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Abstra
tThe lo
al 
hromati
 number of a graph was introdu
ed in [14℄. It is in between the 
hro-mati
 and fra
tional 
hromati
 numbers. This motivates the study of the lo
al 
hromati
number of graphs for whi
h these quantities are far apart. Su
h graphs in
lude Knesergraphs, their vertex 
olor-
riti
al subgraphs, the S
hrijver (or stable Kneser) graphs; My-
ielski graphs, and their generalizations; and Borsuk graphs. We give more or less tightbounds for the lo
al 
hromati
 number of many of these graphs.We use an old topologi
al result of Ky Fan [17℄ whi
h generalizes the Borsuk-Ulamtheorem. It implies the existen
e of a multi
olored 
opy of the 
omplete bipartite graphKdt=2e;bt=2
 in every proper 
oloring of many graphs whose 
hromati
 number t is deter-mined via a topologi
al argument. (This was in parti
ular noted for Kneser graphs byKy Fan [18℄.) This yields a lower bound of dt=2e + 1 for the lo
al 
hromati
 number ofthese graphs. We show this bound to be tight or almost tight in many 
ases.As another 
onsequen
e of the above we prove that the graphs 
onsidered here haveequal 
ir
ular and ordinary 
hromati
 numbers if the latter is even. This partially proves a
onje
ture of Johnson, Holroyd, and Stahl and was independently attained by F. Meunier[42℄. We also show that odd 
hromati
 S
hrijver graphs behave di�erently, their 
ir
ular
hromati
 number 
an be arbitrarily 
lose to the other extreme.



1 Introdu
tionThe lo
al 
hromati
 number of a graph is de�ned in [14℄ as the minimum number of 
olorsthat must appear within distan
e 1 of a vertex. For the formal de�nition letN(v) = NG(v)denote the neighborhood of a vertex v in a graph G, that is, N(v) is the set of verti
es vis 
onne
ted to.De�nition 1 ([14℄) The lo
al 
hromati
 number  (G) of a graph G is (G) := min
 maxv2V (G) jf
(u) : u 2 N(v)gj+ 1;where the minimum is taken over all proper 
olorings 
 of G.The +1 term 
omes traditionally from 
onsidering \
losed neighborhoods" N(v)[fvgand results in a simpler form of the relations with other 
oloring parameters.It is obvious that the lo
al 
hromati
 number of a graph G 
annot be more thanthe 
hromati
 number �(G). If G is properly 
olored with �(G) 
olors then ea
h 
olor
lass must 
ontain a vertex, whose neighborhood 
ontains all other 
olors. Thus a value (G) < �(G) 
an only be attained with a 
oloring in whi
h more than �(G) 
olorsare used. Therefore it is somewhat surprising, that the lo
al 
hromati
 number 
an bearbitrarily less than the 
hromati
 number, 
f. [14℄, [19℄.On the other hand, it was shown in [31℄ that (G) � �f (G)holds for any graph G, where �f(G) denotes the fra
tional 
hromati
 number of G. Forthe de�nition and basi
 properties of the fra
tional 
hromati
 number we refer to thebooks [45, 21℄.This suggests to investigate the lo
al 
hromati
 number of graphs for whi
h the 
hro-mati
 number and the fra
tional 
hromati
 number are far apart. This is our main goalin this paper.Prime examples of graphs with a large gap between the 
hromati
 and the fra
tional
hromati
 numbers are Kneser graphs and My
ielski graphs, 
f. [45℄. Other, 
losely re-lated examples are provided by S
hrijver graphs, that are vertex 
olor-
riti
al indu
edsubgraphs of Kneser graphs, and many of the so-
alled generalized My
ielski graphs.In this introdu
tory se
tion we fo
us on Kneser graphs and S
hrijver graphs, My
ielskigraphs and generalized My
ielski graphs will be treated in detail in Subse
tion 4.3.We re
all that the Kneser graph KG(n; k) is de�ned for parameters n � 2k as thegraph with all k-subsets of an n-set as verti
es where two su
h verti
es are 
onne
tedif they represent disjoint k-sets. It is a 
elebrated result of Lov�asz [36℄ (see also [5,22℄) proving the earlier 
onje
ture of Kneser, that �(KG(n; k)) = n � 2k + 2. For thefra
tional 
hromati
 number one has �f (KG(n; k)) = n=k as easily follows from thevertex-transitivity of KG(n; k) via the Erd}os-Ko-Rado theorem, see [45, 21℄.1



B�ar�any's proof [5℄ of the Lov�asz-Kneser theorem was generalized by S
hrijver [46℄ whofound a fas
inating family of subgraphs of Kneser graphs that are vertex-
riti
al withrespe
t to the 
hromati
 number.Let [n℄ denote the set f1; 2; : : : ; ng.De�nition 2 ([46℄) The stable Kneser graph or S
hrijver graph SG(n; k) is de�ned asfollows.V (SG(n; k)) = fA � [n℄ : jAj = k; 8i : fi; i+ 1g * A and f1; ng * Ag;E(SG(n; k)) = ffA;Bg : A \B = ;g:Thus SG(n; k) is the subgraph indu
ed by those verti
es of KG(n; k) that 
ontainno neighboring elements in the 
y
li
ally arranged basi
 set f1; 2; : : : ; ng. These aresometimes 
alled stable k-subsets. The result of S
hrijver in [46℄ is that �(SG(n; k)) =n � 2k + 2(= �(KG(n; k)), but deleting any vertex of SG(n; k) the 
hromati
 numberdrops, i.e., SG(n; k) is vertex-
riti
al with respe
t to the 
hromati
 number. Re
entlyTalbot [49℄ proved an Erd}os-Ko-Rado type result, 
onje
tured by Holroyd and Johnson[27℄, whi
h implies that the ratio of the number of verti
es and the independen
e numberin SG(n; k) is n=k. This gives n=k � �f (SG(n; k)) and equality follows by �f (SG(n; k)) ��f (KG(n; k)) = n=k. Noti
e that SG(n; k) is not vertex-transitive in general. See moreon S
hrijver graphs in [8, 35, 39, 54℄.Con
erning the lo
al 
hromati
 number it was observed by several people [20, 30℄,that  (KG(n; k)) � n� 3k + 3 holds, sin
e the neighborhood of any vertex in KG(n; k)indu
es a KG(n� k; k) with 
hromati
 number n� 3k+2. Thus for n=k �xed but largerthan 3,  (G) goes to in�nity with n and k. In fa
t, the results of [14℄ have a similarimpli
ation also for 2 < n=k � 3: Namely, it follows from those results, that if a series ofgraphs G1; : : : ; Gi; : : : is su
h that  (Gi) is bounded, while �(Gi) goes to in�nity, then thenumber of 
olors to be used in 
olorings attaining the lo
al 
hromati
 number grows atleast doubly exponentially in the 
hromati
 number. However, Kneser graphs with n=k�xed and n (therefore also the 
hromati
 number n � 2k + 2) going to in�nity 
annotsatisfy this, sin
e the total number of verti
es grows simply exponentially in the 
hromati
number.The estimates mentioned in the previous paragraph are elementary. On the otherhand, all known proofs for �(KG(n; k)) � n � 2k + 2 use topology or at least have atopologi
al 
avor (see [36, 5, 22, 40℄ to mention just a few su
h proofs). They use (or atleast, are inspired by) the Borsuk-Ulam theorem.In this paper we use a stronger topologi
al result due to Ky Fan [17℄ to establishthat all proper 
olorings of a t-
hromati
 Kneser, S
hrijver or generalized My
ielski graph
ontain a multi
olored 
opy of a balan
ed 
omplete bipartite graph. This was noti
ed byKy Fan for Kneser graphs [18℄. We also show that the implied lower bound of dt=2e + 1on the lo
al 
hromati
 number is tight or almost tight for many S
hrijver graphs andgeneralized My
ielski graphs.In the following se
tion we summarize our main results in more detail.2



2 ResultsIn this se
tion we summarize our results without introdu
ing the topologi
al notionsneeded to state the results in their full generality. We will introdu
e the phrase that agraphG is topologi
ally t-
hromati
meaning that �(G) � t and this fa
t 
an be shown by aspe
i�
 topologi
al method, see Subse
tion 3.2. Here we use this phrase only to emphasizethe generality of the 
orresponding statements, but the reader 
an always substitute thephrase \a topologi
ally t-
hromati
 graph" by \a t-
hromati
 Kneser graph" or \a t-
hromati
 S
hrijver graph" or by \a generalized My
ielski graph of 
hromati
 number t".Our general lower bound for the lo
al 
hromati
 number proven in Se
tion 3 is thefollowing.Theorem 1 If G is topologi
ally t-
hromati
 for some t � 2, then (G) � � t2� + 1:This result on the lo
al 
hromati
 number is the immediate 
onsequen
e of the Zig-zagtheorem in Subse
tion 3.3 that we state here in a somewhat weaker form:Theorem 2 Let G be a topologi
ally t-
hromati
 graph and let 
 be a proper 
oloring ofG with an arbitrary number of 
olors. Then there exists a 
omplete bipartite subgraphKd t2 e;b t2 
 of G all verti
es of whi
h re
eive a di�erent 
olor in 
.We use Ky Fan's generalization of the Borsuk-Ulam theorem [17℄ for the proof. TheZig-zag theorem was previously established for Kneser graphs by Ky Fan [18℄.We remark that J�anos K�orner [30℄ suggested to introdu
e a graph invariant b(G) whi
his the size (number of points) of the largest 
ompletely multi
olored 
omplete bipartitegraph that should appear in any proper 
oloring of graph G. It is obvious from thede�nition that this parameter is bounded from above by �(G) and bounded from belowby the lo
al 
hromati
 number  (G). An obvious 
onsequen
e of Theorem 2 is that if Gis topologi
ally t-
hromati
, then b(G) � t.In Se
tion 4 we show that Theorem 1 is essentially tight for several S
hrijver andgeneralized My
ielski graphs. In parti
ular, this is always the 
ase for a topologi
allyt-
hromati
 graph that has a wide t-
oloring as de�ned in De�nition 4 in Subse
tion 4.1.As the �rst appli
ation of our result on wide 
olorings we show, that if the 
hro-mati
 number is �xed and odd, and the size of the S
hrijver graph is large enough, thenTheorem 1 is exa
tly tight:Theorem 3 If t = n� 2k + 2 > 2 is odd and n � 4t2 � 7t then (SG(n; k)) = � t2� + 1:3



See Remark 4 in Subse
tion 4.2 for a relaxed bound on n. The proof of Theorem 3is 
ombinatorial. It will also show that the 
laimed value of  (SG(n; k)) 
an be attainedwith a 
oloring using t + 1 
olors and avoiding the appearan
e of a totally multi
oloredKd t2 e;d t2 e: To appre
iate the latter property, 
f. Theorem 2.Sin
e SG(n; k) is an indu
ed subgraph of SG(n+1; k) Theorem 3 immediately impliesthat for every �xed even t = n� 2k + 2 and n; k large enough (SG(n; k)) 2 � t2 + 1; t2 + 2� :The lower bound for the lo
al 
hromati
 number in Theorem 1 is smaller than twhenever t � 4 but Theorem 3 
laims the existen
e of S
hrijver graphs with smallerlo
al than ordinary 
hromati
 number only with 
hromati
 number 5 and up. In [47℄ weprove that the lo
al 
hromati
 number of all 4-
hromati
 Kneser, S
hrijver, or generalizedMy
ielski graphs is 4. The reason is that all these graphs satisfy a somewhat strongerproperty, they are strongly topologi
ally 4-
hromati
 (see De�nition 3). On the otherhand, we also show in [47℄ that topologi
ally 4-
hromati
 graphs of lo
al 
hromati
 number3 do exist.To demonstrate that requiring large n and k in Theorem 3 is 
ru
ial we prove thefollowing statement.Proposition 4  (SG(n; 2)) = n� 2 = �(SG(n; 2)) for every n � 4.As a se
ond appli
ation of wide 
olorings we prove in Subse
tion 4.3 that Theorem 1is also tight for several generalized My
ielski graphs. These graphs will be denoted byM (d)r (K2) where r = (r1; : : : ; rd) is a ve
tor of positive integers. See Subse
tion 4.3 forthe de�nition. Informally, d is the number of iterations and ri is the number of \levels"in iteration i of the generalized My
ielski 
onstru
tion. M (d)r (K2) is proven to be (d+2)-
hromati
 \be
ause of a topologi
al reason" by Stiebitz [48℄. This topologi
al reasonimplies that these graphs are strongly topologi
ally (d + 2)-
hromati
. Thus Theorem 1applies and gives the lower bound part of the following result.Theorem 5 If r = (r1; : : : ; rd), d is odd, and ri � 7 for all i, then (M (d)r (K2)) = �d2� + 2:It will be shown in Theorem 13 that relaxing the ri � 7 
ondition to ri � 4 anonly slightly weaker upper bound is still valid. As a 
ounterpart we also show (seeProposition 10 in Subse
tion 4.3) that for the ordinary My
ielski 
onstru
tion, whi
his the spe
ial 
ase of r = (2; : : : ; 2), the lo
al 
hromati
 number behaves just like the
hromati
 number.The Borsuk-Ulam Theorem in topology is known to be equivalent (see Lov�asz [37℄)to the validity of a tight lower bound on the 
hromati
 number of graphs de�ned on4



the n-dimensional sphere, 
alled Borsuk graphs. In Subse
tion 4.4 we prove that thelo
al 
hromati
 number of Borsuk graphs behaves similarly as that of the graphs alreadymentioned above. In this subse
tion we also formulate a topologi
al 
onsequen
e of ourresults on the tightness of Ky Fan's theorem [17℄. We also give a dire
t proof for the sametightness result.The 
ir
ular 
hromati
 number �
(G) of a graph G was introdu
ed by Vin
e [52℄, seeDe�nition 7 in Se
tion 5. It satis�es �(G) � 1 < �
(G) � �(G). In Se
tion 5 we provethe following result using the Zig-zag theorem.Theorem 6 If G is topologi
ally t-
hromati
 and t is even, then �
(G) � t.This theorem implies that �
(G) = �(G) if the 
hromati
 number is even for Knesergraphs, S
hrijver graphs, generalized My
ielski graphs, and 
ertain Borsuk graphs. Theresult on Kneser and S
hrijver graphs gives a partial solution of a 
onje
ture by Johnson,Holroyd, and Stahl [28℄ and a partial answer to a question of Hajiabolhassan and Zhu[24℄. These results were independently obtained by Meunier [42℄. The result on generalizedMy
ielski graphs answers a question of Chang, Huang, and Zhu [10℄.We will also dis
uss the 
ir
ular 
hromati
 number of odd 
hromati
 Borsuk andS
hrijver graphs showing that they 
an be 
lose to one less than the 
hromati
 number.We will use a a similar result for generalized My
ielski graphs proven by Lam, Lin, Gu,and Song [33℄.3 Lower bound3.1 Topologi
al preliminariesThe following is a brief overview of some of the topologi
al 
on
epts we need. We refer to[7, 26℄ and [39℄ for basi
 
on
epts and also for a more detailed dis
ussion of the notionsand fa
ts given below.A Z2-spa
e (or involution spa
e) is a pair (T; �) of a topologi
al spa
e T and the involution� : T ! T , whi
h is 
ontinuous and satis�es that �2 is the identity map. The points x 2 Tand �(x) are 
alled antipodal. The involution � and the Z2-spa
e (T; �) are free if �(x) 6= xfor all points x of T . If the involution is understood from the 
ontext we speak about Trather than the pair (T; �). This is the 
ase, in parti
ular, for the unit sphere Sd in Rd+1with the involution given by the 
entral re
e
tion x 7! �x. A 
ontinuous map f : S ! Tbetween Z2-spa
es (S; �) and (T; �) is a Z2-map (or an equivariant map) if it respe
ts therespe
tive involutions, that is f Æ � = � Æ f . If su
h a map exists we write (S; �)! (T; �).If (S; �) ! (T; �) does not hold we write (S; �) 6! (T; �). If both S ! T and T ! S we
all the Z2-spa
es S and T Z2-equivalent and write S $ T .We try to avoid using homotopy equivalen
e and Z2-homotopy equivalen
e (i.e., ho-motopy equivalen
e given by Z2-maps), but we will have to use two simple observations.5



First, if the Z2-spa
es S and T are Z2-homotopy equivalent, then S $ T . Se
ond, ifthe spa
e S is homotopy equivalent to a sphere Sh (this relation is between topologi
alspa
es, not Z2-spa
es), then for any involution � we have Sh ! (S; �).The Z2-index of a Z2-spa
e (T; �) is de�ned (see e.g. [41, 39℄) asind(T; �) := minfd � 0 : (T; �)! Sdg;where ind(T; �) is set to be 1 if (T; �) 6! Sd for all d.The Z2-
oindex of a Z2-spa
e (T; �) is de�ned as
oind(T; �) := maxfd � 0 : Sd ! (T; �)g:If su
h a map exists for all d, then we set 
oind(T; �) = 1. Noti
e that if (T; �) is notfree, we have ind(T; �) = 
oind(T; �) =1.Note that S ! T implies ind(S) � ind(T ) and 
oind(S) � 
oind(T ). In parti
ular,Z2-equivalent spa
es have equal index and also equal 
oindex.The 
elebrated Borsuk-Ulam Theorem 
an be stated in many equivalent forms. Herewe state three of them. For more equivalent versions and several proofs we refer to [39℄.Here (i) and (ii) are standard forms of the Borsuk-Ulam Theorem, while (iii) is 
learlyequivalent to (ii).Borsuk-Ulam Theorem.(i) (Lyusternik-S
hnirel'man version) Let d � 0 and let H be a 
olle
tion of open (or
losed) sets 
overing Sd with no H 2 H 
ontaining a pair of antipodal points. ThenjHj � d+ 2.(ii) Sd+1 6! Sd for any d � 0.(iii) For a Z2-spa
e T we have ind(T ) � 
oind(T ).The suspension susp(S) of a topologi
al spa
e S is de�ned as the fa
tor of the spa
eS � [�1; 1℄ that identi�es all the points in S � f�1g and identi�es also the points inS � f1g. If S is a Z2-spa
e with the involution �, then the suspension susp(S) is alsoa Z2-spa
e with the involution (x; t) 7! (�(x);�t). Any Z2-map f : S ! T naturallyextends to a Z2-map susp(f) : susp(S) ! susp(T ) given by (x; t) 7! (f(x); t). We havesusp(Sn) �= Sn+1 with a Z2-homeomorphism. These observations show the well knowninequalities below.Lemma 3.1 For any Z2-spa
e S ind(susp(S)) � ind(S) + 1 and 
oind(susp(S)) �
oind(S) + 1.A(n abstra
t) simpli
ial 
omplex K is a non-empty, hereditary set system. That is,F 2 K, F 0 � F implies F 0 2 K and we have ; 2 K. In this paper we 
onsider only6



�nite simpli
ial 
omplexes. The non-empty sets in K are 
alled simpli
es. We 
all the setV (K) = fx : fxg 2 Kg the set of verti
es of K. In a geometri
 realization of K a vertex x
orresponds to a point jjxjj in a Eu
lidean spa
e, a simplex � 
orresponds to its body, the
onvex hull of its verti
es: jj�jj = 
onv(fjjxjj : x 2 �g). We assume that the points jjxjjfor x 2 � are aÆne independent, and so jj�jj is a geometri
 simplex. We also assume thatdisjoint simpli
es have disjoint bodies. The body of the 
omplex K is jjKjj = [�2K jj�jj,it is determined up to homeomorphism by K. Any point in p 2 jjKjj has a uniquerepresentation as a 
onvex 
ombination p =Px2V (K) �xjjxjj su
h that fx : �x > 0g 2 K.A map f : V (K) ! V (L) is 
alled simpli
ial if it maps simpli
es to simpli
es, thatis � 2 K implies f(�) 2 L. In this 
ase we de�ne jjf jj : jjKjj ! jjLjj by settingjjf jj(jjxjj) = jjf(x)jj for verti
es x 2 V (K) and taking an aÆne extension of this fun
tionto the bodies of ea
h of the simpli
es in K. If jjKjj and jjLjj are Z2-spa
es (usually withan involution also given by simpli
ial maps), then we say that f is a Z2-map if jjf jj is aZ2-map. If jjKjj is a Z2-spa
e we use ind(K) and 
oind(K) for ind(jjKjj) and 
oind(jjKjj),respe
tively.Following the papers [1, 32, 41℄ we introdu
e the box 
omplex B0(G) for any �nite graphG. See [41℄ for several similar 
omplexes. We de�ne B0(G) to be a simpli
ial 
omplex onthe verti
es V (G)�f1; 2g. For subsets S; T � V (G) we denote the set S �f1g[ T �f2gby S ℄ T , following the 
onvention of [39, 41℄. For v 2 V (G) we denote by +v the vertex(v; 1) 2 fvg ℄ ; and �v denotes the vertex (v; 2) 2 ; ℄ fvg. We set S ℄ T 2 B0(G) ifS \ T = ; and the 
omplete bipartite graph with sides S and T is a subgraph of G. Notethat V (G) ℄ ; and ; ℄ V (G) are simpli
es of B0(G).The Z2-map S ℄ T 7! T ℄ S a
ts simpli
ially on B0(G). It makes the body of the
omplex a free Z2-spa
e.We de�ne the hom spa
e H(G) of G to be the subspa
e 
onsisting of those pointsp 2 jjB0(G)jj that, when written as a 
onvex 
ombination p = Px2V (B0(G)) �xjjxjj withfx : �x > 0g 2 B0(G) give Px2V (G)℄; �x = 1=2.Noti
e that H(G) 
an also be obtained as the body of a 
ell 
omplex Hom(K2; G), see[3℄, or of a simpli
ial 
omplex B
hain(G), see [41℄.A useful 
onne
tion between B0(G) and H(G) follows from a 
ombination of resultsof Csorba [11℄ and Matou�sek and Ziegler [41℄.Proposition 7 jjB0(G)jj $ susp(H(G))Proof. Csorba [11℄ proves the Z2-homotopy equivalen
e of jjB0(G)jj and the suspensionof the body of yet another box 
omplex B(G) of G. As we mentioned, Z2-homotopyequivalen
e implies Z2-equivalen
e. Matou�sek and Ziegler [41℄ prove the Z2-equivalen
eof jjB(G)jj and H(G). Finally for Z2-spa
es S and T if S ! T , then susp(S)! susp(T ),therefore jjB(G)jj $ H(G) implies susp(jjB(G)jj)$ susp(H(G)). �Note that Csorba [11℄ proves, 
f. also �Zivaljevi�
 [55℄, the Z2-homotopy equivalen
eof jjB(G)jj and H(G), and therefore we 
ould also 
laim Z2-homotopy equivalen
e inProposition 7. 7



3.2 Some earlier topologi
al boundsA graph homomorphism is an edge preserving map from the vertex set of a graph F tothe vertex set of another graph G. If there is a homomorphism f from F to G, then itgenerates a simpli
ial map from B0(F ) to B0(G) in the natural way. This map is a Z2-mapand thus it shows jjB0(F )jj ! jjB0(G)jj. One 
an often prove jjB0(F )jj 6! jjB0(G)jj usingthe indexes or 
oindexes of these 
omplexes and this relation implies the non-existen
e ofa homomorphism from F to G. A similar argument applies with the spa
es H(�) in pla
eof jjB0(�)jj.Coloring a graph G with m 
olors 
an be 
onsidered as a graph homomorphismfrom G to the 
omplete graph Km. The box 
omplex B0(Km) is the boundary 
om-plex of the m-dimensional 
ross-polytope (i.e., the 
onvex hull of the basis ve
torsand their negatives in Rm), thus jjB0(Km)jj �= Sm�1 with a Z2-homeomorphism and
oind(B0(G)) � ind(B0(G)) � m � 1 is ne
essary for G being m-
olorable. Similarly,
oind(H(G)) � ind(H(G)) � m� 2 is also ne
essary for �(G) � m sin
e H(Km) 
an beobtained from interse
ting the boundary of the m-dimensional 
ross-polytope with thehyperplane P xi = 0, and therefore H(Km) �= Sm�2 with a Z2-homeomorphism. Thesefour lower bounds on �(G) 
an be arranged in a single line of inequalities using Lemma 3.1and Proposition 7:�(G) � ind(H(G)) + 2 � ind(B0(G)) + 1 � 
oind(B0(G)) + 1 � 
oind(H(G)) + 2 (1)In fa
t, many of the known proofs of Kneser's 
onje
ture 
an be interpreted as aproof of an appropriate lower bound on the (
o)index of one of the above 
omplexes. Inparti
ular, B�ar�any's simple proof [5℄ exhibits a map showing Sn�2k ! H(KG(n; k)) to
on
lude that 
oind(H(KG(n; k))) � n � 2k and thus �(KG(n; k)) � n � 2k + 2. Theeven simpler proof of Greene [22℄ exhibits a map showing Sn�2k+1 ! B0(KG(n; k)) to
on
lude that 
oind(B0(KG(n; k))) � n � 2k + 1 and thus �(KG(n; k)) � n � 2k + 2.S
hrijver's proof [46℄ of �(SG(n; k)) � n � 2k + 2 is a generalization of B�ar�any's and italso 
an be interpreted as a proof of Sn�2k ! H(SG(n; k)). We remark that the samekind of te
hnique is used with other 
omplexes related to graphs, too. In parti
ular,Lov�asz's original proof [36℄ 
an also be 
onsidered as exhibiting a Z2-map from Sn�2k tosu
h a 
omplex, di�erent from the ones we 
onsider here. For a detailed dis
ussion ofseveral su
h 
omplexes and their usefulness in bounding the 
hromati
 number we referthe reader to [41℄.The above dis
ussion gives several possible \topologi
al reasons" that 
an for
e a graphto be at least t-
hromati
. Here we single out two su
h reasons. We would like to stressthat these two reasons are just two out of many and refer to the paper [2℄ for some thatare not even mentioned above. In this sense, our terminology is somewhat arbitrary. Thestatement of our results in Se
tion 2 be
omes pre
ise by applying the 
onventions givenby the following de�nition. 8



De�nition 3 We say that a graph G is topologi
ally t-
hromati
 if
oind(B0(G)) � t� 1:We say that a graph G is strongly topologi
ally t-
hromati
 if
oind(H(G)) � t� 2:By inequality (1) if a graph is strongly topologi
ally t-
hromati
, then it is topologi-
ally t-
hromati
, and if G is topologi
ally t-
hromati
, then �(G) � t. In [47℄ we showthe existen
e of a graph for any t � 4 that is topologi
ally t-
hromati
 but not stronglytopologi
ally t-
hromati
. We also show there that the two notions have di�erent 
onse-quen
es in terms of the lo
al 
hromati
 number for t = 4.The notion that a graph is (strongly) topologi
ally t-
hromati
 is useful, as it ap-plies to many widely studied 
lasses of graphs. As we mentioned above, B�ar�any [5℄ andS
hrijver [46℄ establish this for t-
hromati
 Kneser and S
hrijver graphs. For the reader's
onvenien
e we re
all the proof here. See the analogous statement for generalized My
iel-ski graphs and (
ertain �nite subgraphs of the) Borsuk graphs after we introdu
e thosegraphs.Proposition 8 (B�ar�any; S
hrijver) The t-
hromati
 Kneser and S
hrijver graphs arestrongly topologi
ally t-
hromati
.Proof. We need to prove that SG(n; k) is strongly topologi
ally (n� 2k+ 2)-
hromati
,i.e., that 
oind(H(SG(n; k))) � n�2k. The statement for Kneser graphs follows. For x 2Sn�2k let Hx denote the open hemisphere in Sn�2k around x. Consider an arrangementof the elements of [n℄ on Sn�2k so that ea
h open hemisphere 
ontains a stable k-subset,i.e., a vertex of SG(n; k). It is not hard to 
he
k that identifying i 2 [n℄ with vi=jvij forvi = (�1)i(1; i; i2; : : : ; in�2k) 2 Rn�2k+1 provides su
h an arrangement. (See [46℄ or [39℄ fordetails of this.) For ea
h vertex v of SG(n; k) and x 2 Sn�2k letDv(x) denote the smallestdistan
e of a point in v from the set Sn�2k n Hx and let D(x) = Pv2V (SG(n;k))Dv(x).Note that Dv(x) > 0 if v is 
ontained in Hx and therefore D(x) > 0 for all x. Letf(x) := 12D(x) Pv2V (SG(n;k))Dv(x)jj+vjj+ 12D(�x) Pv2V (SG(n;k))Dv(�x)jj�vjj. This f is aZ2-map Sn�2k ! H(SG(n; k)) proving the proposition. �3.3 Ky Fan's result on 
overs of spheres and the Zig-Zag theo-remThe following result of Ky Fan [17℄ implies the Lyusternik-S
hnirel'man version of theBorsuk-Ulam theorem. Here we state two equivalent versions of the result, both in termsof sets 
overing the sphere. See the original paper for another version generalizing anotherstandard form of the Borsuk-Ulam theorem.Ky Fan's Theorem. 9



(i) Let A be a system of open (or a �nite system of 
losed) subsets of Sk 
overing theentire sphere. Assume a linear order < is given on A and all sets A 2 A satisfyA \ �A = ;. Then there are sets A1 < A2 < : : : < Ak+2 of A and a point x 2 Sksu
h that (�1)ix 2 Ai for all i = 1; : : : ; k + 2.(ii) Let A be a system of open (or a �nite system of 
losed) subsets of Sk su
h that[A2A(A [ �A) = Sk. Assume a linear order < is given on A and all sets A 2 Asatisfy A \ �A = ;. Then there are sets A1 < A2 < : : : < Ak+1 of A and a pointx 2 Sk su
h that (�1)ix 2 Ai for all i = 1; : : : ; k + 1.The Borsuk-Ulam theorem is easily seen to be implied by version (i), that shows inparti
ular, that jAj � k + 2. We remark that [17℄ 
ontains the above statements onlyabout 
losed sets. The statements on open sets 
an be dedu
ed by a standard argumentusing the 
ompa
tness of the sphere. We also remark that version (ii) is formulated alittle di�erently in [17℄. A pla
e where one �nds exa
tly the above formulation (for 
losedsets, but for any Z2-spa
e) is Ba
on's paper [4℄.Zig-zag Theorem Let G be a topologi
ally t-
hromati
 �nite graph and let 
 be an ar-bitrary proper 
oloring of G by an arbitrary number of 
olors. We assume the 
olors arelinearly ordered. Then G 
ontains a 
omplete bipartite subgraph Kd t2 e;b t2 
 su
h that 
 as-signs distin
t 
olors to all t verti
es of this subgraph and these 
olors appear alternatingon the two sides of the bipartite subgraph with respe
t to their order.Proof. We have 
oind(B0(G)) � t� 1, so there exists a Z2-map f : St�1 ! B0(G). Forany 
olor i we de�ne a set Ai � St�1 letting x 2 Ai if and only if for the minimal simplexUx ℄ Vx 
ontaining f(x) there exists a vertex z 2 Ux with 
(z) = i. These sets are open,but they do not ne
essarily 
over the entire sphere St�1. Noti
e that �Ai 
onsists of thepoints x 2 St�1 with �x 2 Ai, whi
h happens if and only if there exists a vertex z 2 U�xwith 
(z) = i. Here U�x = Vx. For every x 2 St�1 either Ux or Vx is not empty, thereforewe have [i(Ai [ �Ai) = St�1. Assume for a 
ontradi
tion that for a 
olor i we haveAi \ �Ai 6= ; and let x be a point in the interse
tion. We have a vertex z 2 Ux and avertex z0 2 Vx with 
(z) = 
(z0) = i. By the de�nition of B0(G) the verti
es z and z0 are
onne
ted in G. This 
ontradi
ts the 
hoi
e of 
 as a proper 
oloring. The 
ontradi
tionshows that Ai \ �Ai = ; for all 
olors i.Applying version (ii) of Ky Fan's theorem we get that for some 
olors i1 < i2 < : : : < itand a point x 2 St�1 we have (�1)jx 2 Aij for j = 1; 2; : : : t. This implies the existen
eof verti
es zj 2 U(�1)jx with 
(zj) = ij. Now U(�1)jx = Ux for even j and U(�1)jx = Vx forodd j. Therefore the 
omplete bipartite graph with sides fzjjj is eveng and fzjjj is oddgis a subgraph of G with the required properties. �This result was previously established for Kneser graphs in [18℄.Remark 1. Sin
e for any �xed 
oloring we are allowed to order the 
olors in an arbitrarymanner, the Zig-zag Theorem implies the existen
e of several totally multi
olored 
opiesof Kd t2 e;b t2 
. For a uniform random order any �xed totally multi
olored Kd t2 e;b t2 
 satis�es10



the zig-zag rule with probability 1=� tbt=2
� if t is odd and with probability 2=� tt=2� if t iseven. Thus the Zig-zag Theorem implies the existen
e of many di�erently 
olored totallymulti
olored subgraphs Kd t2 e;b t2 
 in G: � tbt=2
� 
opies for odd t and � tt=2�=2 
opies for event. If the 
oloring uses only t 
olors we get a totally multi
olored Kd t2 e;b t2 
 subgraph withall possible 
olorings, and the number of these di�erent subgraphs is exa
tly the lowerbound stated. �Proof of Theorems 1 and 2.Theorems 1 and 2 are dire
t 
onsequen
es of the Zig-zag theorem. For Theorem 2 thisis obvious. To prove Theorem 1 
onsider any vertex of the bt=2
 side of a multi
olored
omplete bipartite graph. It has dt=2e di�erently 
olored neighbors on the other side,thus at least dt=2e di�erent 
olors in its neighborhood. �Remark 2. Theorem 1 gives tight lower bounds for the lo
al 
hromati
 number of topo-logi
ally t-
hromati
 graphs for odd t as several examples of the next se
tion will show.In [47℄ we present examples that show that the situation is similar for even values oft. However, the graphs establishing this fa
t are not strongly topologi
ally t-
hromati
,whereas the graphs showing tightness of Theorem 1 for odd t are. This leaves open thequestion whether  (G) � t=2 + 2 holds for all strongly topologi
ally t-
hromati
 graphsG and even t � 4. While we prove this statement in [47℄ for t = 4 we do not know theanswer for higher values of t. �4 Upper boundIn this se
tion we present the 
ombinatorial 
onstru
tions that prove Theorems 3 and 5.In both 
ases general observations on wide 
olorings (to be de�ned below) prove useful.The upper bound in either of Theorems 3 or 5 implies the existen
e of 
ertain open 
oversof spheres. These topologi
al 
onsequen
es and the lo
al 
hromati
 number of Borsukgraphs are dis
ussed in the last subse
tion of this se
tion.4.1 Wide 
oloringsWe start here with a general method to alter a t-
oloring and get a (t+1)-
oloring showingthat  � t=2 + 2. It works if the original 
oloring was wide as de�ned below.De�nition 4 A vertex 
oloring of a graph is 
alled wide if the end verti
es of all walksof length 5 re
eive di�erent 
olors.Note that any wide 
oloring is proper, furthermore any pair of verti
es of distan
e 3or 5 re
eive distin
t 
olors. Moreover, if a graph has a wide 
oloring it does not 
ontaina 
y
le of length 3 or 5. For graphs that do not have 
y
les of length 3, 5, 7, or 9any 
oloring is wide that assigns di�erent 
olors to verti
es of distan
e 1, 3 or 5 apart.11



Another equivalent de�nition (
onsidered in [23℄) is that a proper 
oloring is wide if theneighborhood of any 
olor 
lass is an independent set and so is the se
ond neighborhood.Lemma 4.1 If a graph G has a wide 
oloring using t 
olors, then  (G) � bt=2
 + 2.Proof. Let 
0 be the wide t-
oloring of G. We alter this 
oloring by swit
hing the 
olorof the neighbors of the troublesome verti
es to a new 
olor. We de�ne a vertex x to betroublesome if j
0(N(x))j > t=2. Assume the 
olor � is not used in the 
oloring 
0. Forx 2 V (G) we let 
(x) = � � if x has a troublesome neighbor
0(x) otherwise.The 
olor 
lass � in 
 is the union of the neighborhoods of troublesome verti
es. Tosee that this is an independent set 
onsider any two verti
es z and z0 of 
olor �. Let y bea troublesome neighbor of z and let y0 be a troublesome neighbor of z0. Both 
0(N(y))and 
0(N(y0)) 
ontain more than half of the t 
olors in 
0, therefore these sets are notdisjoint. We have a neighbor x of y and a neighbor x0 of y0 satisfying 
0(x) = 
0(x0). Thisshows that z and z0 are not 
onne
ted, as otherwise the walk xyzz0y0x0 of length 5 wouldhave two end verti
es in the same 
olor 
lass.All other 
olor 
lasses of 
 are subsets of the 
orresponding 
olor 
lasses in 
0, and aretherefore independent. Thus 
 is a proper 
oloring.Any troublesome vertex x has now all its neighbors re
olored, therefore 
(N(x)) = f�g.For the verti
es of G that are not troublesome one has j
0(N(x))j � t=2 and 
(N(x)) �
0(N(x)) [ f�g, therefore j
(N(x))j � t=2+ 1. Thus the 
oloring 
 shows  (G) � t=2 + 2as 
laimed. �We note that the 
oloring 
 found in the proof uses t + 1 
olors and any vertex thatsees the maximal number bt=2
+1 of the 
olors in its neighborhood must have a neighborof 
olor �. In parti
ular, for odd t one will always �nd two verti
es of the same 
olor inany K(t+1)=2;(t+1)=2 subgraph.4.2 S
hrijver graphsIn this subse
tion we prove Theorem 3 whi
h shows that the lo
al 
hromati
 number ofS
hrijver graphs with 
ertain parameters are as low as allowed by Theorem 1. We alsoprove Proposition 4 to show that for some other S
hrijver graphs the lo
al 
hromati
number agrees with the 
hromati
 number.For the proof of Theorem 3 we will use the following simple lemma.Lemma 4.2 Let u; v � [n℄ be two verti
es of SG(n; k). If there is a walk of length 2sbetween u and v in SG(n; k) then jv n uj � s(t� 2), where t = n� 2k+ 2 = �(SG(n; k)).12



Proof. Let xyz be a length two walk in SG(n; k). Sin
e y is disjoint from x, it 
ontainsall but n � 2k = t� 2 elements of [n℄ n x. As z is disjoint from y it 
an 
ontain at mostt� 2 elements not 
ontained in x. This proves the statement for s = 1.Now let x0x1 : : : x2s be a 2s-length walk between u = x0 and v = x2s and assume thestatement is true for s� 1. Sin
e jv nuj � jv nx2s�2j+ jx2s�2 nuj � (t� 2)+ (s� 1)(t� 2)we 
an 
omplete the proof by indu
tion. �We remark that Lemma 4.2 remains true for KG(n; k) with literally the same proof,but we will need it for SG(n; k), this is why it is stated that way.Theorem 3 (restated) If t = n� 2k + 2 > 2 is odd and n � 4t2 � 7t, then (SG(n; k)) = � t2� + 1:Proof. We need to show that  (SG(n; k)) = (t+3)=2. Note that the t = 3 
ase is trivialas all 3-
hromati
 graphs have lo
al 
hromati
 number 3. The lower bound for the lo
al
hromati
 number follows from Theorem 1 and Proposition 8.We de�ne a wide 
oloring 
0 of SG(n; k) using t 
olors. From this Lemma 4.1 givesthe upper bound on  (SG(n; k)).Let [n℄ = f1; : : : ; ng be partitioned into t sets, ea
h 
ontaining an odd number of
onse
utive elements of [n℄. More formally, [n℄ is partitioned into disjoint sets A1; : : : ; At,where ea
h Ai 
ontains 
onse
utive elements and jAij = 2pi � 1. We need pi � 2t� 3 forthe proof, this is possible as long as n � t(4t� 7) as assumed.Noti
e, that Pti=1(pi � 1) = k � 1, and therefore any k-element subset x of [n℄ must
ontain more than half (i.e., at least pi) of the elements in some Ai. We de�ne our 
oloring
0 by arbitrarily 
hoosing su
h an index i as the 
olor 
0(x). This is a proper 
oloringeven for the graph KG(n; k) sin
e if two sets x and y both 
ontain more than half of theelements of Ai, then they are not disjoint.As a 
oloring of KG(n; k) the 
oloring 
0 is not wide. We need to show that the
oloring 
0 be
omes wide if we restri
t it to the subgraph SG(n; k).The main observation is the following: Ai 
ontains a single subset of 
ardinality pithat does not 
ontain two 
onse
utive elements. Let Ci be this set 
onsisting of the �rst,third, et
. elements of Ai. A vertex of SG(n; k) has no two 
onse
utive elements, thus avertex x of SG(n; k) of 
olor i must 
ontain Ci.Consider a walk x0x1 : : : x5 of length 5 in SG(n; k) and let i = 
0(x0). Thus the setx0 
ontains Ci. By Lemma 4.2 jx4 n x0j � 2(t� 2). In parti
ular, x4 
ontains all but atmost 2t� 4 elements of Ci. As pi = jCij � 2t� 3, this means x4 \ Ci 6= ;: Thus the setx5, whi
h is disjoint from x4, 
annot 
ontain all elements of Ci, showing 
0(x5) 6= i. Thisproves that the 
oloring 
0 is wide, thus Lemma 4.1 
ompletes the proof of the theorem.� Note that the smallest S
hrijver graph for whi
h the above proof gives  (SG(n; k)) <�(SG(n; k)) is G = SG(65; 31) with �(G) = 5 and  (G) = 4. In Remark 4 below we13



show how the lower bound on n 
an be lowered somewhat. After that we show that somelower bound is needed as  (SG(n; 2)) = �(SG(n; 2)) for every n.Remark 3. In [14℄ universal graphs U(m; r) are de�ned for whi
h it is shown that a graphG 
an be 
olored with m 
olors su
h that the neighborhood of every vertex 
ontainsfewer than r 
olors if and only if a homomorphism from G to U(m; r) exists. The proofof Theorem 3 gives, for odd t, a (t + 1)-
oloring of SG(n; k) (for appropriately largen and k that give 
hromati
 number t) for whi
h no neighborhood 
ontains more than(t + 1)=2 
olors, thus establishing the existen
e of a homomorphism from SG(n; k) toU(t + 1; (t+ 3)=2). This, in parti
ular, proves that �(U(t + 1; (t+ 3)=2)) � t, whi
h is aspe
ial 
ase of Theorem 2.6 in [14℄. It is not hard to see that this inequality is a
tuallyan equality. Further, by the 
omposition of the appropriate maps, the existen
e of thishomomorphism also proves that U(t + 1; (t+ 3)=2) is strongly topologi
ally t-
hromati
.�Remark 4. For the pri
e of letting the proof be a bit more 
ompli
ated one 
an improveupon the bound given on n in Theorem 3. In parti
ular, one 
an show that the same
on
lusion holds for odd t and n � 2t2�4t+3. More generally, we 
an show  (SG(n; k)) ��(SG(n; k)) � m = n � 2k + 2 � m provided that �(SG(n; k)) � 2m + 3 and n �8m2 + 16m+ 9 or �(SG(n; k)) � 4m+ 3 and n � 20m+ 9. The smallest S
hrijver graphfor whi
h we 
an prove that the lo
al 
hromati
 number is smaller than the ordinary
hromati
 number is SG(33; 15) with 1496 verti
es and � = 5 but  = 4. (In general,one has jV (SG(n; k))j = nk�n�k�1k�1 �, 
f. Lemma 1 in [49℄.) The smallest n and k for whi
hwe 
an prove  (SG(n; k)) < �(SG(n; k)) is for the graph SG(29; 12) for whi
h � = 7 but � 6.We only sket
h the proof. For a similar and more detailed proof see Theorem 13.The idea is again to take a basi
 
oloring 
0 of SG(n; k) and obtain a new 
oloring 
by re
oloring to a new 
olor some neighbors of those verti
es v for whi
h j
0(N(v))j istoo large. The novelty is that now we do not re
olor all su
h neighbors, just enough ofthem, and also the de�nition of the basi
 
oloring 
0 is a bit di�erent. Partition [n℄ intot = n� 2k + 2 intervals A1; : : : ; At, ea
h of odd length as in the proof of Theorem 3 andalso de�ne Ci similarly to be the unique largest subset of Ai not 
ontaining 
onse
utiveelements. For a vertex x we de�ne 
0(x) to be the smallest i for whi
h Ci � x. Note thatsu
h an i must exist. Now we de�ne when to re
olor a vertex to the new 
olor � if our goalis to prove  (SG(n; k)) � b := t�m, where m > 0. We let 
(y) = � i� y is the neighborof a vertex x having at least b� 2 di�erent 
olors smaller than 
0(y) in its neighborhood.Otherwise, 
(y) = 
0(y). It is 
lear that j
(N(x))j � b � 1 is satis�ed, the only problemwe fa
e is that 
 may not be a proper 
oloring. To avoid this problem we only need thatthe re
olored verti
es form an independent set. For ea
h vertex v de�ne the index setI(v) := fj : v \ Cj = ;g. If y and y0 are re
olored verti
es then they are neighbors ofsome x and x0, respe
tively, where I(x) 
ontains 
0(y) and at least b � 2 indi
es smallerthan 
0(y) and I(x0) 
ontains 
0(y0) and at least b � 2 indi
es smaller than 
0(y0). Sin
ej[n℄ n (x [ y)j = t � 2, there are at most t � 2 elements in [j2I(x)Cj not 
ontained in y.14



The de�nition of 
0 also implies that at least one element of Cj is missing from y for everyj < 
0(y). Similarly, there are at most t�2 elements in [j2I(x0)Cj not 
ontained in y0 andat least one element of Cj is missing from y0 for every j < 
0(y0): These 
onditions lead toy\y0 6= ; if the sizes jAij = 2jCij�1 are appropriately 
hosen. In parti
ular, if t � 2m+3and jAtj � 1; jAt�1j � 2m + 3; jAt�2j � : : : � jAt�(2m+2)j � 4m + 5, or t � 4m + 3 andjAtj � 1; jAt�1j � 3; jAt�2j � : : : � jAt�(4m+2)j � 5, then the above argument leads to aproof of  (SG(n; k)) � t �m. (It takes some further but simple argument why the lasttwo intervals Ai 
an be 
hosen smaller than the previous ones.) These two possible 
hoi
esof the interval sizes give the two general bounds on n we 
laimed suÆ
ient for attaining (SG(n; k)) � t�m. The strengthening of Theorem 3 is obtained by the m = (t� 3)=2spe
ial 
ase of the �rst bound. �Proposition 4 (restated)  (SG(n; 2)) = n� 2 = �(SG(n; 2)) for every n � 4.Proof. In the n = 4 
ase SG(n; 2) 
onsists of a single edge and the statement of theproposition is trivial. Assume for a 
ontradi
tion that  (SG(n; 2)) � n � 3 for somen � 5 and let 
 be a proper 
oloring of SG(n; 2) showing this with the minimal numberof 
olors. As �(SG(n; 2)) = n� 2 and a 
oloring of a graph G with exa
tly �(G) 
olors
annot show  (G) < �(G) the 
oloring 
 uses at least n� 1 
olors.It is worth visualizing the verti
es of SG(n; 2) as diagonals of an n-gon (
f. [8℄).In other words, SG(n; 2) is the 
omplement of the line graph of Dn, where Dn is the
omplement of the 
y
le Cn. The 
olor 
lasses are independent sets in SG(n; 2), so theyare either stars or triangles in Dn.We say that a vertex x sees the 
olor 
lasses of its neighbors. By our assumption everyvertex sees at most n� 4 
olor 
lasses.Assume a 
olor 
lass 
onsists of a single vertex x. As x sees at most n � 4 of theat least n � 1 
olor 
lasses we 
an 
hoose a di�erent 
olor for x. The resulting 
oloringattains the same lo
al 
hromati
 number with fewer 
olors. This 
ontradi
ts the 
hoi
eof 
 and shows that no 
olor 
lass is a singleton.A triangle 
olor 
lass is seen by all other edges of Dn. A star 
olor 
lass with 
enteri and at least three elements is seen by all verti
es that, as edges of Dn, are not in
identto i. For star 
olor 
lasses of two edges there 
an be one additional vertex not seeing the
lass. So every 
olor 
lass is seen by all but at most n� 2 verti
es. We double 
ount thepairs of a vertex x and a 
olor 
lass C seen by x. On one hand every vertex sees at mostn�4 
lasses. On the other hand all the 
olor 
lasses are seen by at least ��n2�� n��(n�2)verti
es. We have (n� 1)��n2�� 2n + 2� � ��n2�� n� (n� 4);and this 
ontradi
ts our n � 5 assumption. The 
ontradi
tion proves the statement.�15



4.3 Generalized My
ielski graphsAnother 
lass of graphs for whi
h the 
hromati
 number is known only via the topologi
almethod is formed by generalized My
ielski graphs, see [23, 39, 48℄. They are interestingfor us also for another reason: there is a big gap between their fra
tional and ordinary
hromati
 numbers (see [34, 50℄), therefore the lo
al 
hromati
 number 
an take its valuefrom a large interval.Re
all that the My
ielskianM(G) of a graphG is the graph de�ned on (f0; 1g�V (G))[fzg with edge set E(M(G)) = ff(0; v); (i; w)g : fv; wg 2 E(G); i 2 f0; 1gg [ ff(1; v); zg :v 2 V (G)g. My
ielski [43℄ used this 
onstru
tion to in
rease the 
hromati
 number of agraph while keeping the 
lique number �xed: �(M(G)) = �(G)+1 and !(M(G)) = !(G).Following Tardif [50℄, the same 
onstru
tion 
an also be des
ribed as the dire
t (also
alled 
ategori
al) produ
t of G with a path on three verti
es having a loop at one end andthen identifying all verti
es that have the other end of the path as their �rst 
oordinate.Re
all that the dire
t produ
t of F and G is a graph on V (F )�V (G) with an edge between(u; v) and (u0; v0) if and only if fu; u0g 2 E(F ) and fv; v0g 2 E(G). The generalizedMy
ielskian of G (
alled a 
one over G by Tardif [50℄) Mr(G) is then de�ned by takingthe dire
t produ
t of P and G, where P is a path on r + 1 verti
es having a loop atone end, and then identifying all the verti
es in the produ
t with the loopless end of thepath as their �rst 
oordinate. With this notation M(G) = M2(G). These graphs were
onsidered by Stiebitz [48℄, who proved that if G is k-
hromati
 \for a topologi
al reason"then Mr(G) is (k + 1)-
hromati
 for a similar reason. (Gy�arf�as, Jensen, and Stiebitz [23℄also 
onsider these graphs and quote Stiebitz's argument a spe
ial 
ase of whi
h is alsopresented in [39℄.) The topologi
al reason of Stiebitz is in di�erent terms than those weuse in this paper but using results of [3℄ they imply strong topologi
al (t+d)-
hromati
ityfor graphs obtained by d iterations of the generalized My
hielski 
onstru
tion starting, e.g,from Kt or from a t-
hromati
 S
hrijver graph. More pre
isely, Stiebitz proved that thebody of the so-
alled neighborhood 
omplex N (Mr(G)) of Mr(G), introdu
ed in [36℄ byLov�asz, is homotopy equivalent to the suspension of jjN (G)jj. Sin
e susp(Sn) �= Sn+1 thisimplies that whenever jjN (G)jj is homotopy equivalent to an n-dimensional sphere, thenjjN (Mr(G))jj is homotopy equivalent to the (n + 1)-dimensional sphere. This happens,for example, if G is a 
omplete graph, or an odd 
y
le. By a re
ent result of Bj�ornerand de Longueville [8℄ we also have a similar situation if G is isomorphi
 to any S
hrijvergraph SG(n; k). Noti
e that the latter in
lude 
omplete graphs and odd 
y
les.It is known, that jjN (F )jj is homotopy equivalent to H(F ) for every graph F , seeProposition 4.2 in [3℄. All this implies that 
oind(H(Mr(G))) = 
oind(H(G))+1 wheneverH(G) is homotopy equivalent to a sphere, in parti
ular, whenever G is a 
omplete graphor an odd 
y
le, or, more generally, a S
hrijver graph. In the �rst version of this paperwe wrote that it is very likely that Stiebitz's proof 
an be generalized to show thatH(Mr(G)) $ susp(H(G)) and therefore 
oind(H(Mr(G))) � 
oind(H(G)) + 1 holdsalways. Sin
e then Csorba [12℄ su

eeded to prove this generalization. In fa
t, he provedZ2-homotopy equivalen
e of H(Mr(G)) and susp(H(G)). Nevertheless, here we restri
t16



attention to graphs G with H(G) homotopy equivalent to a sphere.For an integer ve
tor r = (r1; : : : ; rd) with ri � 1 for all i we let M (d)r (G) =Mrd(Mrd�1(: : :Mr1(G) : : :)) denote the graph obtained by a d-fold appli
ation of the gen-eralized My
ielski 
onstru
tion with respe
tive parameters r1; : : : ; rd.Proposition 9 (Stiebitz) If G is a graph for whi
h H(G) is homotopy equivalent to asphere Sh with h = �(G) � 2 (in parti
ular, G is a 
omplete graph or an odd 
y
le,or, more generally, a S
hrijver graph) and r = (r1; : : : ; rd) is arbitrary, then M (d)r (G) isstrongly topologi
ally t-
hromati
 for t = �(M (d)r (G)) = �(G) + d. �It is interesting to remark that �(Mr(G)) > �(G) does not hold in general if r � 3, e.g.,for C7, the 
omplement of the 7-
y
le, one has �(M3(C7)) = �(C7) = 4 (
f. [50℄). Still,the result of Stiebitz implies that the sequen
e f�(M (d)r (G))g1d=1 may avoid to in
reaseonly a �nite number of times.The fra
tional 
hromati
 number of My
ielski graphs were determined by Larsen,Propp, and Ullman [34℄, who proved that �f (M(G)) = �f(G) + 1�f (G) holds for every G.This already shows that there is a large gap between the 
hromati
 and the fra
tional
hromati
 numbers of M (d)r (G) if d is large enough and ri � 2 for all i, sin
e obviously,�f (Mr(F )) � �f(M(F )) holds if r � 2. The previous result was generalized by Tardif[50℄ who showed that �f (Mr(G)) 
an also be expressed by �f(G) as �f (G)+ 1Pr�1i=0 (�f (G)�1)iwhenever G has at least one edge.First we show that for the original My
ielski 
onstru
tion the lo
al 
hromati
 numberbehaves similarly to the 
hromati
 number.Proposition 10 For any graph G we have (M(G)) =  (G) + 1:Proof. We pro
eed similarly as one does in the proof of �(M(G)) = �(G) + 1. Re
allthat V (M(G)) = f0; 1g � V (G) [ fzg.For the upper bound 
onsider a 
oloring 
0 of G establishing its lo
al 
hromati
 numberand let � and � be two 
olors not used by 
0. We de�ne 
((0; x)) = 
0(x), 
((1; x)) = �and 
(z) = �. This proper 
oloring shows  (M(G)) �  (G) + 1.For the lower bound 
onsider an arbitrary proper 
oloring 
 of M(G). We have toshow that some vertex must see at least  (G) di�erent 
olors in its neighborhood.We de�ne the 
oloring 
0 of G as follows:
0(x) = � 
((0; x)) if 
((0; x)) 6= 
(z)
((1; x)) otherwise.It follows from the 
onstru
tion that 
0 is a proper 
oloring of G. Note that 
0 does notuse the 
olor 
(z). 17



By the de�nition of  (G), there is some vertex x of G that has at least  (G) � 1di�erent 
olors in its neighborhood NG(x). If 
0(y) = 
(0; y) for all verti
es y 2 NG(x),then the vertex (1; x) has all these 
olors in its neighborhood, and also the additional
olor 
(z). If however 
0(y) 6= 
(0; y) for a neighbor y of x, then the vertex (0; x) seesall the 
olors 
0(NG(x)) in its neighborhood NM(G)(0; x), and also the additional 
olor
(0; y) = 
(z). In both 
ases a vertex has  (G) di�erent 
olors in its neighborhood as
laimed. �We remark that M1(G) is simply the graph G with a new vertex 
onne
ted to everyvertex of G, therefore the following trivially holds.Proposition 11 For any graph G we have (M1(G)) = �(G) + 1: �For our �rst upper bound we apply Lemma 4.1. We use the following result of Gy�arf�as,Jensen, and Stiebitz [23℄. The lemma below is an immediate generalization of the l = 2spe
ial 
ase of Theorem 4.1 in [23℄. We reprodu
e the simple proof from [23℄ for the sakeof 
ompleteness.Lemma 4.3 ([23℄) If G has a wide 
oloring with t 
olors and r � 7, then Mr(G) has awide 
oloring with t+ 1 
olors.Proof. As there is a homomorphism from Mr(G) to M7(G) if r > 7 it is enough to givethe 
oloring for r = 7. We �x a wide t-
oloring 
0 of G and use the additional 
olor 
.The 
oloring of M7(G) is given as
((v; x)) = � 
 if v is the vertex at distan
e 3, 5 or 7 from the loop
0(x) otherwise.It is straightforward to 
he
k that 
 is a wide 
oloring. �We 
an apply the results of Stiebitz and Gy�arf�as et al. re
ursively to give tight oralmost tight bounds for the lo
al 
hromati
 number of the graphsM (d)r (G) in many 
ases:Corollary 12 If G has a wide t-
oloring and r = (r1; : : : ; rd) with ri � 7 for all i, then (M (d)r (G)) � t+d2 + 2.If H(G) is homotopy equivalent to a sphere Sh, then  (M (d)r (G)) � h+d2 + 2.Proof. For the �rst statement we apply Lemma 4.3 re
ursively to show that M (d)r (G)has a wide (t+ d)-
oloring and then apply Lemma 4.1.For the se
ond statement we apply the result of Stiebitz re
ursively to show thatH(M (d)r (G)) is homotopy equivalent to Sh+d. As noted in the preliminaries of the present18



subse
tion this implies 
oind(H(M (d)r (G))) � h+d. By Theorem 1 the statement follows.�Theorem 5 (restated) If r = (r1; : : : ; rd), d is odd, and ri � 7 for all i, then (M (d)r (K2)) = �d2� + 2:Proof. Noti
e that for r = (r1; : : : ; rd) with d odd and ri � 7 for all i the lowerand upper bounds of Corollary 12 give the exa
t value for the lo
al 
hromati
 number (M (d)r (K2)) = (d+ 5)=2. This proves the theorem. �Noti
e that a similar argument gives the exa
t value of  (G) for the more 
ompli
atedgraph G = M (d)r (SG(n; k)) whenever n + d is odd, ri � 7 for all i, and n � 4t2 � 7t fort = n � 2k + 2. This follows from Corollary 12 via the wide 
olorability of SG(n; k) forn � 4t2 � 7t shown in the proof of Theorem 3 and Bj�orner and de Longueville's result[8℄ about the homotopy equivalen
e of H(SG(n; k)) to Sn�2k. (Instead of the latter we
an also use Csorba's result [12℄ mentioned above and refer to the strong topologi
alt-
hromati
ity of SG(n; k).)We summarize our knowledge on  (M (d)r (K2)) after proving the following theorem,whi
h shows that almost the same upper bound as in Corollary 12 is implied from therelaxed 
ondition ri � 4.Theorem 13 For r = (r1; : : : ; rd) with ri � 4 for all i one has (M (d)r (G)) �  (G) + �d2� + 2:Moreover, for G �= K2, the following slightly sharper bound holds: (M (d)r (K2)) � �d2�+ 3:Proof. We denote the verti
es of Y := M (d)r (G) in a

ordan
e to the des
ription ofthe generalized My
ielski 
onstru
tion via graph produ
ts. That is, a vertex of Y is asequen
e a1a2 : : : adu of length (d+1), where 8i : ai 2 f0; 1; : : : ; rig[f�g, u 2 V (G)[f�gand if ai = ri for some i then ne
essarily u = � and aj = � for every j > i, and this is theonly way � 
an appear in a sequen
e. To de�ne adja
en
y we denote by P̂ri+1 the pathon f0; 1; : : : ; rig where the edges are of the form fi � 1; ig; i 2 f1; : : : ; rig and there is aloop at vertex 0. Two verti
es a1a2 : : : adu and a01a02 : : : a0du0 are adja
ent in Y if and onlyif u = � or u0 = � or fu; u0g 2 E(G) and19



8i : ai = � or a0i = � or fai; a0ig 2 E(P̂ri+1):Our strategy is similar to that used in Remark 4. Namely, we give an original 
oloring
0, identify the set of \troublesome" verti
es for this 
oloring, and re
olor most of theneighbors of these verti
es to a new 
olor.Let us �x a 
oloring 
G of G with at most  (G) � 1 
olors in the neighborhood of avertex. Let the 
olors we use in this 
oloring be 
alled 0;�1;�2, et
. Now we de�ne 
0as follows.
0(a1 : : : adu) = 8<: 
G(u) if 8i : ai � 2i if ai � 3 is odd and aj � 2 for all j < i0 if 9i : ai � 4 is even and aj � 2 for all j < iIt is 
lear that verti
es having the same 
olor form independent sets, i.e., 
0 is a proper
oloring. Noti
e that if a vertex has neighbors of many di�erent \positive" 
olors, then itmust have many 
oordinates that are equal to 2. Now we re
olor most of the neighborsof these verti
es.Let � be a 
olor not used by 
0 and set 
(a1 : : : adu) = � if jfi : ai is oddgj > d=2.(In fa
t, it would be enough to give 
olor � only to those of the above verti
es, for whi
hthe �rst bd2
 odd 
oordinates are equal to 1. We re
olor more verti
es for the sake ofsimpli
ity.) Otherwise, let 
(a1 : : : adu) = 
0(a1 : : : adu).First, we have to show that 
 is proper. To this end we only have to show that nopair of verti
es getting 
olor � 
an be adja
ent. If two verti
es, x = x1 : : : xdvx andy = y1 : : : ydvy are 
olored � then both have more than d=2 odd 
oordinates (among their�rst d 
oordinates). Thus there is some 
ommon 
oordinate i for whi
h xi and yi are bothodd. This implies that x and y are not adja
ent.Now we show that for any vertex a we have j
(N(a)) \ f1; : : : ; dgj � d=2. Indeed, ifj
0(N(a))\f1; : : : ; dgj > d=2 then we have a = a1 : : : adu with more than d=2 
oordinatesai that are even and positive. Furthermore, the �rst bd=2
 of these 
oordinates shouldbe 2. Let I be the set of indi
es of these �rst bd=2
 even and positive 
oordinates. We
laim that 
(N(a))\f1; : : : ; dg � I. This is so, sin
e if a neighbor has an odd 
oordinatesomewhere outside I, then it 
annot have � at the positions of I, therefore it has morethan d=2 odd 
oordinates and it is re
olored by 
 to the 
olor �.It is also 
lear that no vertex 
an see more than  (G) � 1 \negative" 
olors in itsneighborhood in either 
oloring 
0 or 
. Thus the neighborhood of any vertex 
an 
ontainat most bd=2
+ ( (G)� 1) + 2 
olors, where the last 2 is added be
ause of the possibleappearan
e of 
olors � and 0 in the neighborhood. This proves  (Y ) � d=2 +  (G) + 2proving the �rst statement in the theorem.For G �= K2 the above gives  (M (d)r (K2)) � bd=2
 + 4 whi
h implies the se
ondstatement for odd d. For even d the bound of the se
ond statement is 1 less. We 
an gain1 as follows. When de�ning 
 let us re
olor to � those verti
es a = a1 : : : adu, too, forwhi
h the number of odd 
oordinates ai is exa
tly d2 and 
G(u) = �1. The proof pro
eeds20



similarly as before but we gain 1 by observing that those verti
es who see �1 
an see onlyd2 � 1 \positive" 
olors. �We 
olle
t the impli
ations of Theorems 5, 13 and Propositions 10 and 11. It would beinteresting to estimate the value  (M (d)r (K2)) for the missing 
ase r = (3; : : : ; 3). Whatwe know then is dd=2e+ 2 �  � d+ 2.Corollary 14 For r = (r1; : : : ; rd) we have (M (d)r (K2)) = 8<: (d+ 5)=2 if d is odd and 8i : ri � 7dd=2e+ 2 or dd=2e+ 3 if 8i : ri � 4d+ 2 if rd = 1 or 8i : ri = 2: �Remark 5. The improvement for even d given in the last paragraph of the proof ofTheorem 13 
an also be obtained in a di�erent way we explain here. Instead of 
hangingthe rule for re
oloring, we 
an enfor
e that a vertex 
an see only  (G)�2 negative 
olors.This 
an be a
hieved by setting the starting graph G to be M4(K2) �= C9 instead of K2itself and 
oloring this C9 with the pattern �1; 0;�1;�2; 0;�2;�3; 0;�3 along the 
y
le.One 
an readily 
he
k that every vertex 
an see only one non-0 
olor in its neighborhood.The same tri
k 
an be used also if the starting graph is not K2 or C9, but somelarge enough S
hrijver graph of odd 
hromati
 number. Coloring it as in the proof ofLemma 4.1 (using the wide 
oloring as given in the proof of Theorem 3), we arrive to thesame phenomenon if we let the new 
olor (of the proof of Lemma 4.1) be 0. �Remark 6. Gy�arf�as, Jensen, and Stiebitz [23℄ use generalized My
ielski graphs to showthat another graph they denote by Gk is k-
hromati
. The way they prove it is that theyexhibit a homomorphism from M (k�2)r (K2) to Gk for r = (4; : : : ; 4). The existen
e ofthis homomorphism implies that Gk is strongly topologi
ally k-
hromati
, thus its lo
al
hromati
 number is at least k=2 + 1. We do not know any non-trivial upper boundfor  (Gk). Also note that [23℄ gives universal graphs for the property of having a widet-
oloring. By Lemma 4.1 this graph has  � t=2 + 2. On the other hand, sin
e anygraph with a wide t-
oloring admits a homomorphism to this graph, and we have seenthe wide t-
olorability of some strongly topologi
ally t-
hromati
 graphs, it is stronglytopologi
ally t-
hromati
, as well. This gives  � t=2 + 1. �4.4 Borsuk graphs and the tightness of Ky Fan's theoremThe following de�nition goes ba
k to Erd}os and Hajnal [15℄, see also [37℄.De�nition 5 The Borsuk graph B(n; �) of parameters n and 0 < � < 2 is the in�nitegraph whose verti
es are the points of the unit sphere in Rn (i.e., Sn�1) and its edges
onne
t the pairs of points with distan
e at least �.21



The Borsuk-Ulam theorem implies that �(B(n; �)) � n + 1, and, as Lov�asz [37℄remarks, these two statements are in fa
t equivalent. For � large enough (dependingon n) this lower bound on the 
hromati
 number is sharp as shown by the standard(n+ 1)-
oloring of the sphere Sn�1 (see [37, 39℄ or 
f. the proof of Corollary 15 below).The lo
al 
hromati
 number of Borsuk graphs for large enough � 
an also be de-termined by our methods. First we want to argue that Theorem 1 is appli
able for thisin�nite graph. Lov�asz gives in [37℄ for any n and � a �nite graphGP = GP (n; �) � B(n; �)whi
h has the property that its neighborhood 
omplex N (GP ) is homotopy equivalent toSn�1. Now we 
an 
ontinue the argument the same way as in the previous subse
tion:Proposition 4.2 in [3℄ states that N (F ) is homotopy equivalent to H(F ) for every graphF , thus 
oind(H(GP )) � n � 1, i.e., GP is strongly topologi
ally (n + 1)-
hromati
. AsGP � B(n; �) we have dn+32 e �  (GP ) �  (B(n; �)) by Theorem 1.The following lemma shows the spe
ial role of Borsuk graphs among strongly topo-logi
ally t-
hromati
 graphs. It will also show that our earlier upper bounds on the lo
al
hromati
 number have dire
t impli
ations for Borsuk graphs.Lemma 4.4 A �nite graph G is strongly topologi
ally (n+1)-
hromati
 if and only if forsome � < 2 there is a graph homomorphism from B(n; �) to G.Proof. For the if part 
onsider the �nite graph GP � B(n; �) given by Lov�asz [37℄satisfying 
oind(H(GP )) � n � 1. If there is a homomorphism from B(n; �) to G, it
learly gives a homomorphism also from GP to G whi
h further generates a Z2-map fromH(GP ) to H(G). This proves 
oind(H(G)) � n� 1.For the only if part, let f : Sn�1 ! H(G) be a Z2-map. For a point x 2 Sn�1write f(x) 2 H(G) as the 
onvex 
ombination f(x) =P�v(x)jj+vjj+P �v(x)jj�vjj ofthe verti
es of jjB0(G)jj. Here the summations are for the verti
es v of G, P�v(x) =P �v(x) = 1=2, and fv : �v(x) > 0g ℄ fv : �v(x) > 0g 2 B0(G). Note that �v and�v are 
ontinuous as f is 
ontinuous and �v(x) = �v(�x) by the equivarian
e of f . Set" = 1=(2jV (G)j). For x 2 Sn�1 sele
t an arbitrary vertex v = g(x) of G with �v � ". We
laim that g is a graph homomorphism from B(n; �) to G if � is 
lose enough to 2. By
ompa
tness it is enough to prove that if we have verti
es v and w of G and sequen
esxi ! x and yi ! �x of points in Sn�1 with g(xi) = v and g(yi) = w for all i, then vand w are 
onne
ted in G. But sin
e �v is 
ontinuous we have �v(x) � " and similarly�w(x) = �w(�x) � " and so +v and �w are 
ontained in the smallest simplex of B0(G)
ontaining f(x) proving that v and w are 
onne
ted. �By Lemma 4.4 either of Theorems 3 or 5 implies that the above given lower boundon  (B(n; �)) is tight whenever �(B(n; �)) is odd, that is, n is even, and � < 2 is 
loseenough to 2. In the following 
orollary we give an expli
it bound on � by proving for thatvalue of � that the standard 
oloring is wide.Corollary 15 If n is even and 2� 125n+50 � � < 2, then (B(n; �)) = n2 + 2:22



Proof. The lower bound on  (B(n; �)) follows from the dis
ussion pre
eding Lemma 4.4.The upper bound follows from Lemma 4.1 as long as we 
an give a wide (n+ 1)-
oloringof the graph B(n; �).To this end we use the standard (n+1)-
oloring ofB(n; �) (see, e.g., [37, 39℄). Considera regular simplex R ins
ribed into the unit sphere Sn�1 and 
olor a point x 2 Sn�1 by thefa
et of R interse
ted by the segment from the origin to x. If this segment meets a lowerdimensional fa
e then we arbitrarily 
hoose a fa
et 
ontaining this fa
e. To see for what� gives this a proper 
oloring we have to �nd the maximal distan
e �0 between pairs ofpoints that we 
an 
olor the same. Cal
ulation shows that proje
tions from the origin ofthe middle points of two disjoint (n=2�1)-dimensional fa
es of R are farthest apart, thus�0 = 2p1� 1=(n+ 2). (Noti
e that [37℄ gives a di�erent treshold value for �. We wereinformed by L�aszl�o Lov�asz [38℄, however, that it was noti
ed by several resear
hers thatthe 
orre
t value is larger than the one given in [37℄.)We let ' = 2 ar

os(�=2). Clearly, x and y is 
onne
ted if and only if the length of theshortest ar
 on Sn�1 
onne
ting �x and y is at most '. Therefore x and y are 
onne
tedby a walk of length 5 if and only if the length of this same minimal ar
 is at most 5'. Forthe standard 
oloring the length of the shortest ar
 between �x and y for two verti
esx and y 
olored with the same 
olor is at least 2 ar

os(�0=2) = 2 ar
sin(n + 2)�1=2.Therefore the standard 
oloring is wide as long as � > 2 
os� ar
sin(n+2)�1=25 �. Here easy
al
ulation gives that the right hand side is less than 2� 125n+50 . �Our investigations of the lo
al 
hromati
 number led us to 
onsider the followingfun
tion Q(h). The question of its values was independently asked by Mi
ha Perlesmotivated by a related question of Matatyahu Rubin1.De�nition 6 For a nonnegative integer parameter h let Q(h) denote the minimum l forwhi
h Sh 
an be 
overed by open sets in su
h a way that no point of the sphere is 
ontainedin more than l of these sets and none of the 
overing sets 
ontains an antipodal pair ofpoints.Ky Fan's theorem implies Q(h) � h2 + 1. Either of Theorems 3 or 5 implies the upperbound Q(h) � h2 +2. Using the 
on
epts of Corollary 15 and Lemma 4.1 one 
an give anexpli
it 
overing of the sphere S2l�3 by open subsets where no point is 
ontained in morethan l of the sets and no set 
ontains an antipodal pair of points. In fa
t, the 
overingwe give satis�es a stronger requirement and proves that version (ii) of Ky Fan's theoremis tight, while version (i) is almost tight.Corollary 16 There is a 
on�guration A of k+2 open (
losed) sets su
h that [A2A(A[�A) = Sk, all sets A 2 A satisfy A \ �A = ;, and no x 2 Sk is 
ontained in more than�k+12 � of these sets.Furthermore, for every x the number of sets in A 
ontaining either x or �x is atmost k + 1.1We thank Imre B�ar�any [6℄ and Gil Kalai [29℄ for this information.23



Proof. First we 
onstru
t 
losed sets. Consider the unit sphere Sk in Rk+1 . Let R bea regular simplex ins
ribed in the sphere. Let B1; : : : ; Bk+2 be the subsets of the sphereobtained by the 
entral proje
tion of the fa
ets of R. These 
losed sets 
over Sk. Let C0be the set of points 
overed by at least �k+32 � of the sets Bi. Noti
e that C0 is the union ofthe 
entral proje
tions of the bk�12 
-dimensional fa
es of R. For odd k let C = C0, whilefor even k let C = C0 [C1, where C1 is the set of points in B1 
overed by exa
tly k=2+ 1of the sets Bi. Thus C1 is the union of the 
entral proje
tions of the k2 -dimensional fa
esof a fa
et of R. Observe that C \ �C = ;. Take 0 < Æ < dist(C;�C)=2 and let D bethe open Æ-neighborhood of C in Sk. For 1 � i � k + 2 let Ai = Bi n D. These 
losedsets 
over Sk nD and none of them 
ontains a pair of antipodal points. As D \ �D = ;we have [k+2i=1 (Ai [ �Ai) = Sk. It is 
lear that every point of the sphere is 
overed by atmost �k+12 � of the sets Ai proving the �rst statement of the 
orollary.For the se
ond statement note that if ea
h set Bi 
ontains at least one of a pair ofantipodal points, then one of these points belongs to C and is therefore not 
overed byany of the sets Ai. Note also, that for odd k the se
ond statement follows also from the�rst.To 
onstru
t open sets as required we 
an simply take the open "-neighborhoods ofAi. For small enough " > 0 they maintain the properties required in the 
orollary. �Corollary 17 There is a 
on�guration of k + 3 open (
losed) sets 
overing Sk none ofwhi
h 
ontains a pair of antipodal points, su
h that no x 2 Sk is 
ontained in more thandk+32 e of these sets and for every x 2 Sk the number of sets that 
ontain one of x and�x is at most k + 2.Proof. For 
losed sets 
onsider the sets Ai in the proof of Corollary 16 together with the
losure of D. For open sets 
onsider the open "-neighborhoods of these sets for suitablysmall " > 0. �Note that 
overing with k+3 sets is optimal in Corollary 17 if k � 3. By the Borsuk-Ulam Theorem (form (i)) fewer than k+2 open (or 
losed) sets not 
ontaining antipodalpairs of points is not enough to 
over Sk. If we 
over with k + 2 sets (open or 
losed),then it gives rise to a proper 
oloring of B(k + 1; �) for large enough � in a natural way.This 
oloring uses the optimal number k+2 of 
olors, therefore it has a vertex with k+1di�erent 
olors in its neighborhood. A 
ompa
tness argument establishes from this thatthere is a point in Sk 
overed by k + 1 sets. A similar argument gives that k + 2 inCorollary 16 is also optimal if k � 3.Corollary 18 h2 + 1 � Q(h) � h2 + 2:Proof. The lower bound is implied by Ky Fan's theorem. The upper bound follows fromCorollary 17. �24



Noti
e that for odd h Corollary 18 gives the exa
t value Q(h) = h+32 . For h even weeither have Q(h) = h2 + 1 or Q(h) = h2 + 2. It is trivial that Q(0) = 1. In [47℄ we showQ(2) = 3. This was independently proved by Imre B�ar�any [6℄. For h > 2 even it remainsopen whether the lower or the upper bound of Corollary 18 is exa
t. We also refer to[47℄ for a more 
omplete dis
ussion of the 
onne
tions between lo
al 
olorings and theproblem of Q(h).5 Cir
ular 
oloringsIn this se
tion we show an appli
ation of the Zig-zag Theorem for the 
ir
ular 
hromati
number of graphs. This will result in the partial solution of a 
onje
ture by Johnson,Holroyd, and Stahl [28℄ and in a partial answer to a question of Hajiabolhassan and Zhu[24℄ 
on
erning the 
ir
ular 
hromati
 number of Kneser graphs and S
hrijver graphs,respe
tively. We also answer a question of Chang, Huang, and Zhu [10℄ 
on
erning the
ir
ular 
hromati
 number of iterated My
ielskians of 
omplete graphs.The 
ir
ular 
hromati
 number of a graph was introdu
ed by Vin
e [52℄ under thename star 
hromati
 number as follows.De�nition 7 For positive integers p and q a 
oloring 
 : V (G) ! [p℄ of a graph G is
alled a (p; q)-
oloring if for all adja
ent verti
es u and v one has q � j
(u)�
(v)j � p�q.The 
ir
ular 
hromati
 number of G is de�ned as�
(G) = inf �pq : there is a (p; q)-
oloring of G� :It is known that the above in�mum is always attained for �nite graphs. An alternativedes
ription of �
(G), explaining its name, is that it is the minimum length of the perimeterof a 
ir
le on whi
h we 
an represent the verti
es of G by ar
s of length 1 in su
h a waythat ar
s belonging to adja
ent verti
es do not overlap. For a proof of this equivalen
eand for an extensive bibliography on the 
ir
ular 
hromati
 number we refer to Zhu'ssurvey arti
le [53℄.It is known that for every graph G one has �(G) � 1 < �
(G) � �(G). Thus �
(G)determines the value of �(G) while this is not true the other way round. Therefore the
ir
ular 
hromati
 number 
an be 
onsidered as a re�nement of the 
hromati
 number.Our main result on the 
ir
ular 
hromati
 number is Theorem 6. Here we restate thetheorem with the expli
it meaning of being topologi
ally t-
hromati
.Theorem 6 (restated) For a �nite graph G we have �
(G) � 
oind(B0(G)) + 1 if
oind(B0(G)) is odd.Proof. Let t = 
oind(B0(G)) + 1 be an even number and let 
 be a (p; q)-
oloring of G.By the Zig-zag Theorem there is a K t2 ; t2 in G whi
h is 
ompletely multi
olored by 
olorsappearing in an alternating manner in its two sides. Let these 
olors be 
1 < 
2 < : : : < 
t.25



Sin
e the vertex 
olored 
i is adja
ent to that 
olored 
i+1, we have 
i+1 � 
i + q and
t � 
1+(t�1)q. Sin
e t is even, the verti
es 
olored 
1 and 
t are also adja
ent, thereforewe must have 
t � 
1 � p� q. The last two inequalities give p=q � t as needed. �This result has been independently obtained by Meunier [42℄ for S
hrijver graphs.5.1 Cir
ular 
hromati
 number of even 
hromati
 Kneser andS
hrijver graphsJohnson, Holroyd, and Stahl [28℄ 
onsidered the 
ir
ular 
hromati
 number of Knesergraphs and formulated the following 
onje
ture. (See also as Conje
ture 7.1 and Question8.27 in [53℄.)Conje
ture (Johnson, Holroyd, Stahl [28℄): For any n � 2k�
(KG(n; k)) = �(KG(n; k)):It is proven in [28℄ that the above 
onje
ture holds if k = 2 or n = 2k + 1 or n = 2k + 2.Lih and Liu [35℄ investigated the 
ir
ular 
hromati
 number of S
hrijver graphs andproved that �
(SG(n; 2)) = n � 2 = �(SG(n; 2)) whenever n 6= 5. (For n = 2k + 1 onealways has �
(SG(2k + 1; k)) = 2 + 1k .) It was 
onje
tured in [35℄ and proved in [24℄that for every �xed k there is a threshold l(k) for whi
h n � l(k) implies �
(SG(n; k)) =�(SG(n; k)). This 
learly implies the analogous statement for Kneser graphs, for whi
hthe expli
it threshold l(k) = 2k2(k � 1) is given in [24℄. At the end of their paper[24℄ Hajiabolhassan and Zhu ask what is the minimum l(k) for whi
h n � l(k) implies�
(SG(n; k)) = �(SG(n; k)). We show that no su
h threshold is needed if n is even.Corollary 19 The Johnson-Holroyd-Stahl 
onje
ture holds for every even n. Moreover,if n is even, then the stronger equality�
(SG(n; k)) = �(SG(n; k))also holds.Proof. As t-
hromati
 Kneser graphs and S
hrijver graphs are topologi
ally t-
hromati
,Theorem 6 implies the statement of the 
orollary. �As mentioned above this result has been obtained independently by Meunier [42℄.We show in Subse
tion 5.3 that for odd n the situation is di�erent.5.2 Cir
ular 
hromati
 number of My
ielski graphs and BorsukgraphsThe 
ir
ular 
hromati
 number of My
ielski graphs was also studied extensively, 
f. [10,16, 25, 53℄. Chang, Huang, and Zhu [10℄ formulated the 
onje
ture that �
(Md(Kn)) =26



�(Md(Kn)) = n + d whenever n � d + 2. Here Md(G) denotes the d-fold iteratedMy
ielskian of graph G, i.e., using the notation of Subse
tion 4.3 we have Md(G) =M (d)r (G) with r = (2; : : : ; 2). The above 
onje
ture was veri�ed for the spe
ial 
asesd = 1; 2 in [10℄, where it was also shown that �
(Md(G)) � �(Md(G)) � 1=2 if �(G) =d + 1. A simpler proof for the above spe
ial 
ases of the 
onje
ture was given (for d = 2with the extra 
ondition n � 5) in [16℄. Re
ently Hajiabolhassan and Zhu [25℄ provedthat n � 2d + 2 implies �
(Md(Kn)) = �(Md(Kn)) = n + d. Our results show that�
(Md(Kn)) = �(Md(Kn)) = n + d always holds if n + d is even. This also answers thequestion of Chang, Huang, and Zhu asking the value of �
(Mn(Kn)) (Question 2 in [10℄).The stated equality is given by the following immediate 
onsequen
e of Theorem 6.Corollary 20 If H(G) is homotopy equivalent to the sphere Sh, r is a ve
tor of positiveintegers, and h+ d is even, then �
(M (d)r (G)) � d+ h+ 2.In parti
ular, �
(M (d)r (Kn)) = n+ d whenever n + d is even.Proof. The 
ondition on G implies 
oind(H(M (d)r (G))) = h + d by Stiebitz's re-sult [48℄ (
f. the dis
ussion and Proposition 9 in Subse
tion 4.3), whi
h further implies
oind(B0(M (d)r (G))) = h+ d+ 1. This gives the 
on
lusion by Theorem 6.The se
ond statement follows by the homotopy equivalen
e of H(Kn) with Sn�2 andthe 
hromati
 number of M (d)r (Kn) being n+ d. �The above mentioned 
onje
ture of Chang, Huang, and Zhu for n + d even is a spe
ial
ase with r = (2; 2; : : : ; 2) and n � d + 2. Sin
e n + n is always even, the answer�
(Mn(Kn)) = 2n to their question also follows.Corollary 20 also implies a re
ent result of Lam, Lin, Gu, and Song [33℄ who proved thatfor the generalized My
ielskian of odd order 
omplete graphs �
(Mr(K2m�1)) = 2m.Lam, Lin, Gu, and Song [33℄ also determined the 
ir
ular 
hromati
 number of thegeneralized My
ielskian of even order 
omplete graphs. They proved �
(Mr(K2m)) =2m + 1=(b(r � 1)=m
 + 1). This result 
an be used to bound the 
ir
ular 
hromati
number of the Borsuk graph B(2s; �) from above.Theorem 21 For the Borsuk graph B(n; �) we have(i) �
(B(n; �)) = n+ 1 if n is odd and � is large enough;(ii) �
(B(n; �))! n as �! 2 if n is even.Proof. The lower bound of part (i) immediately follows from Theorem 6 
onsideringagain the �nite subgraph GP of B(n; �) de�ned in [37℄ and already mentioned in theproof of Lemma 4.4. The mat
hing upper bound is provided by �(B(n; �)) = n + 1 forlarge enough �, see [37℄ and Subse
tion 4.4.For (ii) we have �
(B(n; �)) > �(B(n; �))� 1 � n. For an upper bound we use that�
(Mr(Kn))! n if r goes to in�nity by the result of Lam, Lin, Gu, and Song [33℄ quoted27



above. By the result of Stiebitz [48℄ and Lemma 4.4 we have a graph homomorphism fromB(n; �) to Mr(Kn) for any r and large enough �. As (p; q)-
olorings 
an be de�ned interms of graph homomorphisms (see [9℄), we have �
(G) � �
(H) if there exists a graphhomomorphism from G to H. This �nishes the proof of part (ii) of the theorem. �Remark 7. By Theorem 21 (ii) we have a sequen
e of (pi; qi)-
olorings of the graphsB(n; �i) where n is even su
h that �i ! 2 and pi=qi ! n. By a dire
t 
onstru
tionwe 
an show that a single fun
tion g : Sn�1 ! C is enough. Here C is a 
ir
le of unitperimeter. We needinffdistC(g(x); g(y)) : fx;yg 2 E(B(n; �))g ! 1=n as � < 2 goes to 2: (2)The distan
e distC(�; �) is measured along the 
ir
le C. Clearly, if p=q > n and we split Cinto p ar
s a1; : : : ; ap of equal length and 
olor the point x with i if g(x) 2 ai, then thisis a (p; q)-
oloring of B(n; �) for � 
lose enough to 2.For n = 2 any Z2-map g : S1 ! C satis�es expression (2). Let n > 2. The map g tobe 
onstru
ted must not be 
ontinuous by the Borsuk-Ulam theorem. Let us 
hoose a setH of n � 1 equidistant points in C and for b 2 C let T (b) denote the unique set of n=2equidistant points in C 
ontaining b.We 
onsider Sn�1 as the join of the sphere Sn�3 and the 
ir
le S1. All points in Sn�1are now either in Sn�3, or in S1, or in the interval 
onne
ting a point in Sn�3 to a pointin S1. We de�ne g on Sn�3 su
h that it takes values only from H and it is a proper
oloring of B(n � 2; �) for large enough �. We de�ne g on S1 su
h that if y goes a full
ir
le around S1 with uniform velo
ity, then its image g(y) 
overs an ar
 of length 2=nof C and it also moves with uniform velo
ity. Noti
e that although g is not 
ontinuouson S1, the set T (g(y)) depends on y 2 S1 in a 
ontinuous manner. Also note that for apoint x 2 S1 the images g(x) and g(�x) are 1=n apart on C and T (g(x)) [ T (g(�x)) isa set of n equidistant points.Let x 2 Sn�3 and y 2 S1. Assume that a point z moves with uniform velo
ity fromx to y along the interval 
onne
ting them. We de�ne g on this interval su
h that g(z)moves with uniform velo
ity along C 
overing an ar
 of length at most 1=n from g(x)to a point in T (g(y)). The 
hoi
e of the point in T (g(y)) is uniquely determined unlessg(x) 2 T (g(�y)). In the latter 
ase we make an arbitrary 
hoi
e of the two possiblepoints for the destination of the image g(z).It is not hard to prove that the fun
tion g de�ned above satis�es expression (2). �5.3 Cir
ular 
hromati
 number of odd 
hromati
 S
hrijvergraphsIn this subse
tion we show that the parity 
ondition on �(SG(n; k)) in Corollary 19is relevant, for odd 
hromati
 S
hrijver graphs the 
ir
ular 
hromati
 number 
an bearbitrarily 
lose to its lower bound. 28



Theorem 22 For every " > 0 and every odd t � 3 if n � t3=" and t = n� 2k + 2, then1� " < �(SG(n; k))� �
(SG(n; k)) < 1:The se
ond inequality is well-known and holds for any graph. We in
luded it only for
ompleteness. To prove the �rst inequality we need some preparation. We remark thatthe bound on n in the theorem is not best possible. Our method proves �(SG(n; k)) ��
(SG(n; k)) � 1� 1=i if i is a positive integer and n � 6(i� 1)�t3�+ t.First we extend our notion of wide 
oloring.De�nition 8 For a positive integer s we 
all a vertex 
oloring of a graph s-wide if thetwo end verti
es of any walk of length 2s� 1 re
eive di�erent 
olors.Our original wide 
olorings are 3-wide, while 1-wide simply means proper. Gy�arf�as,Jensen, and Stiebitz [23℄ investigated s-wide 
olorings (in di�erent terms) and mention(referring to a referee in the s > 2 
ase) the existen
e of homomorphism universal graphsfor s-wide 
olorability with t 
olors. We give a somewhat di�erent family of su
h universalgraphs. In the s = 2 
ase the 
olor-
riti
ality of the given universal graph is provenin [23℄ implying its minimality among graphs admitting 2-wide t-
olorings. Later inSubse
tion 6.1 we generalize this result showing that the members of our family are 
olor-
riti
al for every s. Thus they must be minimal and therefore isomorphi
 to a retra
t ofthe 
orresponding graphs given in [23℄.De�nition 9 Let Hs be the path on the verti
es 0; 1; 2; : : : ; s (i and i � 1 
onne
ted for1 � i � s) with a loop at s. We de�ne W (s; t) to be the graph withV (W (s; t)) = f(x1 : : : xt) : 8i xi 2 f0; 1; : : : ; sg; 9!i xi = 0; 9j xj = 1g;E(W (s; t)) = ffx1 : : : xt; y1 : : : ytg : 8i fxi; yig 2 E(Hs)g:Note that W (s; t) is an indu
ed subgraph of the dire
t power H ts (
f. Subse
tion 4.3).Proposition 23 A graph G admits an s-wide 
oloring with t 
olors if and only if thereis a homomorphism from G to W (s; t).Proof. For the if part 
olor vertex x = x1 : : : xt of W (s; t) with 
(x) = i if xi = 0. Anywalk between two verti
es 
olored i either has even length or 
ontains two verti
es y andz with yi = zi = s. These y and z are both at least at distan
e s apart from both endsof the walk, thus our 
oloring of W (s; t) with t 
olors is s-wide. Any graph admitting ahomomorphism ' to W (s; t) is s-widely 
olored with t 
olors by 
G(v) := 
('(v)).For the only if part assume 
 is an s-wide t-
oloring of G with 
olors 1; : : : ; t. Let '(v)be an arbitrary vertex of W (s; t) if v is an isolated vertex of G. For a non-isolated vertexv of G let '(v) = x = x1 : : : xt with xi = min(s; di(v)), where di(v) is the distan
e of 
olor
lass i from v. It is 
lear that xi = 0 for i = 
(v) and for no other i, while xi = 1 for the29




olors of the neighbors of v in G. Thus the image of ' is indeed in V (W (s; t)). It takesan easy 
he
king that ' is a homomorphism. �The following lemma is a straightforward extension of the argument given in the proofof Theorem 3.Lemma 5.1 If n � (2s� 2)t2 � (4s� 5)t then SG(n; k) admits an s-wide t-
oloring.Proof. We use the notation introdu
ed in the proof of Theorem 3.Let n � t(2(s�1)(t�2)+1) as in the statement and let 
0 be the 
oloring de�ned in thementioned proof. The lower bound on n now allows to assume that jCij � (s�1)(t�2)+1.We show that 
0 is s-wide.Consider a walk x0x1 : : : x2s�1 of length (2s� 1) in SG(n; k) and let i = 
0(x0). ThenCi � x0. By Lemma 4.2 jx0 n x2s�2j � (s � 1)(t � 2) < jCij. Thus x2s�2 is not disjointfrom Ci. As x2s�1 is disjoint from x2s�2, it does not 
ontain Ci and thus its 
olor is noti. �Lemma 5.2 W (s; t) admits a homomorphism to Ms(Kt�1).Proof. Re
all our notation for the (iterated) generalized My
ielskians from Subse
tion4.3.We de�ne the following mapping from V (W (s; t)) to V (Ms(Kt�1)).'(x1 : : : xt) := � (s� xt; i) if xt 6= xi = 0(s; �) if xt = 0:One 
an easily 
he
k that ' is indeed a homomorphism. �Proof of Theorem 22. By Lemma 5.1, if n � (2s � 2)t2 � (4s � 5)t, then SG(n; k)has an s-wide t-
oloring, thus by Proposition 23 it admits a homomorphism to W (s; t).Composing this with the homomorphism given by Lemma 5.2 we 
on
lude that SG(n; k)admits a homomorphism to Ms(Kt�1), implying �
(SG(n; k)) � �
(Ms(Kt�1)).We 
ontinue by using Lam, Lin, Gu, and Song's result [33℄, who proved, as alreadyquoted in the previous subse
tion, that �
(Ms(Kt�1)) = t � 1 + 1b 2s�2t�1 
+1 if t is odd.Thus, for odd t and i > 0 integer we 
hoose s = (t � 1)(i� 1)=2 + 1 and �(SG(n; k))��
(SG(n; k)) = t� �
(SG(n; k)) � 1� 1=i follows from the n � 6(i� 1)�t3�+ t bound.To get the form of the statement 
laimed in the theorem we 
hoose i = b1="
+ 1. �Remark 8 It is not hard to see that the graphs Ms(Kt�1) 
an also be interpreted ashomomorphism universal graphs for a property related to wide 
olorings. Namely, agraph admits a homomorphism into Ms(Kt�1) if and only if it 
an be 
olored with t
olors so that there is no walk of length 2s� 1 
onne
ting two (not ne
essarily di�erent)points of one parti
ular 
olor 
lass, say, 
olor 
lass t. Realizing this, the statement ofLemma 5.2 is immediate. �30



6 Further remarks6.1 Color-
riti
ality of W (s; t)In this subse
tion we prove the edge 
olor-
riti
ality of the graphs W (s; t) introdu
ed inthe previous se
tion. This generalizes Theorem 2.3 in [23℄, see Remark 9 after the proof.Theorem 24 For every integer s � 1 and t � 2 the graph W (s; t) has 
hromati
 numbert, but deleting any of its edges the resulting graph is (t� 1)-
hromati
.Proof. �(W (s; t)) � t follows from the fa
t that some t-
hromati
 S
hrijver graphsadmit a homomorphism to W (s; t) whi
h is implied by Lemma 5.1 and Proposition 23.The 
oloring giving vertex x = x1 : : : xt of W (s; t) 
olor i i� xi = 0 is proper proving�(W (s; t)) � t.We prove edge-
riti
ality by indu
tion on t. For t = 2 the statement is trivial asW (s; t) is isomorphi
 to K2. Assume that t � 3 and edge-
riti
ality holds for t � 1. Letfx1 : : : xt; y1 : : : ytg be an edge of W (s; t) and W 0 be the graph remaining after removal ofthis edge. We need to give a proper (t� 1)-
oloring 
 of W 0.Let i and j be the 
oordinates for whi
h xi = yj = 0. We have xj = yi = 1, inparti
ular, i 6= j. Let r be a 
oordinate di�erent from both i and j. We may assumewithout loss of generality that r = 1, and also that y1 � x1. Coordinates i and j make surethat x2x3 : : : xt and y2y3 : : : yt are verti
es of W (s; t� 1), and in fa
t, they are 
onne
tedby an edge e.A proper (t�2)-
oloring of the graphW (s; t�1)ne exists by the indu
tion hypothesis.Let 
0 be su
h a 
oloring. Let � be a 
olor of 
0 and � a 
olor that does not appear in 
0.We de�ne the 
oloring 
 of W 0 as follows:
(z1z2 : : : zt) = 8>>>><>>>>: � if z1 < x1; x1 � z1 is even� if z1 < x1; x1 � z1 is odd� if z1 = x1 = 1; zi 6= 1 for i > 1� if z1 > x1; zi = xi for i > 1
0(z2z3 : : : zt) otherwise.It takes a straightforward 
ase analysis to 
he
k that 
 is a proper (t� 1)-
oloring ofW 0. �Remark 9. Gy�arf�as, Jensen, and Stiebitz [23℄ proved the s = 2 version of the previoustheorem using a homomorphism from their universal graph with parameter t to a gener-alized My
ielskian of the same type of graph with parameter t � 1. In fa
t, our proof isa dire
t generalization of theirs using very similar ideas. Behind the 
oloring we gave isthe re
ognition of a homomorphism from W (s; t) to M3s�2(W (s; t� 1)). �
31



6.2 Hadwiger's 
onje
ture and the Zig-zag theoremHadwiger's 
onje
ture, one of the most famous open problems in graph theory, states thatif a graph G 
ontains no Kr+1 minor, then �(G) � r. For detailed information on thehistory and status of this 
onje
ture we refer to Toft's survey [51℄. We only mention thateven �(G) = O(r) is not known to be implied by the hypothesis for general r.As a fra
tional and linear approximation version, Reed and Seymour [44℄ proved thatif G has no Kr+1 minor then �f (G) � 2r. This means that graphs with �f (G) and �(G)appropriately 
lose and not 
ontaining a Kr+1 minor satisfy �(G) = O(r).We know that the main examples of graphs in [45℄ for �f(G) << �(G) (Knesergraphs, My
ielski graphs), as well as many other graphs studied in this paper, satisfythe hypothesis of the Zig-zag theorem, therefore their t-
hromati
 versions must 
ontainKd t2 e;b t2 
 subgraphs. (We mention that for strongly topologi
ally t-
hromati
 graphs this
onsequen
e, in fa
t, the 
ontainment of Ka;b for every a; b satisfying a + b = t, wasproven by Csorba, Lange, S
hurr, and Wassmer [13℄.) However, a Kd t2 e;b t2 
 subgraph
ontains a Kb t2 
+1 minor (just take a mat
hing of size b t�22 
 plus one point from ea
h sideof the bipartite graph) proving the following statement whi
h shows that the same kindof approximation is valid for these graphs, too.Corollary 25 If a topologi
ally t-
hromati
 graph 
ontains no Kr+1 minor, then t < 2r:�A
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