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1 IntrodutionGraph entropy H(G;P ), introdued by J. K�orner [13℄, is an information theoreti fun-tional on a graph G with a probability distribution P on its vertex set. A basi propertyof graph entropy is its sub-additivity under graph union, proved also by K�orner in [14℄.This means the following. Let F and G be two graphs on the same vertex set V with edgesets E(F ) and E(G), respetively, and F [G is the graph on V with edge set E(F )[E(G).Then for any �xed probability distribution P on V we haveH(F [G;P ) � H(F; P ) +H(G;P ): (1)The above inequality has provided a useful tool to obtain lower bounds in graphovering and omplexity problems, for various appliations, see K�orner [14℄, K�orner andMarton [18℄, Boppana [1℄, Newman, Ragde, and Wigderson [25℄, Radhakrishnan [26℄,Kahn and Kim [11℄. In [17℄ K�orner and Marton introdued hypergraph entropy. Theyused this new onept to improve upon the Fredman-Koml�os bound of [6℄ generalizing itsproof that relied on the sub-additivity of graph entropy, f. [14℄. This generalization wasbased on a similar inequality for hypergraphs. (For another appliation of hypergraphentropy, see K�orner and Marton [19℄.)In [16℄, [4℄, and [21℄ the onditions of equality in (1) were investigated. (This problemdates bak to K�orner and Longo [15℄ where a speial ase of (1) already appears.) Theresults of these investigations showed that there are lose onnetions between graphentropy and some lassial onepts of ombinatoris, e.g., perfet graphs. One of themain questions in [15℄ was to haraterize those graphs G that satisfy equality in (1)with F = �G (where �G stands for the omplementary graph of G) and every P . Itwas onjetured in [16℄ and proved in [4℄ that these graphs are exatly the perfet graphs.(Perfet graphs were introdued by Berge as those graphs for whih the hromati numberis equal to the lique number in every indued subgraph. They form an important lassof graphs appearing in many di�erent ontexts; for more about perfet graphs, f. Lov�asz[23℄, [24℄.) In this paper we investigate onditions for the similar equality in ase ofomplementary uniform hypergraphs.We need some de�nitions. The usual notation, V (G); E(G), for the vertex and edgeset of a (hyper)graph will be used throughout the paper.De�nition 1 The vertex paking polytope V P (F ) of a hypergraph F is the onvex hullof the harateristi vetors of the independent sets of F .We remark that an independent set of a hypergraph F is a subset of its vertex setV (F ) that ontains no edge.De�nition 2 Let F be a hypergraph on the vertex set V (F ) = f1; :::; ng and let P =(p1; :::; pn) be a probability distribution on V (F ) (i.e., p1 + :::+ pn = 1 and pi � 0 for all2



i). The entropy of F with respet to P is then de�ned asH(F; P ) = mina2V P (F ) � nXi=1 pi log ai: (2)Remark The results in [13℄ provide two equivalent de�nitions for graph entropy. Athird equivalent de�nition was given in [4℄. This is the one we have adopted. (K�orner andMarton [17℄ generalized one of the earlier de�nitions when they introdued hypergraphentropy. The proof of equivalene in [4℄, however, literally applies to the hypergraph ase,too.)The union of two hypergraphs on the same vertex set V is a third hypergraph on Vhaving as its edge set the union of the edge sets of the two original hypergraphs.A hypergraph is k-uniform if all of its edges have size k. We denote the ompletek-uniform hypergraph on n verties by K(k)n . (Instead of K(2)n , however, we usually writesimply Kn.) The omplement of a k-uniform hypergraph F on n verties is the k-uniformhypergraph �F on the same vertex set that has a disjoint edge set from that of F andsatis�es F [ �F = K(k)n .Considering graphs as 2-uniform hypergraphs, De�nition 2 gives graph entropy as aspeial ase. We remark that it is not diÆult to see (f. Lemma 3.1 in [3℄) from thisde�nition that the entropy of the omplete graph, Kn, equals the Shannon-entropy of theprobability distribution involved:H(Kn; P ) = H(P ) = � nXi=1 pi log pi:For a somewhat more ompliated formula to ompute H(K(k)n ; P ) for k > 2 see[5℄. (The same formula was found independently by Gerards and Hohst�attler [7℄, thestatement of this result is also quoted in [29℄.)In [17℄ K�orner and Marton proved that hypergraph entropy is sub-additive in general,i.e., (1) holds not only for graphs but also for hypergraphs F and G.The following de�nition is from [15℄ generalized to hypergraphs.De�nition 3 A k-uniform hypergraph F is strongly splitting if for every probability dis-tribution P on V (F ) = V , we haveH(F; P ) +H( �F; P ) = H(K(k)jV j ; P ): (3)As we have already mentioned, it was onjetured in [16℄ and proved in [4℄ that agraph is strongly splitting if and only if it is perfet.Our aim here is to haraterize strongly splitting k-uniform hypergraphs for k � 3.The main results are Theorems 1 and 2 of the next setion that give this haraterizationfor k = 3 and its generalization involving more than two 3-uniform hypergraphs. It turnsout that for k > 3 no strongly splitting hypergraph exists exept the trivial ones, K(k)nand its omplement. This is shown in Setion 3. Setion 4 deals with onnetions betweenthe lass of 3-uniform hypergraphs haraterized in Theorem 1 and the well investigatedlass of ographs. 3



2 Splitting 3-uniform hypergraphsAll hypergraphs in this setion will be 3-uniform, so we will often omit the full desriptionand write simply hypergraph. (Graphs, however, still mean 2-uniform hypergraphs.) Tostate our result on 3-uniform hypergraphs we need the following de�nition.De�nition 4 Let T be a tree and let us be given a two-oloring of its internal vertieswith two olors that we all 0 and 1. The leaf-pattern of the two-olored tree T is thefollowing 3-uniform hypergraph F . The verties of F are the leaves of T and three leavesx; y; z form an edge if and only if the unique ommon point of the paths joining pairs ofx; y and z is olored by 1.A 3-uniform hypergraph F is said to be a leaf-pattern if there exists a two-olored treeT suh that F is the leaf-pattern of T .It is obvious that the degree two verties of a tree will have no e�et on its leaf-pattern,so when onerned about the leaf-pattern, we an always think about trees with no degreetwo verties. In fat, if a 3-uniform hypergraph F is the leaf-pattern of some tree thenthere is a unique two-olored tree not ontaining degree two verties and having a properoloring (i.e., a oloring in whih neighbouring nodes have di�erent olors), for whih Fis its leaf-pattern. For example, K(3)n is the leaf-pattern of a star on n + 1 points having1 as the olor of the middle point.Strongly splitting 3-uniform hypergraphs are haraterized by the following theorem.Theorem 1 A 3-uniform hypergraph is strongly splitting if and only if it is a leaf-pattern.For the proof of this theorem we will use two further desriptions of leaf-patterns. Tothis end we need some more de�nitions.Dupliating a vertex x of a hypergraph F means that a new vertex x0 is added toV (F ) thereby reating a new hypergraph F 0 as follows. For any set of verties S � V (F )not ontaining x, the set S [ fx0g is an edge of F 0 if and only if S [ fxg is an edge of F .A set S � V (F ) itself forms an edge of F 0 if and only if it is an edge in F . Notie thatno edge of the new hypergraph ontains both x and x0.De�nition 5 A uniform hypergraph is alled reduible if it an be obtained from a singleedge by suessive use of the following two operations in an arbitrary order:(i) dupliation of a vertex,(ii) taking the omplementary uniform hypergraph.For the next de�nition we have to desribe a partiular hypergraph on �ve verties.Consider the �ve points 0; 1; 2; 3; 4 and the �ve hyperedges of the form fi; i + 1; i + 2gwhere i = 0; 1; 2; 3; 4 and the numbers are intended modulo 5. Notie that the hypergraphde�ned this way is isomorphi to its omplement and let us all it ower.4



De�nition 6 A 3-uniform hypergraph is light if the number of its edges indued by anyfour verties is always even and it does not ontain an indued ower.It turns out that the lass of light hypergraphs is equivalent to the lass of leaf-patterns.This was already proven by Gurvih in [8℄. We state his result for referene.Theorem G A 3-uniform hypergraph is a leaf-pattern if and only if it is light.This theorem of Gurvih proves one of the equivalenes in the following lemma. Thelemma obviously implies Theorem 1.Lemma 1 The following four statements about a 3-uniform hypergraph F are equivalent:(i) F is strongly splitting(ii) F is light.(iii) F is a leaf-pattern(iv) F is reduibleAs a preparation for the proof we reall some onsequenes of already known results.As an immediate onsequene of the de�nition of hypergraph entropy, notie that theminimizing vetor a in (2) is always a maximal vetor of V P (F ). (We all a vetor bmaximal in some set of vetors, if this set does not ontain a b0 with b0i � bi for every i.)This also implies that all the independent sets of F that appear with positive oeÆientsin some onvex ombination representation of this minimizing a must be maximal.For a hypergraph F let us denote the set of all maximal vetors in V P (F ) by V P 0(F ).The following lemma is an immediate onsequene of Corollary 7 in [4℄.Lemma A For every a 2 V P 0(F ) there exists a probability distribution P suh thatH(F; P ) = �Pni=1 pi log ai. Furthermore, if no pi = 0 for this P then a is the uniqueminimizing vetor in the de�nition of H(F; P ).The following lemma is also not new (f. [15℄, [16℄, [4℄ Corollary 10, [21℄ Lemma 3),but sine it is easy, we give a short proof for the sake of larity.Lemma B Let F and G be two hypergraphs, P an everywhere positive probabilitydistribution and let a 2 V P (F ), b 2 V P (G),  2 V P (F [ G) be the vetors ahievingH(F; P ), H(G;P ), and H(F [G;P ), respetively. Now, if H(F; P ) +H(G;P ) = H(F [G;P ) then neessarily aibi = i for every i. Furthermore, then any two independent setsappearing with positive oeÆients in some onvex ombination representations of a andb, respetively, must interset in a maximal independent set of F [G.ProofObserve that the intersetion of an independent set of F and an independent set ofG is always an independent set of F [ G. (In fat, sub-additivity is a onsequene ofthis observation, f. [17℄.) This implies that the vetor (a1b1; :::; anbn) 2 V P (F [ G).So if H(F; P ) + H(G;P ) = �Pni=1 pi log(aibi) = H(F [ G;P ) then this vetor should5



be the minimizing vetor de�ning H(F [G;P ). The statement about the intersetion isthen obvious by the remark that only maximal independent sets an appear with positiveoeÆients in the representation of a vetor ahieving entropy. 2For vetors a; b 2 Rn we will use the notation a Æ b = (a1b1; a2b2; :::; anbn): Similarly,for two sets of vetors in A;B � Rn, we write A Æ B = fa Æ b : a 2 A; b 2 Bg. Withthis notation, the meaning of the previous lemma is that equality in (1) for every P isequivalent to V P (F ) Æ V P (G) = V P (F [G).We will need three more lemmas.Let us all two verties of a uniform hypergraph F twins if they are dupliates of eahother (in the sense of De�nition 5) and siblings if they are twins either in F or in �F .Let F � x denote the hypergraph indued by F on V (F ) � x. We say that a vertex udistinguishes between two other verties v and w in the hypergraph F , if v and w aresiblings in F�u but not in F . The following lemma states that reduibility is a hereditaryproperty. For simpliity, we onsider a hypergraph with no edge as a reduible hypergrapheven if it has fewer than 3 nodes.Lemma 2 If F is a reduible 3-uniform hypergraph then so is every indued subhypergraphof F .ProofWe use indution on jV (F )j. For jV (F )j � 3 the statement is obvious. Assumewe know it for jV (F )j = n. Now let jV (F )j = n + 1 and take an arbitrary (indued)sub-hypergraph of F that we denote by D. We know that F is reduible. Consider its\evolution" aording to De�nition 5. Let the vertex appearing last in this evolution bea and the one dupliated when a appears be b. (So a and b are siblings.) Now learlyF � a is also a reduible hypergraph (it is just one step \behind" in the evolution ofF ). F � b is a reduible hypergraph, too, sine it is isomorphi to F � a. If D doesnot ontain both, a and b, then D is an indued sub-hypergraph of at least one of thereduible hypergraphs F � a and F � b, so we are done by the indution hypothesis. If Dontains both a and b then identify a and b in D. What we get this way is isomorphi toan indued sub-hypergraph of F � a again, so it is reduible. But now we an obtain Dby dupliating a vertex of this reduible hypergraph (and maybe taking its omplement).That means that D is reduible. 2We remark that the above lemma is also an easy onsequene of the fat that reduible3-uniform hypergraphs are leaf-patterns of trees that will be proven later as part of Lemma1Lemma 3 Let x be a vertex that distinguishes between verties u and v in a 3-uniformhypergraph F that ontains an even number of edges on every four verties. If u and vare twins in F � x, then fx; u; vg 2 E(F ), otherwise u and v are twins in �F � x andfx; u; vg 2 E( �F ). 6



ProofLet F; x; u and v be as in the statement. We may assume that u and v are twins inF � x. This means that for no y 2 V (F � x) will fu; v; yg 2 E(F ) be true. Assumeindiretly that also fu; v; xg =2 E(F ). Sine x distinguishes between u and v, there mustbe a vertex w with the property that either fu; x; wg 2 E(F ) and fv; x; wg =2 E(F ) orvie versa. However, this would mean that the indued sub-hypergraph of F on the setfu; v; x; wg ontains exatly one edge, a ontradition, therefore the statement is true. 2We remark that the assumption of the above lemma trivially holds for both, reduibleand light 3-uniform hypergraphs, therefore so does its onlusion.Finally, we need the followingLemma 4 If F is a reduible 3-uniform hypergraph on at least four verties, then it hasat least two disjoint pairs of siblings.ProofLet n = jV (F )j. We use indution on n. For n = 4 the statement is obvious. Weassume the lemma is true for n = m and prove it for m + 1. Consider a reduiblehypergraph F on m+1 verties. By de�nition, there must be at least one pair of vertiesin F that form siblings, let us denote them by x and y. By Lemma 2 and the indutionhypothesis there are at least two disjoint pairs of siblings in F � x, let them be alled z; tand u; v, respetively. If z; t and u; v are siblings also in F , we are done. Assume that zand t are not siblings in F . This means that x distinguishes between them in F . We mayassume that z and t are twins in F � x otherwise we would onsider �F . Then by Lemma3 we have fx; z; tg 2 E(F ). This, however, implies that y 2 fz; tg, otherwise, sine y isa sibling of x, we should have fy; z; tg 2 E(F ) ontraditing the assumption that z andt are twins in F � x, and therefore they annot both our in the same edge. Sine yannot be also one of u and v at the same time, x annot distinguish between them, too,so u and v will be still siblings in F . Then F ontains two disjoint pairs of siblings: u; vand x; y, hene the lemma is proven. 2Proof of Lemma 1:We prove by showing (i))(ii))(iii))(iv))(i). Among these impliations (iii))(iv)is more or less trivial, while for (ii))(iii) we an refer to Theorem G.(i))(ii):The lass of light hypergraphs is de�ned by some forbidden on�gurations. We willshow that none of these on�gurations is a strongly splitting hypergraph. This immedi-ately implies that no strongly splitting hypergraph an ontain these on�gurations asindued sub-hypergraphs. Indeed, otherwise we ould onentrate a probability distribu-tion violating (3) on this partiular sub-hypergraph, all the entropy values would be thesame as if the zero-probability verties did not exist, and so (3) would be violated, too.7



But if no strongly splitting hypergraph ontains these sub-hypergraphs, then all stronglysplitting hypergraphs are light.There are three forbidden on�gurations in the de�nition of light hypergraphs: one orthree edges on four verties and the ower. Sine the �rst two are omplements of eahother, these are essentially only two ases.Consider the �rst pair of forbidden on�gurations, the 3-uniform hypergraph on fourverties with one edge and its omplement that has three edges. Let us denote themby F and �F , respetively, and their four verties by x; y; z; t, in suh a way that theonly edge of F is fx; y; zg. We will show that for no a 2 V P (F ) and b 2 V P ( �F ) anaibi = 12 ; (i = 1; 2; 3; 4) be satis�ed. Sine  = (12 ; 12 ; 12 ; 12) 2 V P 0(K(3)4 ), this implies thestatement by Lemmas A and B. (In fat, instead of the above  we ould onsider any 2 V P 0(K(3)4 ) satisfying 0 < i < 1 for every i.)First observe that every maximal independent set of �F ontaining t has only twoelements, and for having bt > 0 it is neessary for at least one of these sets to get apositive oeÆient in the onvex ombination representation of b. We may assume thatthe set fx; tg gets a positive oeÆient. However, this set is a maximal independent setof K(3)4 , too, therefore by Lemma B, all maximal independent sets of F that will get apositive oeÆient in the representation of a must ontain fx; tg ompletely. There areonly two suh maximal independent sets in F : fx; y; tg and fx; z; tg. Both of these twosets should get a positive oeÆient in the representation of a in order to have ay > 0 andaz > 0. Now going bak to �F , apart from fx; tg, it has only one maximal independent setthat intersets both of the previous two independent sets of F in a maximal independentset of K(3)4 , this is fx; y; zg. So, again by Lemma B, apart from fx; tg only this set an geta positive oeÆient in the representation of a. Now observe that all the above mentionedsets ontain x, so whatever onvex ombination of them is taken, we will have ax = bx = 1,therefore axbx = 12 will not be satis�ed. By Lemma B, this proves that the hypergraphsin our �rst pair of forbidden on�gurations are not strongly splitting.For the ower a similar proof an be arried out. The following argument is shorter,however, it was suggested by one of the referees. Let M denote a ower and let the vetor 2 V P 0(K(3)5 ) we want to have in the form  = a Æ b with a 2 V P (M), b 2 V P ( �M), bei = 25 ; i = 1; ::; 5. Assume we have suh an a and b. Sine the independene number ofMis 3, we have a1 + :::+ a5 � 3 and similarly for the bi's. By the onvexity of the funtion1x we an write 3 � 5Xi=1 bi = 25 5Xi=1 1ai � (25)5(53) = 103 ;a ontradition. This onludes the proof of (i))(ii).(ii))(iii):This follows from Theorem G.(iii))(iv): 8



Let F be a leaf-pattern and T be the two-olored tree that F belongs to. We mayassume that T has no vertex of degree two. T ertainly has two leaves x and y, say, thatare joint to the same inner node. If this inner node is olored by 0 then x and y aretwins in F . By identifying these two nodes we arrive to F � x being the leaf-pattern ofthe tree we obtain by deleting x. If the ommon neighbour of x and y is olored 1 inT then the same an be done after a omplementation of both F and the oloring of T .This argument implies that from any leaf-pattern we an "go down" to one single edge byiterative use of two transformations: identifying twins and omplementation. But sineidentifying twins is the inverse of vertex dupliation, this means that any leaf-pattern isa reduible hypergraph.(iv))(i):We use indution on n = jV (F )j. For n = 3 the statement is trivial. We assumeit is true for n = m and prove it for n = m + 1. Consider a reduible hypergraphF on m + 1 verties. Let us be given an arbitrary probability distribution P on theverties of F and let  2 V P (K(3)m+1) be the vetor ahieving H(K(3)m+1; P ). Observe thatV P (K(3)n ) = fh : 0 � hi � 1;Pni=1 hi � 2g and sine  must be a maximal vetor inV P (K(3)m+1) we surely have Pm+1i=1 i = 2.By Lemma 4 there exist two disjoint pairs of siblings in F , let them be x; y and z; t. ByPm+1i=1 i = 2 we have that at least one of the two inequalities, x+ y � 1 and z + t � 1,holds. We may assume that the �rst one is valid and label the verties so that x = 1 andy = 2. Then we have 0 = (1 + 2; 3; 4; :::; m; m+1) 2 V P 0(K(3)m );and by Lemma A there exists a probability distribution P 0 for whih H(K(3)m ; P 0) isahieved by 0. Now onsider the hypergraph on m verties that we obtain by identi-fying the verties x and y (i.e., 1 and 2) of F in the obvious manner. The new vertexwill be denoted by x0, and the hypergraph obtained this way we denote by F 0. By theindution hypothesis, F 0 is strongly splitting, in partiular, we haveH(F 0; P 0) +H( �F 0; P 0) = H(K(3)m ; P 0):This means that the vetors a0 and b0 ahieving H(F 0; P 0) and H( �F 0; P 0), respetively,satisfy a0Æb0 = 0. Now we obtain an a 2 V P (F ) and a b 2 V P ( �F ) from a0, b0, respetively,that will satisfy a Æ b = . To this end we assume that 1 and 2 (the former x andy) are twins in F , otherwise we ould hange notation and onsider �F . Look at themaximal independent sets of F 0 and �F 0 that appear with positive oeÆients in somerepresentations of a0 and b0, respetively. Let the oeÆient of the independent set I ofF 0 be �0(I) in the representation of a0. For x0 =2 I let �(I) = �0(I) and for x0 2 I let�((Infx0g) [ fx; yg) = �0(I). The oeÆient of an independent set J of �F 0 we denoteby � 0(J). For x0 =2 J we let �(J) = � 0(J) while for x0 2 J we let �((Jnfx0g) [ fxg) =� 0(J) 11+2 and �((Jnfx0g) [ fyg) = � 0(J) 21+2 : It is easy to hek that this way we gave9



oeÆients to independent sets of F and �F , and that the a 2 V P (F ) and b 2 V P ( �F )they represent are: a = (a01; a01; a03; a04; :::; a0m; a0m+1)and b = (b01 11 + 2 ; b01 21 + 2 ; b03; b04; :::; b0m; b0m+1):Using a0ib0i = 0i this immediately gives aibi = i for every i and soH(K(3)m+1; P ) = �m+1Xi=1 pi log i = �m+1Xi=1 pi log ai � m+1Xi=1 pi log bi � H(F; P ) +H( �F; P ):Together with the sub-additivity of hypergraph entropy this implies equality above andso F is strongly splitting.This ompletes the proof of Lemma 1. 2Proof of Theorem 1:The statement of Theorem 1 is the (i),(iii) part of Lemma 1 so it is proven by theforegoing. 2Remark We note that the last part of the above proof does make use of the fatthat we are in the ase k = 3, that is, though it may sound plausible, it is not proven,moreover, it is not true in general that vertex dupliation keeps the splitting propertyof a uniform hypergraph. If this were true then all reduible uniform hypergraphs werestrongly splitting ontraditing Theorem 3 of the next setion. (In ase of k = 2 theanaloguous statement is true and follows from Lov�asz' result in [23℄ stating that vertexdupliation keeps the perfetness of a graph.)In [8℄ Gurvih has proved a generalization of his Theorem G, that we an use toobtain a generalization of Theorem 1. First a generalization of the onept of leaf-patternis needed.De�nition 7 Let T be a tree with its inner nodes olored by olors 1, 2,..., r. The leaf-fatorization of the r-olored tree T is a olletion F1; F2; :::; Fr of 3-uniform hypergraphswith the following properties. The vertex set of Fi (i = 1; ::; r) is the set of leaves of Tand three leaves x; y; z form an edge in Fi if and only if the unique ommon point of thepaths xy, yz, and zx is olored with olor i in T .The olletion of hypergraphs F1; :::; Fr is alled a leaf-fatorization if it is the leaf-fatorization of some r-olored tree T .The general result of Gurvih is the following.Theorem GG A olletion F1; :::; Fr of 3-uniform hypergraphs is a leaf fatorizationif and only if all Fi's are light.Using this result we have 10



Theorem 2 Let F1; :::; Fr be 3-uniform hypergraphs on a ommon vertex set V and theirunion be the omplete 3-uniform hypergraph on V . Then havingrXi=1H(Fi; P ) = H(K(3)jV j; P )for every distribution P on V is equivalent to F1; :::; Fr forming a leaf-fatorization.ProofBy Theorem 1 the equality in the statement implies that every Fi is a leaf-pattern, i.e.,all of them are light (by Theorem G). Then by Theorem GG they form a leaf-fatorization.All we have to show is that leaf-fatorizations satisfy the above equality. This goes by asimilar indution as that in the proof of the (iv))(i) impliation part of Lemma 1.Let F1; :::; Fr be the leaf-fatorization of the r-olored tree T . Sine F1 is light ithas two disjoint pairs of siblings by Lemma 4. Let one suh pair be x and y with theadditional property that x+ y � 1 where (1; 2; :::; jV j) denotes the vetor in V P (K(3)jV j)that gives H(K(3)jV j; P ) for some arbitrarily �xed P . Now observe that x and y are siblingsin all Fi's, moreover, they are twins in eah Fi exept one, Fj, say. (This is beause, ifwe exlude degenerate olorings, then x and y must be two leaves of T with a ommonneighbour that is olored by j.) After this observation we an more or less literally repeatthe orresponding part ((iv))(i)) of the proof of Lemma 1 with Fj playing the role of �Fthere. 2Remark Theorem 2 is the analogon of Corollary 1 in [21℄ whih states that if(G1; :::; Gr) is a olletion of edge disjoint graphs with their union being the ompletegraph on their ommon vertex set, thenrXi=1H(Gi; P ) = H(P )for every P is equivalent to all Gi's being perfet and no triangle having its three edgesin three di�erent Gi's. It is interesting to note that while all Gi's being strongly splitting(i.e., perfet) is not enough for the above equality, all Fi's being strongly splitting issuÆient for the analoguous equality in the 3-uniform ase.3 The ase k � 4In this setion we show that for k > 3 the only strongly splitting k-uniform hypergraphsare the two trivial ones.Theorem 3 If k � 4 and F is a strongly splitting k-uniform hypergraph on n vertiesthen F = K(k)n or F = �K(k)n . 11



ProofIt is enough to prove the above statement for n = k+1. This is beause being stronglysplitting is a hereditary property and a k-uniform hypergraph whih is omplete or emptyon every k + 1 verties must be omplete or empty itself. (The fat that being stronglysplitting is hereditary follows from the argument that a probability distribution an beonentrated on any subset of the vertex set and then the entropy values are just thesame as if the zero-probability verties did not exist.) The proof for n = k + 1 will usesimilar arguments as the proof of (i))(ii) in Lemma 1.Consider a k-uniform hypergraph F with k + 1 verties and m edges. Up to isomor-phism, there is only one suh hypergraph. Its omplement �F has k + 1 �m edges. Themaximal independent sets of F ( �F ) are the edges of �F (F ) and those (k� 1)-element setsthat are not ontained in the former independent sets.Like in the proof of (i))(ii) of Lemma 1 our setting is this. We onsider an arbitrarilygiven probability distribution P . This singles out a vetor  2 V P (K(k)k+1) that ahievesthe entropy of K(k)k+1 with respet to P . Now we look for an a 2 V P (F ) and a b 2 V P ( �F )giving a Æ b = , and thereby additivity of hypergraph entropy for the given P . Wewill investigate whih independent sets of F and �F may have positive oeÆients in theonvex ombination representations of a and b, respetively. It will follow that not every 2 V P 0(K(k)k+1) an be represented this way if neither F nor �F is omplete, and then byLemmas A and B the theorem follows.So our next task is to hoose a  2 V P 0(K(k)k+1) that we will not be able to obtainin the required form. By Lemma A this is enough, sine then a orresponding P existsfor whih  ahieves H(K(k)k+1; P ). Let this  be suh that 0 < i < 1 for every i, andfurthermore, none of Pmi=1(1� i) = 1 and Pk+1i=m+1(1� i) = 1 holds. (In fat, the lattertwo are equivalent, sine Pk+1i=1 i = k � 1 for every  = V P 0(K(k)k+1).) It is easy to hekthat suh a  2 V P 0(K(k)k+1) always exists. We show it annot be represented as a Æ b witha 2 V P 0(F ), b 2 V P 0( �F ).Assume the ontrary. First observe that it annot happen that in the representationsof both, a and b, some (k � 1)-element independent set ours with positive oeÆient,beause (sine these sets ould not be idential) the intersetion of suh two sets, wouldnot be a maximal independent set of K(k)k+1, thereby violating Lemma B. We distinguishbetween two ases: either there is at least one (k�1)-element set with positive oeÆientin the representation of, say, a, or no (k� 1)-element set appears with positive oeÆientat all.In the seond ase, for every vertex i there is at most one independent set with positiveoeÆient not ontaining i. This implies that for every i this unique independent set mustget oeÆient (1� i). We get onvex ombinations this way only if Pmi=1(1� i) = 1 andPk+1i=m+1(1� i) = 1. But this is not satis�ed by the  we have hosen.In the �rst ase, only those two maximal independent sets may have positive oef-�ients in the representation of b that ontain the (k � 1)-element set appearing in therepresentation of a. (This is again by Lemma B.) Sine we must have bi > 0 for every i,12



these two independent sets must really get positive oeÆients there. This implies thatonly one (k� 1)-element set an get positive oeÆient in the representation of a (again,by Lemma B). Now observe that this way there are m� 2 points that will be ontainedin all the independent sets that may appear in the representations of a or b with positiveoeÆient. For all suh points i we will have aibi = 1, a ontradition, unless we havem � 2.If m = 2, then again, the oeÆients of the k-element sets appearing in the repre-sentation of a are determined. Sine the set missing element i is the only set that doesnot ontain i, its oeÆient must be 1 � i. Labelling the verties in suh a way that 1and 2 are the two verties missed by our unique (k � 1)-element set in the representa-tion of a, the previous observation implies Pk+1i=3 (1� i) � 1. We may assume, however,that 1 and 2 are just the two largest oordinates of , implying 1 + 2 � 2(k�1)k+1 , i.e.,Pk+1i=3 (1� i) = ((k � 1)� (k � 1� (1 + 2)) � 2(k�1)k+1 . But 2(k�1)k+1 � 1 implies k � 3.It is already impliit in the above argument that m 6= 1. Indeed, if m = 1, then thereis a vertex whih is not ontained in any independent set of �F that is larger than k � 1.Sine some independent set of �F ontaining this vertex must get positive oeÆient, theremust be a k � 1-element independent set with positive oeÆient in the representationof b. But we assumed we have a k � 1-element independent set with positive oeÆientin the representation of a. Sine the latter two have too small an intersetion, we havearrived to a ontradition.The proof is omplete now. 2Theorem 2 of [4℄ together with our Theorems 1 and 3 implies the followingCorollary 1 If a k-uniform hypergraph F is strongly splitting then (at least) one of thefollowing three statements should hold:(i) k = 2 and F is a perfet graph(ii) k = 3 and F is a leaf-pattern(iii) F is K(k)n or �K(k)n . 24 Connetions with ographsCographs are de�ned as those graphs one an obtain starting from a single vertex andsuessively and iteratively using two operations: taking the omplement and takingvertex disjoint union. (For their algorithmi importane, history, and other details, f.[2℄.) By a theorem of Corneil, Lerhs, and Stewart Burlingham [2℄ ographs are identialto reduible graphs (i.e., reduible 2-uniform hypergraphs) in the sense of De�nition5. In fat, Corneil, Lerhs and Stewart Burlingham [2℄ show the equivalene of eightdi�erent haraterizations of ographs, relying also on earlier results by Jung [10℄, Lerhs[22℄, Seinshe [28℄, and Sumner [30℄. (Related results an also be found in [8℄, f. also13



[12℄). Among others, this theorem shows that ographs also admit a haraterization byexluded on�gurations. In fat, they are equivalent to P4-free graphs, i.e., graphs thathave no indued subgraph isomorphi to a hordless path on 4 verties.The de�nition of reduible hypergraphs gives a natural (although not neessarilyunique) way to desribe the evolution of suh a hypergraph. We obtain this desrip-tion by simply ordering the verties, telling for eah vertex whih preeding vertex it wasoriginally a twin of and saying at whih steps we should omplement the hypergraph wehave at hand. Sine this means that after having �xed the �rst three verties, the samedesription an desribe a ograph and also a 3-uniform reduible hypergraph, it is nat-ural that some orrespondene an be found between them more diretly. This is reallyeasy to �nd.Proposition 1 A 3-uniform hypergraph F is reduible if and only if there exists a ographG on V (F ) suh that in eah edge of F the number of edges of G has the same parity.2The proof is straightforward and left to the reader.Quoting results of Seidel [27℄, Hayward [9℄ de�nes the IP3-struture of a graph G.This is the 3-uniform hypergraph on V (G) the edges of whih are exatly those triples ofverties that indue an even number of edges in G. (It is shown (f. [27℄, [9℄) that the IP3-strutures of graphs are exatly those 3-uniform hypergraphs that on every four vertieshave an even number of edges.) Using this terminology and the fat that the omplementof a ograph is also a ograph, the previous proposition says that leaf-patterns (reduible3-uniform hypergraphs) are equivalent to the IP3 strutures that arise from ographs. Forfurther details on the related topi of "Seidel's swithing" f. also [20℄.Finally, it is interesting to note, that sine all ographs are perfet (f. Lov�asz [23℄,Seinshe [28℄), Corollary 1, together with the above proposition, shows a kind of \onti-nuity" as we onsider strongly splitting graphs, strongly splitting 3-uniform hypergraphsand then strongly splitting k-uniform hypergraphs with k > 3.Aknowledgements: Many thanks are due to J�anos K�orner who has taught meabout the whole topi and whose enthusiasti interest in it is an endless soure of inspira-tion. I gratefully thank L�aszl�o Lov�asz for interesting disussions and help. My work alsobene�tted from the nie oinidene that Gottfried Tinhofer and Winfried Hohst�attlerorganized a seminar about ographs just at the time I was writing this paper. I also thankVladimir Gurvih for informing me about his work on leaf-patterns.Referenes[1℄ R. B. Boppana, Optimal separations between onurrent-write parallel mahines,Pro. 21st Annual ACM Symposium on the Theory of Computing, 1989, 320{326.14
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