (MCT) a 
on�guration of three verti
es of V onwhi
h ea
h of F �G, G� F and F \G have exa
tly one edge. If F and G indu
e su
ha 
on�guration, then de�ning P to be the uniform distribution on its 3 verti
es an easy
al
ulation shows thatH(F [G;P ) +H(F \G;P ) > H(F; P ) +H(G;P ):We prove the other dire
tion by indu
tion. The statement is trivially true if the vertexset V = V (F ) = V (G) has less than 3 elements and it is also easy to 
he
k for jV j = 3.In fa
t, in the latter 
ase at least one of the three graphs F \G, F �G and G�F has noedges. If it is the �rst one, then F and G are edge{disjoint and the statement follows bythe sub{additivity of graph entropy. In any other 
ase one of E(F ) and E(G) 
ontainsthe other and we have equality in (2).In order to make the indu
tion work, we have to deal separately with the 
ase whenone of the graphs F \G, F �G, G�F has no edges (i.e., it is an empty graph). This 
ase
an be settled analogously to that of jV j = 3: In fa
t, if F \ G is the empty graph, thismeans that F and G are edge{disjoint and we are done by the sub{additivity of graphentropy (1). In the other 
ases one of F and G 
ontains the other and we have equalityin our inequality needed for submodularity.Assume the statement is true for jV j < n. Let F and G be two graphs on V withjV j = n su
h that F [ G = Kn and with no MCT (i. e. no triangle having an edge inea
h of F � G, G � F , and F \ G.) Then by Gallai's Theorem G above at least one ofT1 = F � G, T2 = G � F and T3 = F \ G fails to be 
onne
ted on V . Let Ti be oneof the dis
onne
ted graphs among these three and let U � V be the vertex set of some�xed non{empty 
onne
ted 
omponent of Ti. (In 
ase there is none, Ti is the empty graph4



and we are already done.) Note that jU j < n; and by the foregoing we 
an also assumejU j > 1:Let v be an arbitrary vertex in V � U . Observe that either all edges between v andthe verti
es of U belong to Ti+1 or they all belong to Ti+2 (with addition in the indi
esintended modulo 3), otherwise an MCT would o

ur. This means that in all of the graphsF , G, F \ G, and (trivially) F [ G the set U forms a so-
alled autonomous set (whi
hmeans that every vertex outside U is either 
onne
ted to all or none of the verti
es in U).Let X denote any of the graphs F , G, F \G, F [G. Let XU be the graph uniquely de�nedby the property of indu
ing the same graph as X on U but with all the points in V � Ubeing isolated. Furthermore, let X �U denote the graph we obtain from X if we repla
e (byan \inverse substitution") the set U by a single vertex u, i.e., V (X) is (V �U)[ fug andu is 
onne
ted to exa
tly those points of V � U whi
h were adja
ent to the verti
es ofU in X. Observe that X �U 
annot 
ontain any MCT. We set P (u) = P (U) = �x2UP (x)and with a slight abuse of notation refer to the distribution obtained on V (X �U) in thismanner also as P . Now by the Substitution Lemma we haveH(X;P ) = H(X �U ; P ) +H(XU ; P ):Noti
e that deleting the edges of XU from X the entropy of the resulting graph is equalto the entropy H(X �U ; P ). (This also follows from the Substitution Lemma and the fa
tthat the entropy of a graph without edges is zero. Besides, we have used the fa
t thatH(XU ; P ) remains the same if we suppress in it the isolated points of V �X.) But sin
eboth U and V (X �U) are stri
tly smaller than n, (in the 
ase of the latter this follows fromjU j > 1), we will be able to use the indu
tion hypothesis on these sets. By adding the
orresponding inequalities we are basi
ally done, still let us formalize what we just said.Writing F , G, F \ G, and F [ G in pla
e of X and using the indu
tion hypothesis wehave H(F; P ) +H(G;P ) = (H(F �U ; P ) +H(FU ; P )) + (H(G �U ; P ) +H(GU ; P )) == (H(F �U ; P ) +H(G �U ; P )) + (H(FU ; P ) +H(GU ; P )) �� (H((F [G) �U ; P ) +H((F \G) �U ; P ))++(H((F [G)U ; P ) +H((F \G)U ; P )) == H(F [G;P ) +H(F \G;P )and this proves the theorem. 24 SupermodularityIn this se
tion we prove Theorem 2. The proof we present here is due to Kati Marton whosuggested the following short proof to repla
e our original 
onsiderably longer argument.5



Later in the paper we also give our original proof for it uses the information theoreti

on
epts less extensively. However, the brevity of Kati Marton's proof 
onvin
ed us thatthis proof should be given �rst.Proof of Theorem 2.The \only if" part of the statement is an immediate 
onsequen
e of the already men-tioned information{theoreti
 
hara
terization of perfe
t graphs in [2℄; if there is a subsetU � V on whi
h F and G indu
e two edge{disjoint imperfe
t graphs the union of whi
his 
omplete, then by Theorem 2 in [2℄ there is a distribution P 
on
entrated on U forwhi
h H(F; P ) +H(G;P ) > H(F [G;P ):Sin
e F \ G has no edges in U , the right{hand side is further equal to H(F [ G;P ) +H(F \G;P ) and thus F and G fail to be a supermodular pair.To see the "if" part, let F and G be two graphs satisfying the 
onditions in the statementand let again S(A) denote the family of all stable sets of graph A. Let X and Z berandom variables taking their values in V and in S(F \G), respe
tively, su
h that X 2 Zwith probability 1 and H(F \G;P ) = I(X ^ Z):Fix a value U of Z. Then U is a stable set of F \ G. Let FU and GU denote thesubgraphs indu
ed on U in F and G, respe
tively, and PU the 
onditional distribution ofX given Z = U . Sin
e FU and GU are edge disjoint, they are perfe
t. Therefore,H(XjZ = U) = H(PU) = H(GU ; PU) +H(FU ; PU):(Here H(XjZ = U) is the entropy of the 
onditional distribution of X given thatZ = U . H(XjZ) of the next formula is the avarage of these values with respe
t to thedistribution of Z, 
alled the 
onditional entropy of X (with respe
t to Z.) For furtherdetails on these notions the reader is referred again to [1℄.)Averaging with respe
t to the distribution of Z givesH(XjZ) =XU PrfZ = UgH(GU ; PU) +XU PrfZ = UgH(FU ; PU):Adding 2I(X ^ Z) to both sides we obtainXU PrfZ = UgH(GU ; PU) + I(X ^ Z)++XU PrfZ = UgH(FU ; PU) + I(X ^ Z) =H(XjZ) + 2I(X ^ Z) = H(P ) + I(X ^ Z) == H(P ) +H(F \G;P ) = H(F [G;P ) +H(F \G;P ):6



Thus it is enough to show thatXU PrfZ = UgH(GU ; PU) + I(X ^ Z) � H(G;P ):This will imply the similar inequality for F and thus the statement.Let Y 2 S(G) be a random variable su
h that the joint distribution of (X; Y; Z)satis�es the 
onditions that X 2 Y � Z with probability 1 and for every value U of ZH(GU ; PU) = I(X ^ Y jZ = U):(These 
onditions de�ne the 
onditional distribution of Y given X and Z, and thus thejoint distribution of (X;Z; Y ) also.) We have thenXU PrfZ = UgH(GU ; PU) + I(X ^ Z) = I(X ^ Y jZ) + I(X ^ Z) == I(X ^ Y Z) � I(X ^ Y ) � H(G;P ):Thus the proof is 
ompleted. 25 Graph entropy made simpleMu
h of the remaining part of our paper 
ontains a se
ond proof of Theorem 2, the proofwe originally had. To present it we have to make some preparations.For any natural n the n'th (
o{normal or OR) power of G is the graph with vertex setV n in whi
h two verti
es, x = x1x2 : : : xn and y = y1y2 : : : yn are adja
ent if for at leastone i 2 f1; 2; : : : ; ng the relation fxi; yig 2 E(G) holds. Given an arbitrary probabilitydistribution P on the vertex set V of G, let T nP denote the (possibly empty) set of allsequen
es x 2 V n for whi
hjfi; xi = a ; x = x1x2 : : : xngj = nP (a) for every a 2 V:Further, let GnP denote the graph the set T nP indu
es in Gn: As usual, we denote by �(G)the maximum 
ardinality of a stable set and by �(G) the 
hromati
 number of the graphG. Graph entropy 
an be rede�ned in terms of the above 
on
epts, following the approa
hof [6℄.We shall 
all a distribution rational if all its probabilities are rational numbers. Letk = k(P ) be the smallest natural number for whi
h all the numbers kP (x), x 2 V areintegers. It is well{known (
f. Lemma 1.2.3 in [1℄) thatlimn!1 1kn log jT knP j = H(P ): (3)7



Likewise, it is not hard to see (and it is impli
it in [6℄) that for any simple graph withvertex set V (G) = V one has limn!1 1kn log�(GknP ) = H(G;P ); (4)and, de�ning S(G;P ) = H(P )�H(G;P ) alsolimn!1 1kn log�(GknP ) = S(G;P ): (5)More pre
isely, there exists a sequen
e of 
onstants rn = rn(jV j) with rn ! 0 for whi
h���� 1kn log�(GknP )� S(G;P )���� � rn;and similarly in the pre
eding inequalities. The relation (4) 
ould be used to give analternative de�nition of graph entropy. It de�nes the entropy of a graph for rationaldistributions when
e the general 
ase would follow by 
ontinuity. (The original de�nitionin [6℄ is in this spirit.) It easily follows from the above thatmaxH(G;P ) = log��(G);where the maximum is for all the probability distributions P on the vertex set of G andwhere ��(G) stands for the fra
tional 
hromati
 number of the graph G. This fa
t is notneeded in the sequel, and we quote it only to give more intuitive sense to the 
on
ept ofgraph entropy.6 A more 
ombinatorial proofSe
ond proof of Theorem 2.We reprove only the more diÆ
ult "if" part of the statement. To this end, re
all thatS(G;P ) = H(P ) � H(G;P ): Further, one has to remember that sin
e the union graphF [ G is 
omplete, we have S(F [ G;P ) = 0: Our statement is therefore equivalent tosaying that under the 
onditions of the theoremS(F \G;P ) � S(F; P ) + S(G;P ): (6)Clearly, it is suÆ
ient to prove this statement for rational probability distributions sin
ethe rest follows by 
ontinuity. As an easy 
onsequen
e of (5) one proves (by a simple\time sharing" argument) that for �xed G the quantity S(G;P ) is a 
ap{
onvex fun
tionof the distribution P: (The name \time sharing" is standard in information theory forthe kind of argument we need here. What we do to get the proof of 
ap{
onvexity is to
onsider at �rst only 
onvex 
ombinations of distributions with rational 
oeÆ
ients, sin
ethe rest will follow by 
ontinuity. If we want to prove that�S(G;P1) + (1� �)S(G;P2) � S(G; �P1 + (1� �)P2)8



for rational distributions P1 and P2 on V (G) and an arbitrary rational number � 2 [0; 1℄; itis suÆ
ient to noti
e that the Cartesian produ
t of any stable set of maximum 
ardinalityof the graph indu
ed by G�n on T �nP1 with any stable set of maximum 
ardinality of thegraph indu
ed by G(1��)n on T (1��)nP2 de�nes a stable set in the graph indu
ed by Gn onT nP ; where P = �P1 + (1� �)P2: We omit the details needed to guarantee the integralityof various exponents and similar te
hni
alities.)Fix some n and let S = S(n) � V n be a maximal stable set of (F \ G)n for whi
hS \ T nP a
hieves �((F \G)nP ): Clearly, S = Qni=1 Si for some stable subsets Si � V of thegraph F \ G: Sin
e the order of the sets in this Cartesian produ
t is indi�erent we 
ansuppose that S = YU2Y(F\G)UnQn(U) (7)where Y(F \G) is again the family of all the maximal stable sets of the graph F \G andQn is de�ned by Qn(U) = jfi;Si = Ugjn : (8)Given an arbitrary sequen
e x 2 S \ T nP de�ne for every a 2 VPxjU(a) = jfi; xi = a; Si = Ugjjfi;Si = Ugj (9)and let the random variables (RV in the sequel) X and Z have the joint distributionPrfX = a; Z = Ug = Qn(U)PxjU(a) 8a 2 V; 8U 2 Y(F \G): (10)Now 
onsider the set Zn of all the joint distributions on V � Y(F \G) emerging in thismanner (i. e., with an arbitrary but �xed S as above and for some x 2 S \ T nP ). An easy
al
ulation shows that their number is only polynomial in n, and more pre
isely, (
f. e. g.Lemma 1.2.2 in [1℄) we have jZnj � (n+ 1)jV jjY(F\G)j; (11)and thus jS(n) \ T nP j =XPXZ2Zn jfx; x 2 S(n)\ T nP ; PxjU(a)Qn(U) = PXZ(a; U) 8a 2 V; 8U 2 Y(F \G)gj �XPXZ2Zn exp[nH(XjZ)℄;where the last inequality is immediate from Lemma 1.2.5 in [1℄. We 
ontinue this 
hainof inequalities by using (11) to givejS(n) \ T nP j � (n+ 1)jV jjY(F\G)j maxPXZ2Zn exp[nH(XjZ)℄; (12)9



where the 
onstraint PXZ 2 Zn means that the joint distribution of the RV's X and Z is
ontained in the set of distributions Zn. Noti
e next that the 
onditional entropy H(XjZ)
an be written as H(XjZ) = XU2Y(F\G)Qn(U)H(RU) (13)for some distributions RU on V satisfying the 
onditionXU2Y(F\G)Qn(U)RU (a) = P (a) 8a 2 V: (14)Further re
all that by our hypothesis F and G indu
e two edge{disjoint perfe
t graphson U and thus by Theorem 2 of [2℄H(RU) = S(F;RU) + S(G;RU): (15)Substituting (15) into (13) we see thatH(XjZ) = XU2Y(F\G)Qn(U)[S(F;RU) + S(G;RU)℄: (16)At this point we apply the 
ap{
onvexity of S(F;R) and S(G;R) and the relation (14)to imply H(XjZ) � S(F; P ) + S(G;P ):Substituting this into (12) we see thatjS(n) \ T nP j � (n+ 1)jV jjY(F\G)j expfn[S(F; P ) + S(G;P )℄g: (17)However, jS(n) \ T nP j = �((F \G)nP )by the de�nition of S(n); when
e re
alling the asymptoti
s of �((F \ G)nP ) from (5) theinequality (17) implies (6). 27 OutlookWe have just begun to study the sub{(super)modularity properties of more general graphpairs than treated above, and at this point all we 
an report are some rather intriguingpreliminary observations. The entropies of bipartite graphs 
an be expressed in terms ofthe binary entropy fun
tion and thus in these 
ases the relevant inequalities for submod-ularity might be proved by elementary 
onvexity arguments. We have proved e. g. thatif jE(F � G)j = jE(G � F )j = 1, and if further F [ G is a simple path on k verti
eswhose middle edges (those with endpoints of degree 2) belong to F \G, then the graphsF and G form a submodular pair for k = 3; 5 and a supermodular pair if k = 4: Weare not ready to make any 
onje
ture in more generality, yet it is 
lear already that a10




omplete understanding of this kind of properties may put graph pairs into an interestingnew perspe
tive.Our dis
ussion 
an be extended to hypergraphs. In terms of appli
ations, e. g., in
omputer s
ien
e the resulting entropy is as natural as graph entropy, sin
e sub{additivityremains valid [10℄. For 
onditions of additivity of hypergraph entropy in 
ase of uniformhypergraphs the reader is referred to [14℄.8 A
knowledgementWe thank Kati Marton for suggesting the simple proof of Theorem 2 presented in Se
tion4.
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