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AbstratThe loal hromati number of a graph was introdued in [14℄. It is in between the hro-mati and frational hromati numbers. This motivates the study of the loal hromatinumber of graphs for whih these quantities are far apart. Suh graphs inlude Knesergraphs, their vertex olor-ritial subgraphs, the Shrijver (or stable Kneser) graphs; My-ielski graphs, and their generalizations; and Borsuk graphs. We give more or less tightbounds for the loal hromati number of many of these graphs.We use an old topologial result of Ky Fan [17℄ whih generalizes the Borsuk-Ulamtheorem. It implies the existene of a multiolored opy of the omplete bipartite graphKdt=2e;bt=2 in every proper oloring of many graphs whose hromati number t is deter-mined via a topologial argument. (This was in partiular noted for Kneser graphs byKy Fan [18℄.) This yields a lower bound of dt=2e + 1 for the loal hromati number ofthese graphs. We show this bound to be tight or almost tight in many ases.As another onsequene of the above we prove that the graphs onsidered here haveequal irular and ordinary hromati numbers if the latter is even. This partially proves aonjeture of Johnson, Holroyd, and Stahl and was independently attained by F. Meunier[42℄. We also show that odd hromati Shrijver graphs behave di�erently, their irularhromati number an be arbitrarily lose to the other extreme.



1 IntrodutionThe loal hromati number of a graph is de�ned in [14℄ as the minimum number of olorsthat must appear within distane 1 of a vertex. For the formal de�nition letN(v) = NG(v)denote the neighborhood of a vertex v in a graph G, that is, N(v) is the set of verties vis onneted to.De�nition 1 ([14℄) The loal hromati number  (G) of a graph G is (G) := min maxv2V (G) jf(u) : u 2 N(v)gj+ 1;where the minimum is taken over all proper olorings  of G.The +1 term omes traditionally from onsidering \losed neighborhoods" N(v)[fvgand results in a simpler form of the relations with other oloring parameters.It is obvious that the loal hromati number of a graph G annot be more thanthe hromati number �(G). If G is properly olored with �(G) olors then eah olorlass must ontain a vertex, whose neighborhood ontains all other olors. Thus a value (G) < �(G) an only be attained with a oloring in whih more than �(G) olorsare used. Therefore it is somewhat surprising, that the loal hromati number an bearbitrarily less than the hromati number, f. [14℄, [19℄.On the other hand, it was shown in [31℄ that (G) � �f (G)holds for any graph G, where �f(G) denotes the frational hromati number of G. Forthe de�nition and basi properties of the frational hromati number we refer to thebooks [45, 21℄.This suggests to investigate the loal hromati number of graphs for whih the hro-mati number and the frational hromati number are far apart. This is our main goalin this paper.Prime examples of graphs with a large gap between the hromati and the frationalhromati numbers are Kneser graphs and Myielski graphs, f. [45℄. Other, losely re-lated examples are provided by Shrijver graphs, that are vertex olor-ritial induedsubgraphs of Kneser graphs, and many of the so-alled generalized Myielski graphs.In this introdutory setion we fous on Kneser graphs and Shrijver graphs, Myielskigraphs and generalized Myielski graphs will be treated in detail in Subsetion 4.3.We reall that the Kneser graph KG(n; k) is de�ned for parameters n � 2k as thegraph with all k-subsets of an n-set as verties where two suh verties are onnetedif they represent disjoint k-sets. It is a elebrated result of Lov�asz [36℄ (see also [5,22℄) proving the earlier onjeture of Kneser, that �(KG(n; k)) = n � 2k + 2. For thefrational hromati number one has �f (KG(n; k)) = n=k as easily follows from thevertex-transitivity of KG(n; k) via the Erd}os-Ko-Rado theorem, see [45, 21℄.1



B�ar�any's proof [5℄ of the Lov�asz-Kneser theorem was generalized by Shrijver [46℄ whofound a fasinating family of subgraphs of Kneser graphs that are vertex-ritial withrespet to the hromati number.Let [n℄ denote the set f1; 2; : : : ; ng.De�nition 2 ([46℄) The stable Kneser graph or Shrijver graph SG(n; k) is de�ned asfollows.V (SG(n; k)) = fA � [n℄ : jAj = k; 8i : fi; i+ 1g * A and f1; ng * Ag;E(SG(n; k)) = ffA;Bg : A \B = ;g:Thus SG(n; k) is the subgraph indued by those verties of KG(n; k) that ontainno neighboring elements in the ylially arranged basi set f1; 2; : : : ; ng. These aresometimes alled stable k-subsets. The result of Shrijver in [46℄ is that �(SG(n; k)) =n � 2k + 2(= �(KG(n; k)), but deleting any vertex of SG(n; k) the hromati numberdrops, i.e., SG(n; k) is vertex-ritial with respet to the hromati number. ReentlyTalbot [49℄ proved an Erd}os-Ko-Rado type result, onjetured by Holroyd and Johnson[27℄, whih implies that the ratio of the number of verties and the independene numberin SG(n; k) is n=k. This gives n=k � �f (SG(n; k)) and equality follows by �f (SG(n; k)) ��f (KG(n; k)) = n=k. Notie that SG(n; k) is not vertex-transitive in general. See moreon Shrijver graphs in [8, 35, 39, 54℄.Conerning the loal hromati number it was observed by several people [20, 30℄,that  (KG(n; k)) � n� 3k + 3 holds, sine the neighborhood of any vertex in KG(n; k)indues a KG(n� k; k) with hromati number n� 3k+2. Thus for n=k �xed but largerthan 3,  (G) goes to in�nity with n and k. In fat, the results of [14℄ have a similarimpliation also for 2 < n=k � 3: Namely, it follows from those results, that if a series ofgraphs G1; : : : ; Gi; : : : is suh that  (Gi) is bounded, while �(Gi) goes to in�nity, then thenumber of olors to be used in olorings attaining the loal hromati number grows atleast doubly exponentially in the hromati number. However, Kneser graphs with n=k�xed and n (therefore also the hromati number n � 2k + 2) going to in�nity annotsatisfy this, sine the total number of verties grows simply exponentially in the hromatinumber.The estimates mentioned in the previous paragraph are elementary. On the otherhand, all known proofs for �(KG(n; k)) � n � 2k + 2 use topology or at least have atopologial avor (see [36, 5, 22, 40℄ to mention just a few suh proofs). They use (or atleast, are inspired by) the Borsuk-Ulam theorem.In this paper we use a stronger topologial result due to Ky Fan [17℄ to establishthat all proper olorings of a t-hromati Kneser, Shrijver or generalized Myielski graphontain a multiolored opy of a balaned omplete bipartite graph. This was notied byKy Fan for Kneser graphs [18℄. We also show that the implied lower bound of dt=2e + 1on the loal hromati number is tight or almost tight for many Shrijver graphs andgeneralized Myielski graphs.In the following setion we summarize our main results in more detail.2



2 ResultsIn this setion we summarize our results without introduing the topologial notionsneeded to state the results in their full generality. We will introdue the phrase that agraphG is topologially t-hromatimeaning that �(G) � t and this fat an be shown by aspei� topologial method, see Subsetion 3.2. Here we use this phrase only to emphasizethe generality of the orresponding statements, but the reader an always substitute thephrase \a topologially t-hromati graph" by \a t-hromati Kneser graph" or \a t-hromati Shrijver graph" or by \a generalized Myielski graph of hromati number t".Our general lower bound for the loal hromati number proven in Setion 3 is thefollowing.Theorem 1 If G is topologially t-hromati for some t � 2, then (G) � � t2� + 1:This result on the loal hromati number is the immediate onsequene of the Zig-zagtheorem in Subsetion 3.3 that we state here in a somewhat weaker form:Theorem 2 Let G be a topologially t-hromati graph and let  be a proper oloring ofG with an arbitrary number of olors. Then there exists a omplete bipartite subgraphKd t2 e;b t2  of G all verties of whih reeive a di�erent olor in .We use Ky Fan's generalization of the Borsuk-Ulam theorem [17℄ for the proof. TheZig-zag theorem was previously established for Kneser graphs by Ky Fan [18℄.We remark that J�anos K�orner [30℄ suggested to introdue a graph invariant b(G) whihis the size (number of points) of the largest ompletely multiolored omplete bipartitegraph that should appear in any proper oloring of graph G. It is obvious from thede�nition that this parameter is bounded from above by �(G) and bounded from belowby the loal hromati number  (G). An obvious onsequene of Theorem 2 is that if Gis topologially t-hromati, then b(G) � t.In Setion 4 we show that Theorem 1 is essentially tight for several Shrijver andgeneralized Myielski graphs. In partiular, this is always the ase for a topologiallyt-hromati graph that has a wide t-oloring as de�ned in De�nition 4 in Subsetion 4.1.As the �rst appliation of our result on wide olorings we show, that if the hro-mati number is �xed and odd, and the size of the Shrijver graph is large enough, thenTheorem 1 is exatly tight:Theorem 3 If t = n� 2k + 2 > 2 is odd and n � 4t2 � 7t then (SG(n; k)) = � t2� + 1:3



See Remark 4 in Subsetion 4.2 for a relaxed bound on n. The proof of Theorem 3is ombinatorial. It will also show that the laimed value of  (SG(n; k)) an be attainedwith a oloring using t + 1 olors and avoiding the appearane of a totally multioloredKd t2 e;d t2 e: To appreiate the latter property, f. Theorem 2.Sine SG(n; k) is an indued subgraph of SG(n+1; k) Theorem 3 immediately impliesthat for every �xed even t = n� 2k + 2 and n; k large enough (SG(n; k)) 2 � t2 + 1; t2 + 2� :The lower bound for the loal hromati number in Theorem 1 is smaller than twhenever t � 4 but Theorem 3 laims the existene of Shrijver graphs with smallerloal than ordinary hromati number only with hromati number 5 and up. In [47℄ weprove that the loal hromati number of all 4-hromati Kneser, Shrijver, or generalizedMyielski graphs is 4. The reason is that all these graphs satisfy a somewhat strongerproperty, they are strongly topologially 4-hromati (see De�nition 3). On the otherhand, we also show in [47℄ that topologially 4-hromati graphs of loal hromati number3 do exist.To demonstrate that requiring large n and k in Theorem 3 is ruial we prove thefollowing statement.Proposition 4  (SG(n; 2)) = n� 2 = �(SG(n; 2)) for every n � 4.As a seond appliation of wide olorings we prove in Subsetion 4.3 that Theorem 1is also tight for several generalized Myielski graphs. These graphs will be denoted byM (d)r (K2) where r = (r1; : : : ; rd) is a vetor of positive integers. See Subsetion 4.3 forthe de�nition. Informally, d is the number of iterations and ri is the number of \levels"in iteration i of the generalized Myielski onstrution. M (d)r (K2) is proven to be (d+2)-hromati \beause of a topologial reason" by Stiebitz [48℄. This topologial reasonimplies that these graphs are strongly topologially (d + 2)-hromati. Thus Theorem 1applies and gives the lower bound part of the following result.Theorem 5 If r = (r1; : : : ; rd), d is odd, and ri � 7 for all i, then (M (d)r (K2)) = �d2� + 2:It will be shown in Theorem 13 that relaxing the ri � 7 ondition to ri � 4 anonly slightly weaker upper bound is still valid. As a ounterpart we also show (seeProposition 10 in Subsetion 4.3) that for the ordinary Myielski onstrution, whihis the speial ase of r = (2; : : : ; 2), the loal hromati number behaves just like thehromati number.The Borsuk-Ulam Theorem in topology is known to be equivalent (see Lov�asz [37℄)to the validity of a tight lower bound on the hromati number of graphs de�ned on4



the n-dimensional sphere, alled Borsuk graphs. In Subsetion 4.4 we prove that theloal hromati number of Borsuk graphs behaves similarly as that of the graphs alreadymentioned above. In this subsetion we also formulate a topologial onsequene of ourresults on the tightness of Ky Fan's theorem [17℄. We also give a diret proof for the sametightness result.The irular hromati number �(G) of a graph G was introdued by Vine [52℄, seeDe�nition 7 in Setion 5. It satis�es �(G) � 1 < �(G) � �(G). In Setion 5 we provethe following result using the Zig-zag theorem.Theorem 6 If G is topologially t-hromati and t is even, then �(G) � t.This theorem implies that �(G) = �(G) if the hromati number is even for Knesergraphs, Shrijver graphs, generalized Myielski graphs, and ertain Borsuk graphs. Theresult on Kneser and Shrijver graphs gives a partial solution of a onjeture by Johnson,Holroyd, and Stahl [28℄ and a partial answer to a question of Hajiabolhassan and Zhu[24℄. These results were independently obtained by Meunier [42℄. The result on generalizedMyielski graphs answers a question of Chang, Huang, and Zhu [10℄.We will also disuss the irular hromati number of odd hromati Borsuk andShrijver graphs showing that they an be lose to one less than the hromati number.We will use a a similar result for generalized Myielski graphs proven by Lam, Lin, Gu,and Song [33℄.3 Lower bound3.1 Topologial preliminariesThe following is a brief overview of some of the topologial onepts we need. We refer to[7, 26℄ and [39℄ for basi onepts and also for a more detailed disussion of the notionsand fats given below.A Z2-spae (or involution spae) is a pair (T; �) of a topologial spae T and the involution� : T ! T , whih is ontinuous and satis�es that �2 is the identity map. The points x 2 Tand �(x) are alled antipodal. The involution � and the Z2-spae (T; �) are free if �(x) 6= xfor all points x of T . If the involution is understood from the ontext we speak about Trather than the pair (T; �). This is the ase, in partiular, for the unit sphere Sd in Rd+1with the involution given by the entral reetion x 7! �x. A ontinuous map f : S ! Tbetween Z2-spaes (S; �) and (T; �) is a Z2-map (or an equivariant map) if it respets therespetive involutions, that is f Æ � = � Æ f . If suh a map exists we write (S; �)! (T; �).If (S; �) ! (T; �) does not hold we write (S; �) 6! (T; �). If both S ! T and T ! S weall the Z2-spaes S and T Z2-equivalent and write S $ T .We try to avoid using homotopy equivalene and Z2-homotopy equivalene (i.e., ho-motopy equivalene given by Z2-maps), but we will have to use two simple observations.5



First, if the Z2-spaes S and T are Z2-homotopy equivalent, then S $ T . Seond, ifthe spae S is homotopy equivalent to a sphere Sh (this relation is between topologialspaes, not Z2-spaes), then for any involution � we have Sh ! (S; �).The Z2-index of a Z2-spae (T; �) is de�ned (see e.g. [41, 39℄) asind(T; �) := minfd � 0 : (T; �)! Sdg;where ind(T; �) is set to be 1 if (T; �) 6! Sd for all d.The Z2-oindex of a Z2-spae (T; �) is de�ned asoind(T; �) := maxfd � 0 : Sd ! (T; �)g:If suh a map exists for all d, then we set oind(T; �) = 1. Notie that if (T; �) is notfree, we have ind(T; �) = oind(T; �) =1.Note that S ! T implies ind(S) � ind(T ) and oind(S) � oind(T ). In partiular,Z2-equivalent spaes have equal index and also equal oindex.The elebrated Borsuk-Ulam Theorem an be stated in many equivalent forms. Herewe state three of them. For more equivalent versions and several proofs we refer to [39℄.Here (i) and (ii) are standard forms of the Borsuk-Ulam Theorem, while (iii) is learlyequivalent to (ii).Borsuk-Ulam Theorem.(i) (Lyusternik-Shnirel'man version) Let d � 0 and let H be a olletion of open (orlosed) sets overing Sd with no H 2 H ontaining a pair of antipodal points. ThenjHj � d+ 2.(ii) Sd+1 6! Sd for any d � 0.(iii) For a Z2-spae T we have ind(T ) � oind(T ).The suspension susp(S) of a topologial spae S is de�ned as the fator of the spaeS � [�1; 1℄ that identi�es all the points in S � f�1g and identi�es also the points inS � f1g. If S is a Z2-spae with the involution �, then the suspension susp(S) is alsoa Z2-spae with the involution (x; t) 7! (�(x);�t). Any Z2-map f : S ! T naturallyextends to a Z2-map susp(f) : susp(S) ! susp(T ) given by (x; t) 7! (f(x); t). We havesusp(Sn) �= Sn+1 with a Z2-homeomorphism. These observations show the well knowninequalities below.Lemma 3.1 For any Z2-spae S ind(susp(S)) � ind(S) + 1 and oind(susp(S)) �oind(S) + 1.A(n abstrat) simpliial omplex K is a non-empty, hereditary set system. That is,F 2 K, F 0 � F implies F 0 2 K and we have ; 2 K. In this paper we onsider only6



�nite simpliial omplexes. The non-empty sets in K are alled simplies. We all the setV (K) = fx : fxg 2 Kg the set of verties of K. In a geometri realization of K a vertex xorresponds to a point jjxjj in a Eulidean spae, a simplex � orresponds to its body, theonvex hull of its verties: jj�jj = onv(fjjxjj : x 2 �g). We assume that the points jjxjjfor x 2 � are aÆne independent, and so jj�jj is a geometri simplex. We also assume thatdisjoint simplies have disjoint bodies. The body of the omplex K is jjKjj = [�2K jj�jj,it is determined up to homeomorphism by K. Any point in p 2 jjKjj has a uniquerepresentation as a onvex ombination p =Px2V (K) �xjjxjj suh that fx : �x > 0g 2 K.A map f : V (K) ! V (L) is alled simpliial if it maps simplies to simplies, thatis � 2 K implies f(�) 2 L. In this ase we de�ne jjf jj : jjKjj ! jjLjj by settingjjf jj(jjxjj) = jjf(x)jj for verties x 2 V (K) and taking an aÆne extension of this funtionto the bodies of eah of the simplies in K. If jjKjj and jjLjj are Z2-spaes (usually withan involution also given by simpliial maps), then we say that f is a Z2-map if jjf jj is aZ2-map. If jjKjj is a Z2-spae we use ind(K) and oind(K) for ind(jjKjj) and oind(jjKjj),respetively.Following the papers [1, 32, 41℄ we introdue the box omplex B0(G) for any �nite graphG. See [41℄ for several similar omplexes. We de�ne B0(G) to be a simpliial omplex onthe verties V (G)�f1; 2g. For subsets S; T � V (G) we denote the set S �f1g[ T �f2gby S ℄ T , following the onvention of [39, 41℄. For v 2 V (G) we denote by +v the vertex(v; 1) 2 fvg ℄ ; and �v denotes the vertex (v; 2) 2 ; ℄ fvg. We set S ℄ T 2 B0(G) ifS \ T = ; and the omplete bipartite graph with sides S and T is a subgraph of G. Notethat V (G) ℄ ; and ; ℄ V (G) are simplies of B0(G).The Z2-map S ℄ T 7! T ℄ S ats simpliially on B0(G). It makes the body of theomplex a free Z2-spae.We de�ne the hom spae H(G) of G to be the subspae onsisting of those pointsp 2 jjB0(G)jj that, when written as a onvex ombination p = Px2V (B0(G)) �xjjxjj withfx : �x > 0g 2 B0(G) give Px2V (G)℄; �x = 1=2.Notie that H(G) an also be obtained as the body of a ell omplex Hom(K2; G), see[3℄, or of a simpliial omplex Bhain(G), see [41℄.A useful onnetion between B0(G) and H(G) follows from a ombination of resultsof Csorba [11℄ and Matou�sek and Ziegler [41℄.Proposition 7 jjB0(G)jj $ susp(H(G))Proof. Csorba [11℄ proves the Z2-homotopy equivalene of jjB0(G)jj and the suspensionof the body of yet another box omplex B(G) of G. As we mentioned, Z2-homotopyequivalene implies Z2-equivalene. Matou�sek and Ziegler [41℄ prove the Z2-equivaleneof jjB(G)jj and H(G). Finally for Z2-spaes S and T if S ! T , then susp(S)! susp(T ),therefore jjB(G)jj $ H(G) implies susp(jjB(G)jj)$ susp(H(G)). �Note that Csorba [11℄ proves, f. also �Zivaljevi� [55℄, the Z2-homotopy equivaleneof jjB(G)jj and H(G), and therefore we ould also laim Z2-homotopy equivalene inProposition 7. 7



3.2 Some earlier topologial boundsA graph homomorphism is an edge preserving map from the vertex set of a graph F tothe vertex set of another graph G. If there is a homomorphism f from F to G, then itgenerates a simpliial map from B0(F ) to B0(G) in the natural way. This map is a Z2-mapand thus it shows jjB0(F )jj ! jjB0(G)jj. One an often prove jjB0(F )jj 6! jjB0(G)jj usingthe indexes or oindexes of these omplexes and this relation implies the non-existene ofa homomorphism from F to G. A similar argument applies with the spaes H(�) in plaeof jjB0(�)jj.Coloring a graph G with m olors an be onsidered as a graph homomorphismfrom G to the omplete graph Km. The box omplex B0(Km) is the boundary om-plex of the m-dimensional ross-polytope (i.e., the onvex hull of the basis vetorsand their negatives in Rm), thus jjB0(Km)jj �= Sm�1 with a Z2-homeomorphism andoind(B0(G)) � ind(B0(G)) � m � 1 is neessary for G being m-olorable. Similarly,oind(H(G)) � ind(H(G)) � m� 2 is also neessary for �(G) � m sine H(Km) an beobtained from interseting the boundary of the m-dimensional ross-polytope with thehyperplane P xi = 0, and therefore H(Km) �= Sm�2 with a Z2-homeomorphism. Thesefour lower bounds on �(G) an be arranged in a single line of inequalities using Lemma 3.1and Proposition 7:�(G) � ind(H(G)) + 2 � ind(B0(G)) + 1 � oind(B0(G)) + 1 � oind(H(G)) + 2 (1)In fat, many of the known proofs of Kneser's onjeture an be interpreted as aproof of an appropriate lower bound on the (o)index of one of the above omplexes. Inpartiular, B�ar�any's simple proof [5℄ exhibits a map showing Sn�2k ! H(KG(n; k)) toonlude that oind(H(KG(n; k))) � n � 2k and thus �(KG(n; k)) � n � 2k + 2. Theeven simpler proof of Greene [22℄ exhibits a map showing Sn�2k+1 ! B0(KG(n; k)) toonlude that oind(B0(KG(n; k))) � n � 2k + 1 and thus �(KG(n; k)) � n � 2k + 2.Shrijver's proof [46℄ of �(SG(n; k)) � n � 2k + 2 is a generalization of B�ar�any's and italso an be interpreted as a proof of Sn�2k ! H(SG(n; k)). We remark that the samekind of tehnique is used with other omplexes related to graphs, too. In partiular,Lov�asz's original proof [36℄ an also be onsidered as exhibiting a Z2-map from Sn�2k tosuh a omplex, di�erent from the ones we onsider here. For a detailed disussion ofseveral suh omplexes and their usefulness in bounding the hromati number we referthe reader to [41℄.The above disussion gives several possible \topologial reasons" that an fore a graphto be at least t-hromati. Here we single out two suh reasons. We would like to stressthat these two reasons are just two out of many and refer to the paper [2℄ for some thatare not even mentioned above. In this sense, our terminology is somewhat arbitrary. Thestatement of our results in Setion 2 beomes preise by applying the onventions givenby the following de�nition. 8



De�nition 3 We say that a graph G is topologially t-hromati ifoind(B0(G)) � t� 1:We say that a graph G is strongly topologially t-hromati ifoind(H(G)) � t� 2:By inequality (1) if a graph is strongly topologially t-hromati, then it is topologi-ally t-hromati, and if G is topologially t-hromati, then �(G) � t. In [47℄ we showthe existene of a graph for any t � 4 that is topologially t-hromati but not stronglytopologially t-hromati. We also show there that the two notions have di�erent onse-quenes in terms of the loal hromati number for t = 4.The notion that a graph is (strongly) topologially t-hromati is useful, as it ap-plies to many widely studied lasses of graphs. As we mentioned above, B�ar�any [5℄ andShrijver [46℄ establish this for t-hromati Kneser and Shrijver graphs. For the reader'sonveniene we reall the proof here. See the analogous statement for generalized Myiel-ski graphs and (ertain �nite subgraphs of the) Borsuk graphs after we introdue thosegraphs.Proposition 8 (B�ar�any; Shrijver) The t-hromati Kneser and Shrijver graphs arestrongly topologially t-hromati.Proof. We need to prove that SG(n; k) is strongly topologially (n� 2k+ 2)-hromati,i.e., that oind(H(SG(n; k))) � n�2k. The statement for Kneser graphs follows. For x 2Sn�2k let Hx denote the open hemisphere in Sn�2k around x. Consider an arrangementof the elements of [n℄ on Sn�2k so that eah open hemisphere ontains a stable k-subset,i.e., a vertex of SG(n; k). It is not hard to hek that identifying i 2 [n℄ with vi=jvij forvi = (�1)i(1; i; i2; : : : ; in�2k) 2 Rn�2k+1 provides suh an arrangement. (See [46℄ or [39℄ fordetails of this.) For eah vertex v of SG(n; k) and x 2 Sn�2k letDv(x) denote the smallestdistane of a point in v from the set Sn�2k n Hx and let D(x) = Pv2V (SG(n;k))Dv(x).Note that Dv(x) > 0 if v is ontained in Hx and therefore D(x) > 0 for all x. Letf(x) := 12D(x) Pv2V (SG(n;k))Dv(x)jj+vjj+ 12D(�x) Pv2V (SG(n;k))Dv(�x)jj�vjj. This f is aZ2-map Sn�2k ! H(SG(n; k)) proving the proposition. �3.3 Ky Fan's result on overs of spheres and the Zig-Zag theo-remThe following result of Ky Fan [17℄ implies the Lyusternik-Shnirel'man version of theBorsuk-Ulam theorem. Here we state two equivalent versions of the result, both in termsof sets overing the sphere. See the original paper for another version generalizing anotherstandard form of the Borsuk-Ulam theorem.Ky Fan's Theorem. 9



(i) Let A be a system of open (or a �nite system of losed) subsets of Sk overing theentire sphere. Assume a linear order < is given on A and all sets A 2 A satisfyA \ �A = ;. Then there are sets A1 < A2 < : : : < Ak+2 of A and a point x 2 Sksuh that (�1)ix 2 Ai for all i = 1; : : : ; k + 2.(ii) Let A be a system of open (or a �nite system of losed) subsets of Sk suh that[A2A(A [ �A) = Sk. Assume a linear order < is given on A and all sets A 2 Asatisfy A \ �A = ;. Then there are sets A1 < A2 < : : : < Ak+1 of A and a pointx 2 Sk suh that (�1)ix 2 Ai for all i = 1; : : : ; k + 1.The Borsuk-Ulam theorem is easily seen to be implied by version (i), that shows inpartiular, that jAj � k + 2. We remark that [17℄ ontains the above statements onlyabout losed sets. The statements on open sets an be dedued by a standard argumentusing the ompatness of the sphere. We also remark that version (ii) is formulated alittle di�erently in [17℄. A plae where one �nds exatly the above formulation (for losedsets, but for any Z2-spae) is Baon's paper [4℄.Zig-zag Theorem Let G be a topologially t-hromati �nite graph and let  be an ar-bitrary proper oloring of G by an arbitrary number of olors. We assume the olors arelinearly ordered. Then G ontains a omplete bipartite subgraph Kd t2 e;b t2  suh that  as-signs distint olors to all t verties of this subgraph and these olors appear alternatingon the two sides of the bipartite subgraph with respet to their order.Proof. We have oind(B0(G)) � t� 1, so there exists a Z2-map f : St�1 ! B0(G). Forany olor i we de�ne a set Ai � St�1 letting x 2 Ai if and only if for the minimal simplexUx ℄ Vx ontaining f(x) there exists a vertex z 2 Ux with (z) = i. These sets are open,but they do not neessarily over the entire sphere St�1. Notie that �Ai onsists of thepoints x 2 St�1 with �x 2 Ai, whih happens if and only if there exists a vertex z 2 U�xwith (z) = i. Here U�x = Vx. For every x 2 St�1 either Ux or Vx is not empty, thereforewe have [i(Ai [ �Ai) = St�1. Assume for a ontradition that for a olor i we haveAi \ �Ai 6= ; and let x be a point in the intersetion. We have a vertex z 2 Ux and avertex z0 2 Vx with (z) = (z0) = i. By the de�nition of B0(G) the verties z and z0 areonneted in G. This ontradits the hoie of  as a proper oloring. The ontraditionshows that Ai \ �Ai = ; for all olors i.Applying version (ii) of Ky Fan's theorem we get that for some olors i1 < i2 < : : : < itand a point x 2 St�1 we have (�1)jx 2 Aij for j = 1; 2; : : : t. This implies the existeneof verties zj 2 U(�1)jx with (zj) = ij. Now U(�1)jx = Ux for even j and U(�1)jx = Vx forodd j. Therefore the omplete bipartite graph with sides fzjjj is eveng and fzjjj is oddgis a subgraph of G with the required properties. �This result was previously established for Kneser graphs in [18℄.Remark 1. Sine for any �xed oloring we are allowed to order the olors in an arbitrarymanner, the Zig-zag Theorem implies the existene of several totally multiolored opiesof Kd t2 e;b t2 . For a uniform random order any �xed totally multiolored Kd t2 e;b t2  satis�es10



the zig-zag rule with probability 1=� tbt=2� if t is odd and with probability 2=� tt=2� if t iseven. Thus the Zig-zag Theorem implies the existene of many di�erently olored totallymultiolored subgraphs Kd t2 e;b t2  in G: � tbt=2� opies for odd t and � tt=2�=2 opies for event. If the oloring uses only t olors we get a totally multiolored Kd t2 e;b t2  subgraph withall possible olorings, and the number of these di�erent subgraphs is exatly the lowerbound stated. �Proof of Theorems 1 and 2.Theorems 1 and 2 are diret onsequenes of the Zig-zag theorem. For Theorem 2 thisis obvious. To prove Theorem 1 onsider any vertex of the bt=2 side of a multioloredomplete bipartite graph. It has dt=2e di�erently olored neighbors on the other side,thus at least dt=2e di�erent olors in its neighborhood. �Remark 2. Theorem 1 gives tight lower bounds for the loal hromati number of topo-logially t-hromati graphs for odd t as several examples of the next setion will show.In [47℄ we present examples that show that the situation is similar for even values oft. However, the graphs establishing this fat are not strongly topologially t-hromati,whereas the graphs showing tightness of Theorem 1 for odd t are. This leaves open thequestion whether  (G) � t=2 + 2 holds for all strongly topologially t-hromati graphsG and even t � 4. While we prove this statement in [47℄ for t = 4 we do not know theanswer for higher values of t. �4 Upper boundIn this setion we present the ombinatorial onstrutions that prove Theorems 3 and 5.In both ases general observations on wide olorings (to be de�ned below) prove useful.The upper bound in either of Theorems 3 or 5 implies the existene of ertain open oversof spheres. These topologial onsequenes and the loal hromati number of Borsukgraphs are disussed in the last subsetion of this setion.4.1 Wide oloringsWe start here with a general method to alter a t-oloring and get a (t+1)-oloring showingthat  � t=2 + 2. It works if the original oloring was wide as de�ned below.De�nition 4 A vertex oloring of a graph is alled wide if the end verties of all walksof length 5 reeive di�erent olors.Note that any wide oloring is proper, furthermore any pair of verties of distane 3or 5 reeive distint olors. Moreover, if a graph has a wide oloring it does not ontaina yle of length 3 or 5. For graphs that do not have yles of length 3, 5, 7, or 9any oloring is wide that assigns di�erent olors to verties of distane 1, 3 or 5 apart.11



Another equivalent de�nition (onsidered in [23℄) is that a proper oloring is wide if theneighborhood of any olor lass is an independent set and so is the seond neighborhood.Lemma 4.1 If a graph G has a wide oloring using t olors, then  (G) � bt=2 + 2.Proof. Let 0 be the wide t-oloring of G. We alter this oloring by swithing the olorof the neighbors of the troublesome verties to a new olor. We de�ne a vertex x to betroublesome if j0(N(x))j > t=2. Assume the olor � is not used in the oloring 0. Forx 2 V (G) we let (x) = � � if x has a troublesome neighbor0(x) otherwise.The olor lass � in  is the union of the neighborhoods of troublesome verties. Tosee that this is an independent set onsider any two verties z and z0 of olor �. Let y bea troublesome neighbor of z and let y0 be a troublesome neighbor of z0. Both 0(N(y))and 0(N(y0)) ontain more than half of the t olors in 0, therefore these sets are notdisjoint. We have a neighbor x of y and a neighbor x0 of y0 satisfying 0(x) = 0(x0). Thisshows that z and z0 are not onneted, as otherwise the walk xyzz0y0x0 of length 5 wouldhave two end verties in the same olor lass.All other olor lasses of  are subsets of the orresponding olor lasses in 0, and aretherefore independent. Thus  is a proper oloring.Any troublesome vertex x has now all its neighbors reolored, therefore (N(x)) = f�g.For the verties of G that are not troublesome one has j0(N(x))j � t=2 and (N(x)) �0(N(x)) [ f�g, therefore j(N(x))j � t=2+ 1. Thus the oloring  shows  (G) � t=2 + 2as laimed. �We note that the oloring  found in the proof uses t + 1 olors and any vertex thatsees the maximal number bt=2+1 of the olors in its neighborhood must have a neighborof olor �. In partiular, for odd t one will always �nd two verties of the same olor inany K(t+1)=2;(t+1)=2 subgraph.4.2 Shrijver graphsIn this subsetion we prove Theorem 3 whih shows that the loal hromati number ofShrijver graphs with ertain parameters are as low as allowed by Theorem 1. We alsoprove Proposition 4 to show that for some other Shrijver graphs the loal hromatinumber agrees with the hromati number.For the proof of Theorem 3 we will use the following simple lemma.Lemma 4.2 Let u; v � [n℄ be two verties of SG(n; k). If there is a walk of length 2sbetween u and v in SG(n; k) then jv n uj � s(t� 2), where t = n� 2k+ 2 = �(SG(n; k)).12



Proof. Let xyz be a length two walk in SG(n; k). Sine y is disjoint from x, it ontainsall but n � 2k = t� 2 elements of [n℄ n x. As z is disjoint from y it an ontain at mostt� 2 elements not ontained in x. This proves the statement for s = 1.Now let x0x1 : : : x2s be a 2s-length walk between u = x0 and v = x2s and assume thestatement is true for s� 1. Sine jv nuj � jv nx2s�2j+ jx2s�2 nuj � (t� 2)+ (s� 1)(t� 2)we an omplete the proof by indution. �We remark that Lemma 4.2 remains true for KG(n; k) with literally the same proof,but we will need it for SG(n; k), this is why it is stated that way.Theorem 3 (restated) If t = n� 2k + 2 > 2 is odd and n � 4t2 � 7t, then (SG(n; k)) = � t2� + 1:Proof. We need to show that  (SG(n; k)) = (t+3)=2. Note that the t = 3 ase is trivialas all 3-hromati graphs have loal hromati number 3. The lower bound for the loalhromati number follows from Theorem 1 and Proposition 8.We de�ne a wide oloring 0 of SG(n; k) using t olors. From this Lemma 4.1 givesthe upper bound on  (SG(n; k)).Let [n℄ = f1; : : : ; ng be partitioned into t sets, eah ontaining an odd number ofonseutive elements of [n℄. More formally, [n℄ is partitioned into disjoint sets A1; : : : ; At,where eah Ai ontains onseutive elements and jAij = 2pi � 1. We need pi � 2t� 3 forthe proof, this is possible as long as n � t(4t� 7) as assumed.Notie, that Pti=1(pi � 1) = k � 1, and therefore any k-element subset x of [n℄ mustontain more than half (i.e., at least pi) of the elements in some Ai. We de�ne our oloring0 by arbitrarily hoosing suh an index i as the olor 0(x). This is a proper oloringeven for the graph KG(n; k) sine if two sets x and y both ontain more than half of theelements of Ai, then they are not disjoint.As a oloring of KG(n; k) the oloring 0 is not wide. We need to show that theoloring 0 beomes wide if we restrit it to the subgraph SG(n; k).The main observation is the following: Ai ontains a single subset of ardinality pithat does not ontain two onseutive elements. Let Ci be this set onsisting of the �rst,third, et. elements of Ai. A vertex of SG(n; k) has no two onseutive elements, thus avertex x of SG(n; k) of olor i must ontain Ci.Consider a walk x0x1 : : : x5 of length 5 in SG(n; k) and let i = 0(x0). Thus the setx0 ontains Ci. By Lemma 4.2 jx4 n x0j � 2(t� 2). In partiular, x4 ontains all but atmost 2t� 4 elements of Ci. As pi = jCij � 2t� 3, this means x4 \ Ci 6= ;: Thus the setx5, whih is disjoint from x4, annot ontain all elements of Ci, showing 0(x5) 6= i. Thisproves that the oloring 0 is wide, thus Lemma 4.1 ompletes the proof of the theorem.� Note that the smallest Shrijver graph for whih the above proof gives  (SG(n; k)) <�(SG(n; k)) is G = SG(65; 31) with �(G) = 5 and  (G) = 4. In Remark 4 below we13



show how the lower bound on n an be lowered somewhat. After that we show that somelower bound is needed as  (SG(n; 2)) = �(SG(n; 2)) for every n.Remark 3. In [14℄ universal graphs U(m; r) are de�ned for whih it is shown that a graphG an be olored with m olors suh that the neighborhood of every vertex ontainsfewer than r olors if and only if a homomorphism from G to U(m; r) exists. The proofof Theorem 3 gives, for odd t, a (t + 1)-oloring of SG(n; k) (for appropriately largen and k that give hromati number t) for whih no neighborhood ontains more than(t + 1)=2 olors, thus establishing the existene of a homomorphism from SG(n; k) toU(t + 1; (t+ 3)=2). This, in partiular, proves that �(U(t + 1; (t+ 3)=2)) � t, whih is aspeial ase of Theorem 2.6 in [14℄. It is not hard to see that this inequality is atuallyan equality. Further, by the omposition of the appropriate maps, the existene of thishomomorphism also proves that U(t + 1; (t+ 3)=2) is strongly topologially t-hromati.�Remark 4. For the prie of letting the proof be a bit more ompliated one an improveupon the bound given on n in Theorem 3. In partiular, one an show that the sameonlusion holds for odd t and n � 2t2�4t+3. More generally, we an show  (SG(n; k)) ��(SG(n; k)) � m = n � 2k + 2 � m provided that �(SG(n; k)) � 2m + 3 and n �8m2 + 16m+ 9 or �(SG(n; k)) � 4m+ 3 and n � 20m+ 9. The smallest Shrijver graphfor whih we an prove that the loal hromati number is smaller than the ordinaryhromati number is SG(33; 15) with 1496 verties and � = 5 but  = 4. (In general,one has jV (SG(n; k))j = nk�n�k�1k�1 �, f. Lemma 1 in [49℄.) The smallest n and k for whihwe an prove  (SG(n; k)) < �(SG(n; k)) is for the graph SG(29; 12) for whih � = 7 but � 6.We only sketh the proof. For a similar and more detailed proof see Theorem 13.The idea is again to take a basi oloring 0 of SG(n; k) and obtain a new oloring by reoloring to a new olor some neighbors of those verties v for whih j0(N(v))j istoo large. The novelty is that now we do not reolor all suh neighbors, just enough ofthem, and also the de�nition of the basi oloring 0 is a bit di�erent. Partition [n℄ intot = n� 2k + 2 intervals A1; : : : ; At, eah of odd length as in the proof of Theorem 3 andalso de�ne Ci similarly to be the unique largest subset of Ai not ontaining onseutiveelements. For a vertex x we de�ne 0(x) to be the smallest i for whih Ci � x. Note thatsuh an i must exist. Now we de�ne when to reolor a vertex to the new olor � if our goalis to prove  (SG(n; k)) � b := t�m, where m > 0. We let (y) = � i� y is the neighborof a vertex x having at least b� 2 di�erent olors smaller than 0(y) in its neighborhood.Otherwise, (y) = 0(y). It is lear that j(N(x))j � b � 1 is satis�ed, the only problemwe fae is that  may not be a proper oloring. To avoid this problem we only need thatthe reolored verties form an independent set. For eah vertex v de�ne the index setI(v) := fj : v \ Cj = ;g. If y and y0 are reolored verties then they are neighbors ofsome x and x0, respetively, where I(x) ontains 0(y) and at least b � 2 indies smallerthan 0(y) and I(x0) ontains 0(y0) and at least b � 2 indies smaller than 0(y0). Sinej[n℄ n (x [ y)j = t � 2, there are at most t � 2 elements in [j2I(x)Cj not ontained in y.14



The de�nition of 0 also implies that at least one element of Cj is missing from y for everyj < 0(y). Similarly, there are at most t�2 elements in [j2I(x0)Cj not ontained in y0 andat least one element of Cj is missing from y0 for every j < 0(y0): These onditions lead toy\y0 6= ; if the sizes jAij = 2jCij�1 are appropriately hosen. In partiular, if t � 2m+3and jAtj � 1; jAt�1j � 2m + 3; jAt�2j � : : : � jAt�(2m+2)j � 4m + 5, or t � 4m + 3 andjAtj � 1; jAt�1j � 3; jAt�2j � : : : � jAt�(4m+2)j � 5, then the above argument leads to aproof of  (SG(n; k)) � t �m. (It takes some further but simple argument why the lasttwo intervals Ai an be hosen smaller than the previous ones.) These two possible hoiesof the interval sizes give the two general bounds on n we laimed suÆient for attaining (SG(n; k)) � t�m. The strengthening of Theorem 3 is obtained by the m = (t� 3)=2speial ase of the �rst bound. �Proposition 4 (restated)  (SG(n; 2)) = n� 2 = �(SG(n; 2)) for every n � 4.Proof. In the n = 4 ase SG(n; 2) onsists of a single edge and the statement of theproposition is trivial. Assume for a ontradition that  (SG(n; 2)) � n � 3 for somen � 5 and let  be a proper oloring of SG(n; 2) showing this with the minimal numberof olors. As �(SG(n; 2)) = n� 2 and a oloring of a graph G with exatly �(G) olorsannot show  (G) < �(G) the oloring  uses at least n� 1 olors.It is worth visualizing the verties of SG(n; 2) as diagonals of an n-gon (f. [8℄).In other words, SG(n; 2) is the omplement of the line graph of Dn, where Dn is theomplement of the yle Cn. The olor lasses are independent sets in SG(n; 2), so theyare either stars or triangles in Dn.We say that a vertex x sees the olor lasses of its neighbors. By our assumption everyvertex sees at most n� 4 olor lasses.Assume a olor lass onsists of a single vertex x. As x sees at most n � 4 of theat least n � 1 olor lasses we an hoose a di�erent olor for x. The resulting oloringattains the same loal hromati number with fewer olors. This ontradits the hoieof  and shows that no olor lass is a singleton.A triangle olor lass is seen by all other edges of Dn. A star olor lass with enteri and at least three elements is seen by all verties that, as edges of Dn, are not inidentto i. For star olor lasses of two edges there an be one additional vertex not seeing thelass. So every olor lass is seen by all but at most n� 2 verties. We double ount thepairs of a vertex x and a olor lass C seen by x. On one hand every vertex sees at mostn�4 lasses. On the other hand all the olor lasses are seen by at least ��n2�� n��(n�2)verties. We have (n� 1)��n2�� 2n + 2� � ��n2�� n� (n� 4);and this ontradits our n � 5 assumption. The ontradition proves the statement.�15



4.3 Generalized Myielski graphsAnother lass of graphs for whih the hromati number is known only via the topologialmethod is formed by generalized Myielski graphs, see [23, 39, 48℄. They are interestingfor us also for another reason: there is a big gap between their frational and ordinaryhromati numbers (see [34, 50℄), therefore the loal hromati number an take its valuefrom a large interval.Reall that the MyielskianM(G) of a graphG is the graph de�ned on (f0; 1g�V (G))[fzg with edge set E(M(G)) = ff(0; v); (i; w)g : fv; wg 2 E(G); i 2 f0; 1gg [ ff(1; v); zg :v 2 V (G)g. Myielski [43℄ used this onstrution to inrease the hromati number of agraph while keeping the lique number �xed: �(M(G)) = �(G)+1 and !(M(G)) = !(G).Following Tardif [50℄, the same onstrution an also be desribed as the diret (alsoalled ategorial) produt of G with a path on three verties having a loop at one end andthen identifying all verties that have the other end of the path as their �rst oordinate.Reall that the diret produt of F and G is a graph on V (F )�V (G) with an edge between(u; v) and (u0; v0) if and only if fu; u0g 2 E(F ) and fv; v0g 2 E(G). The generalizedMyielskian of G (alled a one over G by Tardif [50℄) Mr(G) is then de�ned by takingthe diret produt of P and G, where P is a path on r + 1 verties having a loop atone end, and then identifying all the verties in the produt with the loopless end of thepath as their �rst oordinate. With this notation M(G) = M2(G). These graphs wereonsidered by Stiebitz [48℄, who proved that if G is k-hromati \for a topologial reason"then Mr(G) is (k + 1)-hromati for a similar reason. (Gy�arf�as, Jensen, and Stiebitz [23℄also onsider these graphs and quote Stiebitz's argument a speial ase of whih is alsopresented in [39℄.) The topologial reason of Stiebitz is in di�erent terms than those weuse in this paper but using results of [3℄ they imply strong topologial (t+d)-hromatiityfor graphs obtained by d iterations of the generalized Myhielski onstrution starting, e.g,from Kt or from a t-hromati Shrijver graph. More preisely, Stiebitz proved that thebody of the so-alled neighborhood omplex N (Mr(G)) of Mr(G), introdued in [36℄ byLov�asz, is homotopy equivalent to the suspension of jjN (G)jj. Sine susp(Sn) �= Sn+1 thisimplies that whenever jjN (G)jj is homotopy equivalent to an n-dimensional sphere, thenjjN (Mr(G))jj is homotopy equivalent to the (n + 1)-dimensional sphere. This happens,for example, if G is a omplete graph, or an odd yle. By a reent result of Bj�ornerand de Longueville [8℄ we also have a similar situation if G is isomorphi to any Shrijvergraph SG(n; k). Notie that the latter inlude omplete graphs and odd yles.It is known, that jjN (F )jj is homotopy equivalent to H(F ) for every graph F , seeProposition 4.2 in [3℄. All this implies that oind(H(Mr(G))) = oind(H(G))+1 wheneverH(G) is homotopy equivalent to a sphere, in partiular, whenever G is a omplete graphor an odd yle, or, more generally, a Shrijver graph. In the �rst version of this paperwe wrote that it is very likely that Stiebitz's proof an be generalized to show thatH(Mr(G)) $ susp(H(G)) and therefore oind(H(Mr(G))) � oind(H(G)) + 1 holdsalways. Sine then Csorba [12℄ sueeded to prove this generalization. In fat, he provedZ2-homotopy equivalene of H(Mr(G)) and susp(H(G)). Nevertheless, here we restrit16



attention to graphs G with H(G) homotopy equivalent to a sphere.For an integer vetor r = (r1; : : : ; rd) with ri � 1 for all i we let M (d)r (G) =Mrd(Mrd�1(: : :Mr1(G) : : :)) denote the graph obtained by a d-fold appliation of the gen-eralized Myielski onstrution with respetive parameters r1; : : : ; rd.Proposition 9 (Stiebitz) If G is a graph for whih H(G) is homotopy equivalent to asphere Sh with h = �(G) � 2 (in partiular, G is a omplete graph or an odd yle,or, more generally, a Shrijver graph) and r = (r1; : : : ; rd) is arbitrary, then M (d)r (G) isstrongly topologially t-hromati for t = �(M (d)r (G)) = �(G) + d. �It is interesting to remark that �(Mr(G)) > �(G) does not hold in general if r � 3, e.g.,for C7, the omplement of the 7-yle, one has �(M3(C7)) = �(C7) = 4 (f. [50℄). Still,the result of Stiebitz implies that the sequene f�(M (d)r (G))g1d=1 may avoid to inreaseonly a �nite number of times.The frational hromati number of Myielski graphs were determined by Larsen,Propp, and Ullman [34℄, who proved that �f (M(G)) = �f(G) + 1�f (G) holds for every G.This already shows that there is a large gap between the hromati and the frationalhromati numbers of M (d)r (G) if d is large enough and ri � 2 for all i, sine obviously,�f (Mr(F )) � �f(M(F )) holds if r � 2. The previous result was generalized by Tardif[50℄ who showed that �f (Mr(G)) an also be expressed by �f(G) as �f (G)+ 1Pr�1i=0 (�f (G)�1)iwhenever G has at least one edge.First we show that for the original Myielski onstrution the loal hromati numberbehaves similarly to the hromati number.Proposition 10 For any graph G we have (M(G)) =  (G) + 1:Proof. We proeed similarly as one does in the proof of �(M(G)) = �(G) + 1. Reallthat V (M(G)) = f0; 1g � V (G) [ fzg.For the upper bound onsider a oloring 0 of G establishing its loal hromati numberand let � and � be two olors not used by 0. We de�ne ((0; x)) = 0(x), ((1; x)) = �and (z) = �. This proper oloring shows  (M(G)) �  (G) + 1.For the lower bound onsider an arbitrary proper oloring  of M(G). We have toshow that some vertex must see at least  (G) di�erent olors in its neighborhood.We de�ne the oloring 0 of G as follows:0(x) = � ((0; x)) if ((0; x)) 6= (z)((1; x)) otherwise.It follows from the onstrution that 0 is a proper oloring of G. Note that 0 does notuse the olor (z). 17



By the de�nition of  (G), there is some vertex x of G that has at least  (G) � 1di�erent olors in its neighborhood NG(x). If 0(y) = (0; y) for all verties y 2 NG(x),then the vertex (1; x) has all these olors in its neighborhood, and also the additionalolor (z). If however 0(y) 6= (0; y) for a neighbor y of x, then the vertex (0; x) seesall the olors 0(NG(x)) in its neighborhood NM(G)(0; x), and also the additional olor(0; y) = (z). In both ases a vertex has  (G) di�erent olors in its neighborhood aslaimed. �We remark that M1(G) is simply the graph G with a new vertex onneted to everyvertex of G, therefore the following trivially holds.Proposition 11 For any graph G we have (M1(G)) = �(G) + 1: �For our �rst upper bound we apply Lemma 4.1. We use the following result of Gy�arf�as,Jensen, and Stiebitz [23℄. The lemma below is an immediate generalization of the l = 2speial ase of Theorem 4.1 in [23℄. We reprodue the simple proof from [23℄ for the sakeof ompleteness.Lemma 4.3 ([23℄) If G has a wide oloring with t olors and r � 7, then Mr(G) has awide oloring with t+ 1 olors.Proof. As there is a homomorphism from Mr(G) to M7(G) if r > 7 it is enough to givethe oloring for r = 7. We �x a wide t-oloring 0 of G and use the additional olor .The oloring of M7(G) is given as((v; x)) = �  if v is the vertex at distane 3, 5 or 7 from the loop0(x) otherwise.It is straightforward to hek that  is a wide oloring. �We an apply the results of Stiebitz and Gy�arf�as et al. reursively to give tight oralmost tight bounds for the loal hromati number of the graphsM (d)r (G) in many ases:Corollary 12 If G has a wide t-oloring and r = (r1; : : : ; rd) with ri � 7 for all i, then (M (d)r (G)) � t+d2 + 2.If H(G) is homotopy equivalent to a sphere Sh, then  (M (d)r (G)) � h+d2 + 2.Proof. For the �rst statement we apply Lemma 4.3 reursively to show that M (d)r (G)has a wide (t+ d)-oloring and then apply Lemma 4.1.For the seond statement we apply the result of Stiebitz reursively to show thatH(M (d)r (G)) is homotopy equivalent to Sh+d. As noted in the preliminaries of the present18



subsetion this implies oind(H(M (d)r (G))) � h+d. By Theorem 1 the statement follows.�Theorem 5 (restated) If r = (r1; : : : ; rd), d is odd, and ri � 7 for all i, then (M (d)r (K2)) = �d2� + 2:Proof. Notie that for r = (r1; : : : ; rd) with d odd and ri � 7 for all i the lowerand upper bounds of Corollary 12 give the exat value for the loal hromati number (M (d)r (K2)) = (d+ 5)=2. This proves the theorem. �Notie that a similar argument gives the exat value of  (G) for the more ompliatedgraph G = M (d)r (SG(n; k)) whenever n + d is odd, ri � 7 for all i, and n � 4t2 � 7t fort = n � 2k + 2. This follows from Corollary 12 via the wide olorability of SG(n; k) forn � 4t2 � 7t shown in the proof of Theorem 3 and Bj�orner and de Longueville's result[8℄ about the homotopy equivalene of H(SG(n; k)) to Sn�2k. (Instead of the latter wean also use Csorba's result [12℄ mentioned above and refer to the strong topologialt-hromatiity of SG(n; k).)We summarize our knowledge on  (M (d)r (K2)) after proving the following theorem,whih shows that almost the same upper bound as in Corollary 12 is implied from therelaxed ondition ri � 4.Theorem 13 For r = (r1; : : : ; rd) with ri � 4 for all i one has (M (d)r (G)) �  (G) + �d2� + 2:Moreover, for G �= K2, the following slightly sharper bound holds: (M (d)r (K2)) � �d2�+ 3:Proof. We denote the verties of Y := M (d)r (G) in aordane to the desription ofthe generalized Myielski onstrution via graph produts. That is, a vertex of Y is asequene a1a2 : : : adu of length (d+1), where 8i : ai 2 f0; 1; : : : ; rig[f�g, u 2 V (G)[f�gand if ai = ri for some i then neessarily u = � and aj = � for every j > i, and this is theonly way � an appear in a sequene. To de�ne adjaeny we denote by P̂ri+1 the pathon f0; 1; : : : ; rig where the edges are of the form fi � 1; ig; i 2 f1; : : : ; rig and there is aloop at vertex 0. Two verties a1a2 : : : adu and a01a02 : : : a0du0 are adjaent in Y if and onlyif u = � or u0 = � or fu; u0g 2 E(G) and19



8i : ai = � or a0i = � or fai; a0ig 2 E(P̂ri+1):Our strategy is similar to that used in Remark 4. Namely, we give an original oloring0, identify the set of \troublesome" verties for this oloring, and reolor most of theneighbors of these verties to a new olor.Let us �x a oloring G of G with at most  (G) � 1 olors in the neighborhood of avertex. Let the olors we use in this oloring be alled 0;�1;�2, et. Now we de�ne 0as follows.0(a1 : : : adu) = 8<: G(u) if 8i : ai � 2i if ai � 3 is odd and aj � 2 for all j < i0 if 9i : ai � 4 is even and aj � 2 for all j < iIt is lear that verties having the same olor form independent sets, i.e., 0 is a properoloring. Notie that if a vertex has neighbors of many di�erent \positive" olors, then itmust have many oordinates that are equal to 2. Now we reolor most of the neighborsof these verties.Let � be a olor not used by 0 and set (a1 : : : adu) = � if jfi : ai is oddgj > d=2.(In fat, it would be enough to give olor � only to those of the above verties, for whihthe �rst bd2 odd oordinates are equal to 1. We reolor more verties for the sake ofsimpliity.) Otherwise, let (a1 : : : adu) = 0(a1 : : : adu).First, we have to show that  is proper. To this end we only have to show that nopair of verties getting olor � an be adjaent. If two verties, x = x1 : : : xdvx andy = y1 : : : ydvy are olored � then both have more than d=2 odd oordinates (among their�rst d oordinates). Thus there is some ommon oordinate i for whih xi and yi are bothodd. This implies that x and y are not adjaent.Now we show that for any vertex a we have j(N(a)) \ f1; : : : ; dgj � d=2. Indeed, ifj0(N(a))\f1; : : : ; dgj > d=2 then we have a = a1 : : : adu with more than d=2 oordinatesai that are even and positive. Furthermore, the �rst bd=2 of these oordinates shouldbe 2. Let I be the set of indies of these �rst bd=2 even and positive oordinates. Welaim that (N(a))\f1; : : : ; dg � I. This is so, sine if a neighbor has an odd oordinatesomewhere outside I, then it annot have � at the positions of I, therefore it has morethan d=2 odd oordinates and it is reolored by  to the olor �.It is also lear that no vertex an see more than  (G) � 1 \negative" olors in itsneighborhood in either oloring 0 or . Thus the neighborhood of any vertex an ontainat most bd=2+ ( (G)� 1) + 2 olors, where the last 2 is added beause of the possibleappearane of olors � and 0 in the neighborhood. This proves  (Y ) � d=2 +  (G) + 2proving the �rst statement in the theorem.For G �= K2 the above gives  (M (d)r (K2)) � bd=2 + 4 whih implies the seondstatement for odd d. For even d the bound of the seond statement is 1 less. We an gain1 as follows. When de�ning  let us reolor to � those verties a = a1 : : : adu, too, forwhih the number of odd oordinates ai is exatly d2 and G(u) = �1. The proof proeeds20



similarly as before but we gain 1 by observing that those verties who see �1 an see onlyd2 � 1 \positive" olors. �We ollet the impliations of Theorems 5, 13 and Propositions 10 and 11. It would beinteresting to estimate the value  (M (d)r (K2)) for the missing ase r = (3; : : : ; 3). Whatwe know then is dd=2e+ 2 �  � d+ 2.Corollary 14 For r = (r1; : : : ; rd) we have (M (d)r (K2)) = 8<: (d+ 5)=2 if d is odd and 8i : ri � 7dd=2e+ 2 or dd=2e+ 3 if 8i : ri � 4d+ 2 if rd = 1 or 8i : ri = 2: �Remark 5. The improvement for even d given in the last paragraph of the proof ofTheorem 13 an also be obtained in a di�erent way we explain here. Instead of hangingthe rule for reoloring, we an enfore that a vertex an see only  (G)�2 negative olors.This an be ahieved by setting the starting graph G to be M4(K2) �= C9 instead of K2itself and oloring this C9 with the pattern �1; 0;�1;�2; 0;�2;�3; 0;�3 along the yle.One an readily hek that every vertex an see only one non-0 olor in its neighborhood.The same trik an be used also if the starting graph is not K2 or C9, but somelarge enough Shrijver graph of odd hromati number. Coloring it as in the proof ofLemma 4.1 (using the wide oloring as given in the proof of Theorem 3), we arrive to thesame phenomenon if we let the new olor (of the proof of Lemma 4.1) be 0. �Remark 6. Gy�arf�as, Jensen, and Stiebitz [23℄ use generalized Myielski graphs to showthat another graph they denote by Gk is k-hromati. The way they prove it is that theyexhibit a homomorphism from M (k�2)r (K2) to Gk for r = (4; : : : ; 4). The existene ofthis homomorphism implies that Gk is strongly topologially k-hromati, thus its loalhromati number is at least k=2 + 1. We do not know any non-trivial upper boundfor  (Gk). Also note that [23℄ gives universal graphs for the property of having a widet-oloring. By Lemma 4.1 this graph has  � t=2 + 2. On the other hand, sine anygraph with a wide t-oloring admits a homomorphism to this graph, and we have seenthe wide t-olorability of some strongly topologially t-hromati graphs, it is stronglytopologially t-hromati, as well. This gives  � t=2 + 1. �4.4 Borsuk graphs and the tightness of Ky Fan's theoremThe following de�nition goes bak to Erd}os and Hajnal [15℄, see also [37℄.De�nition 5 The Borsuk graph B(n; �) of parameters n and 0 < � < 2 is the in�nitegraph whose verties are the points of the unit sphere in Rn (i.e., Sn�1) and its edgesonnet the pairs of points with distane at least �.21



The Borsuk-Ulam theorem implies that �(B(n; �)) � n + 1, and, as Lov�asz [37℄remarks, these two statements are in fat equivalent. For � large enough (dependingon n) this lower bound on the hromati number is sharp as shown by the standard(n+ 1)-oloring of the sphere Sn�1 (see [37, 39℄ or f. the proof of Corollary 15 below).The loal hromati number of Borsuk graphs for large enough � an also be de-termined by our methods. First we want to argue that Theorem 1 is appliable for thisin�nite graph. Lov�asz gives in [37℄ for any n and � a �nite graphGP = GP (n; �) � B(n; �)whih has the property that its neighborhood omplex N (GP ) is homotopy equivalent toSn�1. Now we an ontinue the argument the same way as in the previous subsetion:Proposition 4.2 in [3℄ states that N (F ) is homotopy equivalent to H(F ) for every graphF , thus oind(H(GP )) � n � 1, i.e., GP is strongly topologially (n + 1)-hromati. AsGP � B(n; �) we have dn+32 e �  (GP ) �  (B(n; �)) by Theorem 1.The following lemma shows the speial role of Borsuk graphs among strongly topo-logially t-hromati graphs. It will also show that our earlier upper bounds on the loalhromati number have diret impliations for Borsuk graphs.Lemma 4.4 A �nite graph G is strongly topologially (n+1)-hromati if and only if forsome � < 2 there is a graph homomorphism from B(n; �) to G.Proof. For the if part onsider the �nite graph GP � B(n; �) given by Lov�asz [37℄satisfying oind(H(GP )) � n � 1. If there is a homomorphism from B(n; �) to G, itlearly gives a homomorphism also from GP to G whih further generates a Z2-map fromH(GP ) to H(G). This proves oind(H(G)) � n� 1.For the only if part, let f : Sn�1 ! H(G) be a Z2-map. For a point x 2 Sn�1write f(x) 2 H(G) as the onvex ombination f(x) =P�v(x)jj+vjj+P �v(x)jj�vjj ofthe verties of jjB0(G)jj. Here the summations are for the verties v of G, P�v(x) =P �v(x) = 1=2, and fv : �v(x) > 0g ℄ fv : �v(x) > 0g 2 B0(G). Note that �v and�v are ontinuous as f is ontinuous and �v(x) = �v(�x) by the equivariane of f . Set" = 1=(2jV (G)j). For x 2 Sn�1 selet an arbitrary vertex v = g(x) of G with �v � ". Welaim that g is a graph homomorphism from B(n; �) to G if � is lose enough to 2. Byompatness it is enough to prove that if we have verties v and w of G and sequenesxi ! x and yi ! �x of points in Sn�1 with g(xi) = v and g(yi) = w for all i, then vand w are onneted in G. But sine �v is ontinuous we have �v(x) � " and similarly�w(x) = �w(�x) � " and so +v and �w are ontained in the smallest simplex of B0(G)ontaining f(x) proving that v and w are onneted. �By Lemma 4.4 either of Theorems 3 or 5 implies that the above given lower boundon  (B(n; �)) is tight whenever �(B(n; �)) is odd, that is, n is even, and � < 2 is loseenough to 2. In the following orollary we give an expliit bound on � by proving for thatvalue of � that the standard oloring is wide.Corollary 15 If n is even and 2� 125n+50 � � < 2, then (B(n; �)) = n2 + 2:22



Proof. The lower bound on  (B(n; �)) follows from the disussion preeding Lemma 4.4.The upper bound follows from Lemma 4.1 as long as we an give a wide (n+ 1)-oloringof the graph B(n; �).To this end we use the standard (n+1)-oloring ofB(n; �) (see, e.g., [37, 39℄). Considera regular simplex R insribed into the unit sphere Sn�1 and olor a point x 2 Sn�1 by thefaet of R interseted by the segment from the origin to x. If this segment meets a lowerdimensional fae then we arbitrarily hoose a faet ontaining this fae. To see for what� gives this a proper oloring we have to �nd the maximal distane �0 between pairs ofpoints that we an olor the same. Calulation shows that projetions from the origin ofthe middle points of two disjoint (n=2�1)-dimensional faes of R are farthest apart, thus�0 = 2p1� 1=(n+ 2). (Notie that [37℄ gives a di�erent treshold value for �. We wereinformed by L�aszl�o Lov�asz [38℄, however, that it was notied by several researhers thatthe orret value is larger than the one given in [37℄.)We let ' = 2 aros(�=2). Clearly, x and y is onneted if and only if the length of theshortest ar on Sn�1 onneting �x and y is at most '. Therefore x and y are onnetedby a walk of length 5 if and only if the length of this same minimal ar is at most 5'. Forthe standard oloring the length of the shortest ar between �x and y for two vertiesx and y olored with the same olor is at least 2 aros(�0=2) = 2 arsin(n + 2)�1=2.Therefore the standard oloring is wide as long as � > 2 os� arsin(n+2)�1=25 �. Here easyalulation gives that the right hand side is less than 2� 125n+50 . �Our investigations of the loal hromati number led us to onsider the followingfuntion Q(h). The question of its values was independently asked by Miha Perlesmotivated by a related question of Matatyahu Rubin1.De�nition 6 For a nonnegative integer parameter h let Q(h) denote the minimum l forwhih Sh an be overed by open sets in suh a way that no point of the sphere is ontainedin more than l of these sets and none of the overing sets ontains an antipodal pair ofpoints.Ky Fan's theorem implies Q(h) � h2 + 1. Either of Theorems 3 or 5 implies the upperbound Q(h) � h2 +2. Using the onepts of Corollary 15 and Lemma 4.1 one an give anexpliit overing of the sphere S2l�3 by open subsets where no point is ontained in morethan l of the sets and no set ontains an antipodal pair of points. In fat, the overingwe give satis�es a stronger requirement and proves that version (ii) of Ky Fan's theoremis tight, while version (i) is almost tight.Corollary 16 There is a on�guration A of k+2 open (losed) sets suh that [A2A(A[�A) = Sk, all sets A 2 A satisfy A \ �A = ;, and no x 2 Sk is ontained in more than�k+12 � of these sets.Furthermore, for every x the number of sets in A ontaining either x or �x is atmost k + 1.1We thank Imre B�ar�any [6℄ and Gil Kalai [29℄ for this information.23



Proof. First we onstrut losed sets. Consider the unit sphere Sk in Rk+1 . Let R bea regular simplex insribed in the sphere. Let B1; : : : ; Bk+2 be the subsets of the sphereobtained by the entral projetion of the faets of R. These losed sets over Sk. Let C0be the set of points overed by at least �k+32 � of the sets Bi. Notie that C0 is the union ofthe entral projetions of the bk�12 -dimensional faes of R. For odd k let C = C0, whilefor even k let C = C0 [C1, where C1 is the set of points in B1 overed by exatly k=2+ 1of the sets Bi. Thus C1 is the union of the entral projetions of the k2 -dimensional faesof a faet of R. Observe that C \ �C = ;. Take 0 < Æ < dist(C;�C)=2 and let D bethe open Æ-neighborhood of C in Sk. For 1 � i � k + 2 let Ai = Bi n D. These losedsets over Sk nD and none of them ontains a pair of antipodal points. As D \ �D = ;we have [k+2i=1 (Ai [ �Ai) = Sk. It is lear that every point of the sphere is overed by atmost �k+12 � of the sets Ai proving the �rst statement of the orollary.For the seond statement note that if eah set Bi ontains at least one of a pair ofantipodal points, then one of these points belongs to C and is therefore not overed byany of the sets Ai. Note also, that for odd k the seond statement follows also from the�rst.To onstrut open sets as required we an simply take the open "-neighborhoods ofAi. For small enough " > 0 they maintain the properties required in the orollary. �Corollary 17 There is a on�guration of k + 3 open (losed) sets overing Sk none ofwhih ontains a pair of antipodal points, suh that no x 2 Sk is ontained in more thandk+32 e of these sets and for every x 2 Sk the number of sets that ontain one of x and�x is at most k + 2.Proof. For losed sets onsider the sets Ai in the proof of Corollary 16 together with thelosure of D. For open sets onsider the open "-neighborhoods of these sets for suitablysmall " > 0. �Note that overing with k+3 sets is optimal in Corollary 17 if k � 3. By the Borsuk-Ulam Theorem (form (i)) fewer than k+2 open (or losed) sets not ontaining antipodalpairs of points is not enough to over Sk. If we over with k + 2 sets (open or losed),then it gives rise to a proper oloring of B(k + 1; �) for large enough � in a natural way.This oloring uses the optimal number k+2 of olors, therefore it has a vertex with k+1di�erent olors in its neighborhood. A ompatness argument establishes from this thatthere is a point in Sk overed by k + 1 sets. A similar argument gives that k + 2 inCorollary 16 is also optimal if k � 3.Corollary 18 h2 + 1 � Q(h) � h2 + 2:Proof. The lower bound is implied by Ky Fan's theorem. The upper bound follows fromCorollary 17. �24



Notie that for odd h Corollary 18 gives the exat value Q(h) = h+32 . For h even weeither have Q(h) = h2 + 1 or Q(h) = h2 + 2. It is trivial that Q(0) = 1. In [47℄ we showQ(2) = 3. This was independently proved by Imre B�ar�any [6℄. For h > 2 even it remainsopen whether the lower or the upper bound of Corollary 18 is exat. We also refer to[47℄ for a more omplete disussion of the onnetions between loal olorings and theproblem of Q(h).5 Cirular oloringsIn this setion we show an appliation of the Zig-zag Theorem for the irular hromatinumber of graphs. This will result in the partial solution of a onjeture by Johnson,Holroyd, and Stahl [28℄ and in a partial answer to a question of Hajiabolhassan and Zhu[24℄ onerning the irular hromati number of Kneser graphs and Shrijver graphs,respetively. We also answer a question of Chang, Huang, and Zhu [10℄ onerning theirular hromati number of iterated Myielskians of omplete graphs.The irular hromati number of a graph was introdued by Vine [52℄ under thename star hromati number as follows.De�nition 7 For positive integers p and q a oloring  : V (G) ! [p℄ of a graph G isalled a (p; q)-oloring if for all adjaent verties u and v one has q � j(u)�(v)j � p�q.The irular hromati number of G is de�ned as�(G) = inf �pq : there is a (p; q)-oloring of G� :It is known that the above in�mum is always attained for �nite graphs. An alternativedesription of �(G), explaining its name, is that it is the minimum length of the perimeterof a irle on whih we an represent the verties of G by ars of length 1 in suh a waythat ars belonging to adjaent verties do not overlap. For a proof of this equivaleneand for an extensive bibliography on the irular hromati number we refer to Zhu'ssurvey artile [53℄.It is known that for every graph G one has �(G) � 1 < �(G) � �(G). Thus �(G)determines the value of �(G) while this is not true the other way round. Therefore theirular hromati number an be onsidered as a re�nement of the hromati number.Our main result on the irular hromati number is Theorem 6. Here we restate thetheorem with the expliit meaning of being topologially t-hromati.Theorem 6 (restated) For a �nite graph G we have �(G) � oind(B0(G)) + 1 ifoind(B0(G)) is odd.Proof. Let t = oind(B0(G)) + 1 be an even number and let  be a (p; q)-oloring of G.By the Zig-zag Theorem there is a K t2 ; t2 in G whih is ompletely multiolored by olorsappearing in an alternating manner in its two sides. Let these olors be 1 < 2 < : : : < t.25



Sine the vertex olored i is adjaent to that olored i+1, we have i+1 � i + q andt � 1+(t�1)q. Sine t is even, the verties olored 1 and t are also adjaent, thereforewe must have t � 1 � p� q. The last two inequalities give p=q � t as needed. �This result has been independently obtained by Meunier [42℄ for Shrijver graphs.5.1 Cirular hromati number of even hromati Kneser andShrijver graphsJohnson, Holroyd, and Stahl [28℄ onsidered the irular hromati number of Knesergraphs and formulated the following onjeture. (See also as Conjeture 7.1 and Question8.27 in [53℄.)Conjeture (Johnson, Holroyd, Stahl [28℄): For any n � 2k�(KG(n; k)) = �(KG(n; k)):It is proven in [28℄ that the above onjeture holds if k = 2 or n = 2k + 1 or n = 2k + 2.Lih and Liu [35℄ investigated the irular hromati number of Shrijver graphs andproved that �(SG(n; 2)) = n � 2 = �(SG(n; 2)) whenever n 6= 5. (For n = 2k + 1 onealways has �(SG(2k + 1; k)) = 2 + 1k .) It was onjetured in [35℄ and proved in [24℄that for every �xed k there is a threshold l(k) for whih n � l(k) implies �(SG(n; k)) =�(SG(n; k)). This learly implies the analogous statement for Kneser graphs, for whihthe expliit threshold l(k) = 2k2(k � 1) is given in [24℄. At the end of their paper[24℄ Hajiabolhassan and Zhu ask what is the minimum l(k) for whih n � l(k) implies�(SG(n; k)) = �(SG(n; k)). We show that no suh threshold is needed if n is even.Corollary 19 The Johnson-Holroyd-Stahl onjeture holds for every even n. Moreover,if n is even, then the stronger equality�(SG(n; k)) = �(SG(n; k))also holds.Proof. As t-hromati Kneser graphs and Shrijver graphs are topologially t-hromati,Theorem 6 implies the statement of the orollary. �As mentioned above this result has been obtained independently by Meunier [42℄.We show in Subsetion 5.3 that for odd n the situation is di�erent.5.2 Cirular hromati number of Myielski graphs and BorsukgraphsThe irular hromati number of Myielski graphs was also studied extensively, f. [10,16, 25, 53℄. Chang, Huang, and Zhu [10℄ formulated the onjeture that �(Md(Kn)) =26



�(Md(Kn)) = n + d whenever n � d + 2. Here Md(G) denotes the d-fold iteratedMyielskian of graph G, i.e., using the notation of Subsetion 4.3 we have Md(G) =M (d)r (G) with r = (2; : : : ; 2). The above onjeture was veri�ed for the speial asesd = 1; 2 in [10℄, where it was also shown that �(Md(G)) � �(Md(G)) � 1=2 if �(G) =d + 1. A simpler proof for the above speial ases of the onjeture was given (for d = 2with the extra ondition n � 5) in [16℄. Reently Hajiabolhassan and Zhu [25℄ provedthat n � 2d + 2 implies �(Md(Kn)) = �(Md(Kn)) = n + d. Our results show that�(Md(Kn)) = �(Md(Kn)) = n + d always holds if n + d is even. This also answers thequestion of Chang, Huang, and Zhu asking the value of �(Mn(Kn)) (Question 2 in [10℄).The stated equality is given by the following immediate onsequene of Theorem 6.Corollary 20 If H(G) is homotopy equivalent to the sphere Sh, r is a vetor of positiveintegers, and h+ d is even, then �(M (d)r (G)) � d+ h+ 2.In partiular, �(M (d)r (Kn)) = n+ d whenever n + d is even.Proof. The ondition on G implies oind(H(M (d)r (G))) = h + d by Stiebitz's re-sult [48℄ (f. the disussion and Proposition 9 in Subsetion 4.3), whih further impliesoind(B0(M (d)r (G))) = h+ d+ 1. This gives the onlusion by Theorem 6.The seond statement follows by the homotopy equivalene of H(Kn) with Sn�2 andthe hromati number of M (d)r (Kn) being n+ d. �The above mentioned onjeture of Chang, Huang, and Zhu for n + d even is a speialase with r = (2; 2; : : : ; 2) and n � d + 2. Sine n + n is always even, the answer�(Mn(Kn)) = 2n to their question also follows.Corollary 20 also implies a reent result of Lam, Lin, Gu, and Song [33℄ who proved thatfor the generalized Myielskian of odd order omplete graphs �(Mr(K2m�1)) = 2m.Lam, Lin, Gu, and Song [33℄ also determined the irular hromati number of thegeneralized Myielskian of even order omplete graphs. They proved �(Mr(K2m)) =2m + 1=(b(r � 1)=m + 1). This result an be used to bound the irular hromatinumber of the Borsuk graph B(2s; �) from above.Theorem 21 For the Borsuk graph B(n; �) we have(i) �(B(n; �)) = n+ 1 if n is odd and � is large enough;(ii) �(B(n; �))! n as �! 2 if n is even.Proof. The lower bound of part (i) immediately follows from Theorem 6 onsideringagain the �nite subgraph GP of B(n; �) de�ned in [37℄ and already mentioned in theproof of Lemma 4.4. The mathing upper bound is provided by �(B(n; �)) = n + 1 forlarge enough �, see [37℄ and Subsetion 4.4.For (ii) we have �(B(n; �)) > �(B(n; �))� 1 � n. For an upper bound we use that�(Mr(Kn))! n if r goes to in�nity by the result of Lam, Lin, Gu, and Song [33℄ quoted27



above. By the result of Stiebitz [48℄ and Lemma 4.4 we have a graph homomorphism fromB(n; �) to Mr(Kn) for any r and large enough �. As (p; q)-olorings an be de�ned interms of graph homomorphisms (see [9℄), we have �(G) � �(H) if there exists a graphhomomorphism from G to H. This �nishes the proof of part (ii) of the theorem. �Remark 7. By Theorem 21 (ii) we have a sequene of (pi; qi)-olorings of the graphsB(n; �i) where n is even suh that �i ! 2 and pi=qi ! n. By a diret onstrutionwe an show that a single funtion g : Sn�1 ! C is enough. Here C is a irle of unitperimeter. We needinffdistC(g(x); g(y)) : fx;yg 2 E(B(n; �))g ! 1=n as � < 2 goes to 2: (2)The distane distC(�; �) is measured along the irle C. Clearly, if p=q > n and we split Cinto p ars a1; : : : ; ap of equal length and olor the point x with i if g(x) 2 ai, then thisis a (p; q)-oloring of B(n; �) for � lose enough to 2.For n = 2 any Z2-map g : S1 ! C satis�es expression (2). Let n > 2. The map g tobe onstruted must not be ontinuous by the Borsuk-Ulam theorem. Let us hoose a setH of n � 1 equidistant points in C and for b 2 C let T (b) denote the unique set of n=2equidistant points in C ontaining b.We onsider Sn�1 as the join of the sphere Sn�3 and the irle S1. All points in Sn�1are now either in Sn�3, or in S1, or in the interval onneting a point in Sn�3 to a pointin S1. We de�ne g on Sn�3 suh that it takes values only from H and it is a properoloring of B(n � 2; �) for large enough �. We de�ne g on S1 suh that if y goes a fullirle around S1 with uniform veloity, then its image g(y) overs an ar of length 2=nof C and it also moves with uniform veloity. Notie that although g is not ontinuouson S1, the set T (g(y)) depends on y 2 S1 in a ontinuous manner. Also note that for apoint x 2 S1 the images g(x) and g(�x) are 1=n apart on C and T (g(x)) [ T (g(�x)) isa set of n equidistant points.Let x 2 Sn�3 and y 2 S1. Assume that a point z moves with uniform veloity fromx to y along the interval onneting them. We de�ne g on this interval suh that g(z)moves with uniform veloity along C overing an ar of length at most 1=n from g(x)to a point in T (g(y)). The hoie of the point in T (g(y)) is uniquely determined unlessg(x) 2 T (g(�y)). In the latter ase we make an arbitrary hoie of the two possiblepoints for the destination of the image g(z).It is not hard to prove that the funtion g de�ned above satis�es expression (2). �5.3 Cirular hromati number of odd hromati ShrijvergraphsIn this subsetion we show that the parity ondition on �(SG(n; k)) in Corollary 19is relevant, for odd hromati Shrijver graphs the irular hromati number an bearbitrarily lose to its lower bound. 28



Theorem 22 For every " > 0 and every odd t � 3 if n � t3=" and t = n� 2k + 2, then1� " < �(SG(n; k))� �(SG(n; k)) < 1:The seond inequality is well-known and holds for any graph. We inluded it only forompleteness. To prove the �rst inequality we need some preparation. We remark thatthe bound on n in the theorem is not best possible. Our method proves �(SG(n; k)) ��(SG(n; k)) � 1� 1=i if i is a positive integer and n � 6(i� 1)�t3�+ t.First we extend our notion of wide oloring.De�nition 8 For a positive integer s we all a vertex oloring of a graph s-wide if thetwo end verties of any walk of length 2s� 1 reeive di�erent olors.Our original wide olorings are 3-wide, while 1-wide simply means proper. Gy�arf�as,Jensen, and Stiebitz [23℄ investigated s-wide olorings (in di�erent terms) and mention(referring to a referee in the s > 2 ase) the existene of homomorphism universal graphsfor s-wide olorability with t olors. We give a somewhat di�erent family of suh universalgraphs. In the s = 2 ase the olor-ritiality of the given universal graph is provenin [23℄ implying its minimality among graphs admitting 2-wide t-olorings. Later inSubsetion 6.1 we generalize this result showing that the members of our family are olor-ritial for every s. Thus they must be minimal and therefore isomorphi to a retrat ofthe orresponding graphs given in [23℄.De�nition 9 Let Hs be the path on the verties 0; 1; 2; : : : ; s (i and i � 1 onneted for1 � i � s) with a loop at s. We de�ne W (s; t) to be the graph withV (W (s; t)) = f(x1 : : : xt) : 8i xi 2 f0; 1; : : : ; sg; 9!i xi = 0; 9j xj = 1g;E(W (s; t)) = ffx1 : : : xt; y1 : : : ytg : 8i fxi; yig 2 E(Hs)g:Note that W (s; t) is an indued subgraph of the diret power H ts (f. Subsetion 4.3).Proposition 23 A graph G admits an s-wide oloring with t olors if and only if thereis a homomorphism from G to W (s; t).Proof. For the if part olor vertex x = x1 : : : xt of W (s; t) with (x) = i if xi = 0. Anywalk between two verties olored i either has even length or ontains two verties y andz with yi = zi = s. These y and z are both at least at distane s apart from both endsof the walk, thus our oloring of W (s; t) with t olors is s-wide. Any graph admitting ahomomorphism ' to W (s; t) is s-widely olored with t olors by G(v) := ('(v)).For the only if part assume  is an s-wide t-oloring of G with olors 1; : : : ; t. Let '(v)be an arbitrary vertex of W (s; t) if v is an isolated vertex of G. For a non-isolated vertexv of G let '(v) = x = x1 : : : xt with xi = min(s; di(v)), where di(v) is the distane of olorlass i from v. It is lear that xi = 0 for i = (v) and for no other i, while xi = 1 for the29



olors of the neighbors of v in G. Thus the image of ' is indeed in V (W (s; t)). It takesan easy heking that ' is a homomorphism. �The following lemma is a straightforward extension of the argument given in the proofof Theorem 3.Lemma 5.1 If n � (2s� 2)t2 � (4s� 5)t then SG(n; k) admits an s-wide t-oloring.Proof. We use the notation introdued in the proof of Theorem 3.Let n � t(2(s�1)(t�2)+1) as in the statement and let 0 be the oloring de�ned in thementioned proof. The lower bound on n now allows to assume that jCij � (s�1)(t�2)+1.We show that 0 is s-wide.Consider a walk x0x1 : : : x2s�1 of length (2s� 1) in SG(n; k) and let i = 0(x0). ThenCi � x0. By Lemma 4.2 jx0 n x2s�2j � (s � 1)(t � 2) < jCij. Thus x2s�2 is not disjointfrom Ci. As x2s�1 is disjoint from x2s�2, it does not ontain Ci and thus its olor is noti. �Lemma 5.2 W (s; t) admits a homomorphism to Ms(Kt�1).Proof. Reall our notation for the (iterated) generalized Myielskians from Subsetion4.3.We de�ne the following mapping from V (W (s; t)) to V (Ms(Kt�1)).'(x1 : : : xt) := � (s� xt; i) if xt 6= xi = 0(s; �) if xt = 0:One an easily hek that ' is indeed a homomorphism. �Proof of Theorem 22. By Lemma 5.1, if n � (2s � 2)t2 � (4s � 5)t, then SG(n; k)has an s-wide t-oloring, thus by Proposition 23 it admits a homomorphism to W (s; t).Composing this with the homomorphism given by Lemma 5.2 we onlude that SG(n; k)admits a homomorphism to Ms(Kt�1), implying �(SG(n; k)) � �(Ms(Kt�1)).We ontinue by using Lam, Lin, Gu, and Song's result [33℄, who proved, as alreadyquoted in the previous subsetion, that �(Ms(Kt�1)) = t � 1 + 1b 2s�2t�1 +1 if t is odd.Thus, for odd t and i > 0 integer we hoose s = (t � 1)(i� 1)=2 + 1 and �(SG(n; k))��(SG(n; k)) = t� �(SG(n; k)) � 1� 1=i follows from the n � 6(i� 1)�t3�+ t bound.To get the form of the statement laimed in the theorem we hoose i = b1="+ 1. �Remark 8 It is not hard to see that the graphs Ms(Kt�1) an also be interpreted ashomomorphism universal graphs for a property related to wide olorings. Namely, agraph admits a homomorphism into Ms(Kt�1) if and only if it an be olored with tolors so that there is no walk of length 2s� 1 onneting two (not neessarily di�erent)points of one partiular olor lass, say, olor lass t. Realizing this, the statement ofLemma 5.2 is immediate. �30



6 Further remarks6.1 Color-ritiality of W (s; t)In this subsetion we prove the edge olor-ritiality of the graphs W (s; t) introdued inthe previous setion. This generalizes Theorem 2.3 in [23℄, see Remark 9 after the proof.Theorem 24 For every integer s � 1 and t � 2 the graph W (s; t) has hromati numbert, but deleting any of its edges the resulting graph is (t� 1)-hromati.Proof. �(W (s; t)) � t follows from the fat that some t-hromati Shrijver graphsadmit a homomorphism to W (s; t) whih is implied by Lemma 5.1 and Proposition 23.The oloring giving vertex x = x1 : : : xt of W (s; t) olor i i� xi = 0 is proper proving�(W (s; t)) � t.We prove edge-ritiality by indution on t. For t = 2 the statement is trivial asW (s; t) is isomorphi to K2. Assume that t � 3 and edge-ritiality holds for t � 1. Letfx1 : : : xt; y1 : : : ytg be an edge of W (s; t) and W 0 be the graph remaining after removal ofthis edge. We need to give a proper (t� 1)-oloring  of W 0.Let i and j be the oordinates for whih xi = yj = 0. We have xj = yi = 1, inpartiular, i 6= j. Let r be a oordinate di�erent from both i and j. We may assumewithout loss of generality that r = 1, and also that y1 � x1. Coordinates i and j make surethat x2x3 : : : xt and y2y3 : : : yt are verties of W (s; t� 1), and in fat, they are onnetedby an edge e.A proper (t�2)-oloring of the graphW (s; t�1)ne exists by the indution hypothesis.Let 0 be suh a oloring. Let � be a olor of 0 and � a olor that does not appear in 0.We de�ne the oloring  of W 0 as follows:(z1z2 : : : zt) = 8>>>><>>>>: � if z1 < x1; x1 � z1 is even� if z1 < x1; x1 � z1 is odd� if z1 = x1 = 1; zi 6= 1 for i > 1� if z1 > x1; zi = xi for i > 10(z2z3 : : : zt) otherwise.It takes a straightforward ase analysis to hek that  is a proper (t� 1)-oloring ofW 0. �Remark 9. Gy�arf�as, Jensen, and Stiebitz [23℄ proved the s = 2 version of the previoustheorem using a homomorphism from their universal graph with parameter t to a gener-alized Myielskian of the same type of graph with parameter t � 1. In fat, our proof isa diret generalization of theirs using very similar ideas. Behind the oloring we gave isthe reognition of a homomorphism from W (s; t) to M3s�2(W (s; t� 1)). �
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6.2 Hadwiger's onjeture and the Zig-zag theoremHadwiger's onjeture, one of the most famous open problems in graph theory, states thatif a graph G ontains no Kr+1 minor, then �(G) � r. For detailed information on thehistory and status of this onjeture we refer to Toft's survey [51℄. We only mention thateven �(G) = O(r) is not known to be implied by the hypothesis for general r.As a frational and linear approximation version, Reed and Seymour [44℄ proved thatif G has no Kr+1 minor then �f (G) � 2r. This means that graphs with �f (G) and �(G)appropriately lose and not ontaining a Kr+1 minor satisfy �(G) = O(r).We know that the main examples of graphs in [45℄ for �f(G) << �(G) (Knesergraphs, Myielski graphs), as well as many other graphs studied in this paper, satisfythe hypothesis of the Zig-zag theorem, therefore their t-hromati versions must ontainKd t2 e;b t2  subgraphs. (We mention that for strongly topologially t-hromati graphs thisonsequene, in fat, the ontainment of Ka;b for every a; b satisfying a + b = t, wasproven by Csorba, Lange, Shurr, and Wassmer [13℄.) However, a Kd t2 e;b t2  subgraphontains a Kb t2 +1 minor (just take a mathing of size b t�22  plus one point from eah sideof the bipartite graph) proving the following statement whih shows that the same kindof approximation is valid for these graphs, too.Corollary 25 If a topologially t-hromati graph ontains no Kr+1 minor, then t < 2r:�Aknowledgments: We thank Imre B�ar�any, P�eter Csorba, G�abor Elek, L�aszl�o Feh�er,L�aszl�o Lov�asz, Ji�r�� Matou�sek, and G�abor Moussong for many fruitful onversations thathelped us to better understand the topologial onepts used in this paper.Referenes[1℄ N. Alon, P. Frankl, L. Lov�asz, The hromati number of Kneser hypergraphs, Trans.Amer. Math. So., 298 (1986), 359{370.[2℄ E. Babson, D.N. Kozlov, Topologial obstrutions to graph olorings, Eletron. Res.Announ. Amer. Math. So. 9 (2003), 61-68, arXiv:math.CO/0305300.[3℄ E. Babson, D.N. Kozlov, Complexes of graph homomorphisms, to appear in IsraelJ. Math., arXiv:math.CO/0310056.[4℄ P. Baon, Equivalent formulations of the Borsuk-Ulam theorem, Canad. J. Math.,18 (1966), 492{502.[5℄ I. B�ar�any, A short proof of Kneser's onjeture J. Combin. Theory Ser. A, 25 (1978),no. 3, 325{326. 32
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