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Abstract

We show that the minimum number of edges in a graph on n

vertices with oriented chromatic number n is (1 + o(1))n log2 n.

In 1995, in a conversation with the French member of the set of the au-
thors of this note, Pál Erdős asked about the minimal number of edges a
graph on n vertices with oriented chromatic number n can have. During the
conference on the Future of Discrete Mathematics in the cosy but fruitful at-
mosphere of the Štǐŕın Castle we found an elementary answer to this question
which we present below. 1
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Let us consider first an extremal question closely related to Erdős’s origi-
nal problem. A colouring of the vertices of a graph G whose edges are initially
coloured with k colours is admissible, if every colour class spans an indepen-
dent set and each pair of colour classes is joined by edges of one colour only.
After Alon and Marshall [1], we define the k-chromatic number χk(G) of G
as the minimal number ℓ such that for any colouring of edges of G with k
colours there exists an admissible ℓ-colouring of the vertices of G. Finally,
by fk(n) we denote the minimum number of edges in a graph G on n vertices
for which χk(G) = n. We shall show that for any fixed k the function fk(n)
grows roughly as n log

k
n.

Theorem 1. For a fixed k ≥ 2 and n large enough

n(logk n − 4 logk logk n − 5) ≤ fk(n) ≤ ⌈logk n⌉(n − ⌈logk n⌉) .

Proof of Theorem 1. In order to see the upper bound for fk(n) observe that
the complete bipartite graph on n vertices, with bipartition (W ′, W ′′), where
|W ′| = ⌈logk n⌉ and |W ′′| = n−⌈logk n⌉, has k-chromatic number n. Indeed,
label elements of W ′ by 1, . . . , ⌈log

k
n⌉ and elements of W ′′ by 0, 1, . . . , n −

⌈log
k
n⌉ − 1. Now colour the edge {i′, i′′}, where i′ ∈ W ′, i′′ ∈ W ′′ , with the

jth colour, j = 0, 1, . . . , k−1, if j appears at the i′th position in the expansion
of i′′ in the k-ary system. Note that for each pair of vertices x′, y′ ∈ W ′ there
exists z′′ ∈ W ′′ such that the edges {x′, z′′} and {y′, z′′} are coloured with
different colours; it is enough to take z′′ which has different digits at positions
x′ and y′. Similarly, for every x′′, y′′ ∈ W ′′ one can find a position z′ at which
the digits of the k-ary expansions of x′′ and y′′ differ; then the colours of
the edges {x′′, z′} and {y′′, z′} must differ as well. Hence, every admissible
colouring of the vertices of such a coloured graph must use different colours
for different vertices, i.e. the k-chromatic number of the graph equals n.

The proof of the lower bound for fk(n) is slightly less immediate. Let G
be a graph with n vertices and

e(G) ≤ n(logk n − 4 logk logk n − 5)

edges, which are coloured with k colours. We need to show that for each
such colouring there exists an admissible colouring of the vertices of G which
uses only n − 1 colours.
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Our argument will be based on the following observation (see Tuza [5]).

Claim. If the edges of the complete graph Kn are covered by a family of

k-partite graphs G1, . . . , Gm, of r1, . . . , rm vertices, respectively, then
∑

i ri ≥
n logk n. 2

Let us partition the vertices of G into two classes W ′ and W ′′, where W ′

consists of all vertices of G of degree at least log2

k
n. Then

|W ′| ≤
2e(G)

log2

k
n

<
2n

log
k
n

,

and so |W ′′| ≥ n(1 − 2/ log
k
n). Now, for every vertex w′ ∈ W ′ we define

a complete k-partite graph Gw′, choosing as the ith set of the k-partition
of Gw′ the set of all vertices of W ′′ which are connected to w′ by edges of
the ith colour. Thus, the total number of vertices of Gw′ is the same as the
number of neighbours of w′ in W ′′. Furthermore, let H ′′ be the graph with
vertex set W ′′, in which two vertices are adjacent if they lie within distance
two in the subgraph G[W ′′] induced by W ′′ in G. Note that the maximum
degree ∆(H ′′) of H ′′ is bounded from above by ∆2(G[W ′′]) ≤ log4

k
n, and

thus H ′′ can be decomposed into

m′′ ≤ ⌈logk(log4

k
n + 1)⌉ ≤ 4 logk logk n + 1

k-partite subgraphs H1, . . . , Hm′′ . Observe also that the sum of vertices of
all graphs {Gw′}w′∈W ′ and {Hi}

m
′′

i=1
can be bounded from above by

∑

w′∈W ′

|Gw′| +
m

′′

∑

i=1

|Hi|

≤ e(G) + |W ′′|(4 log
k

log
k
n + 1)

≤ |W ′′|
( logk n − 4 logk logk n − 5

1 − 2/ log
k
n

+ 4 log
k

log
k
n + 1

)

< |W ′′|( logk n − 1) < |W ′′| logk |W
′′| .

Hence, the Claim implies that there exists a pair of vertices {x′′, y′′} which
appears as an edge in none of the graphs {Gw′}w′∈W ′ and {Hi}

m′′

i=1
, i.e. vertices

x′′ and y′′ are not adjacent, they have no common neighbours in W ′′, and for
each of their common neighbour z′ ∈ W ′ both edges {x′′, z′} and {y′′, z′} are
coloured with the same colour. Thus, the colouring in which x′′ and y′′ are
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coloured with the same colour, while all other vertices of G receive different
colours, is admissible. Consequently, χk(G) ≤ n−1 and the assertion follows.
2

Now let us return to Erdős’s original question. Recall (see [2–4]) that the
oriented chromatic number of a graph G is defined as the smallest number ℓ,
such that for every orientation ~G of G there exists a tournament ~T ( ~G) on ℓ

vertices such that ~G can be homomorphically embedded into ~T ( ~G). Let g(n)
be the smallest number for which there exists a graph G with n vertices, g(n)
edges, and the oriented chromatic number n. It is not hard to see that G
has the above property if and only if in some orientation ~G of G each pair
of non-adjacent vertices of G is connected by a directed path of length two.
Hence, after a quick look at the proof of Theorem 1 for the case k = 2, one
can easily modify it and arrive at the following answer to Erdős’s problem.

Theorem 2. If n is large enough then

n(log
2
n − 4 log

2
log

2
n − 5) ≤ g(n) ≤ ⌈log

2
n⌉(n − ⌈log

2
n⌉) . 2

We conclude with a few words on the expected behaviour of fk(n) and g(n).
It is tempting to conjecture that the upper bounds given in Theorems 1 and 2
are close to the truth and fk(n) = n logk n+O(n) and g(n) = n log

2
n+O(n),

where the term O(n) depends on the arithmetic properties of n. On the other
hand, we should mention that the elementary bipartite construction we used
to get the upper bound for fk(n) is far from being best possible. For instance,
one can modify it slightly by deleting one vertex from the smaller set of the
bipartition at the same time adding a perfect matching to the larger of the
sets; the graph obtained in such a way has k-chromatic number n − 1 and,
typically, less than ⌈log

k
(n−1)⌉(n−1−⌈log

k
(n−1)⌉ edges. Furthermore, if

we have a family of graphs G1, G2, . . . , Gr, such that Gi has ni vertices and
the k-chromatic number ni, then the graph 1 +

∑

r

i=1
Gi obtained by taking

disjoint copies of G1, G2, . . . , Gr and adding to it one more vertex of degree
∑

r

i=1
ni has the largest possible k-chromatic number as well. Hence, one can

take small “extremal” graphs and build out of them graphs with a large k-
chromatic number, which also improve the upper bound for fk(n) given in
Theorem 1. The same observation applies for the oriented chromatic num-
ber; the Reader can easily provide examples of sparse small extremal graphs
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for this problem with n vertices and less than ⌈log
2
n⌉(n − ⌈log

2
n⌉) edges,

and describe a recursive construction of obtaining such an extremal graph
out of two smaller ones. However, to find an exact guess for the structure of
the extremal graphs does not seem to be easy for us.
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