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1 Introdu
tionGraph entropy H(G;P ), introdu
ed by J. K�orner [13℄, is an information theoreti
 fun
-tional on a graph G with a probability distribution P on its vertex set. A basi
 propertyof graph entropy is its sub-additivity under graph union, proved also by K�orner in [14℄.This means the following. Let F and G be two graphs on the same vertex set V with edgesets E(F ) and E(G), respe
tively, and F [G is the graph on V with edge set E(F )[E(G).Then for any �xed probability distribution P on V we haveH(F [G;P ) � H(F; P ) +H(G;P ): (1)The above inequality has provided a useful tool to obtain lower bounds in graph
overing and 
omplexity problems, for various appli
ations, see K�orner [14℄, K�orner andMarton [18℄, Boppana [1℄, Newman, Ragde, and Wigderson [25℄, Radhakrishnan [26℄,Kahn and Kim [11℄. In [17℄ K�orner and Marton introdu
ed hypergraph entropy. Theyused this new 
on
ept to improve upon the Fredman-Koml�os bound of [6℄ generalizing itsproof that relied on the sub-additivity of graph entropy, 
f. [14℄. This generalization wasbased on a similar inequality for hypergraphs. (For another appli
ation of hypergraphentropy, see K�orner and Marton [19℄.)In [16℄, [4℄, and [21℄ the 
onditions of equality in (1) were investigated. (This problemdates ba
k to K�orner and Longo [15℄ where a spe
ial 
ase of (1) already appears.) Theresults of these investigations showed that there are 
lose 
onne
tions between graphentropy and some 
lassi
al 
on
epts of 
ombinatori
s, e.g., perfe
t graphs. One of themain questions in [15℄ was to 
hara
terize those graphs G that satisfy equality in (1)with F = �G (where �G stands for the 
omplementary graph of G) and every P . Itwas 
onje
tured in [16℄ and proved in [4℄ that these graphs are exa
tly the perfe
t graphs.(Perfe
t graphs were introdu
ed by Berge as those graphs for whi
h the 
hromati
 numberis equal to the 
lique number in every indu
ed subgraph. They form an important 
lassof graphs appearing in many di�erent 
ontexts; for more about perfe
t graphs, 
f. Lov�asz[23℄, [24℄.) In this paper we investigate 
onditions for the similar equality in 
ase of
omplementary uniform hypergraphs.We need some de�nitions. The usual notation, V (G); E(G), for the vertex and edgeset of a (hyper)graph will be used throughout the paper.De�nition 1 The vertex pa
king polytope V P (F ) of a hypergraph F is the 
onvex hullof the 
hara
teristi
 ve
tors of the independent sets of F .We remark that an independent set of a hypergraph F is a subset of its vertex setV (F ) that 
ontains no edge.De�nition 2 Let F be a hypergraph on the vertex set V (F ) = f1; :::; ng and let P =(p1; :::; pn) be a probability distribution on V (F ) (i.e., p1 + :::+ pn = 1 and pi � 0 for all2



i). The entropy of F with respe
t to P is then de�ned asH(F; P ) = mina2V P (F ) � nXi=1 pi log ai: (2)Remark The results in [13℄ provide two equivalent de�nitions for graph entropy. Athird equivalent de�nition was given in [4℄. This is the one we have adopted. (K�orner andMarton [17℄ generalized one of the earlier de�nitions when they introdu
ed hypergraphentropy. The proof of equivalen
e in [4℄, however, literally applies to the hypergraph 
ase,too.)The union of two hypergraphs on the same vertex set V is a third hypergraph on Vhaving as its edge set the union of the edge sets of the two original hypergraphs.A hypergraph is k-uniform if all of its edges have size k. We denote the 
ompletek-uniform hypergraph on n verti
es by K(k)n . (Instead of K(2)n , however, we usually writesimply Kn.) The 
omplement of a k-uniform hypergraph F on n verti
es is the k-uniformhypergraph �F on the same vertex set that has a disjoint edge set from that of F andsatis�es F [ �F = K(k)n .Considering graphs as 2-uniform hypergraphs, De�nition 2 gives graph entropy as aspe
ial 
ase. We remark that it is not diÆ
ult to see (
f. Lemma 3.1 in [3℄) from thisde�nition that the entropy of the 
omplete graph, Kn, equals the Shannon-entropy of theprobability distribution involved:H(Kn; P ) = H(P ) = � nXi=1 pi log pi:For a somewhat more 
ompli
ated formula to 
ompute H(K(k)n ; P ) for k > 2 see[5℄. (The same formula was found independently by Gerards and Ho
hst�attler [7℄, thestatement of this result is also quoted in [29℄.)In [17℄ K�orner and Marton proved that hypergraph entropy is sub-additive in general,i.e., (1) holds not only for graphs but also for hypergraphs F and G.The following de�nition is from [15℄ generalized to hypergraphs.De�nition 3 A k-uniform hypergraph F is strongly splitting if for every probability dis-tribution P on V (F ) = V , we haveH(F; P ) +H( �F; P ) = H(K(k)jV j ; P ): (3)As we have already mentioned, it was 
onje
tured in [16℄ and proved in [4℄ that agraph is strongly splitting if and only if it is perfe
t.Our aim here is to 
hara
terize strongly splitting k-uniform hypergraphs for k � 3.The main results are Theorems 1 and 2 of the next se
tion that give this 
hara
terizationfor k = 3 and its generalization involving more than two 3-uniform hypergraphs. It turnsout that for k > 3 no strongly splitting hypergraph exists ex
ept the trivial ones, K(k)nand its 
omplement. This is shown in Se
tion 3. Se
tion 4 deals with 
onne
tions betweenthe 
lass of 3-uniform hypergraphs 
hara
terized in Theorem 1 and the well investigated
lass of 
ographs. 3



2 Splitting 3-uniform hypergraphsAll hypergraphs in this se
tion will be 3-uniform, so we will often omit the full des
riptionand write simply hypergraph. (Graphs, however, still mean 2-uniform hypergraphs.) Tostate our result on 3-uniform hypergraphs we need the following de�nition.De�nition 4 Let T be a tree and let us be given a two-
oloring of its internal verti
eswith two 
olors that we 
all 0 and 1. The leaf-pattern of the two-
olored tree T is thefollowing 3-uniform hypergraph F . The verti
es of F are the leaves of T and three leavesx; y; z form an edge if and only if the unique 
ommon point of the paths joining pairs ofx; y and z is 
olored by 1.A 3-uniform hypergraph F is said to be a leaf-pattern if there exists a two-
olored treeT su
h that F is the leaf-pattern of T .It is obvious that the degree two verti
es of a tree will have no e�e
t on its leaf-pattern,so when 
on
erned about the leaf-pattern, we 
an always think about trees with no degreetwo verti
es. In fa
t, if a 3-uniform hypergraph F is the leaf-pattern of some tree thenthere is a unique two-
olored tree not 
ontaining degree two verti
es and having a proper
oloring (i.e., a 
oloring in whi
h neighbouring nodes have di�erent 
olors), for whi
h Fis its leaf-pattern. For example, K(3)n is the leaf-pattern of a star on n + 1 points having1 as the 
olor of the middle point.Strongly splitting 3-uniform hypergraphs are 
hara
terized by the following theorem.Theorem 1 A 3-uniform hypergraph is strongly splitting if and only if it is a leaf-pattern.For the proof of this theorem we will use two further des
riptions of leaf-patterns. Tothis end we need some more de�nitions.Dupli
ating a vertex x of a hypergraph F means that a new vertex x0 is added toV (F ) thereby 
reating a new hypergraph F 0 as follows. For any set of verti
es S � V (F )not 
ontaining x, the set S [ fx0g is an edge of F 0 if and only if S [ fxg is an edge of F .A set S � V (F ) itself forms an edge of F 0 if and only if it is an edge in F . Noti
e thatno edge of the new hypergraph 
ontains both x and x0.De�nition 5 A uniform hypergraph is 
alled redu
ible if it 
an be obtained from a singleedge by su

essive use of the following two operations in an arbitrary order:(i) dupli
ation of a vertex,(ii) taking the 
omplementary uniform hypergraph.For the next de�nition we have to des
ribe a parti
ular hypergraph on �ve verti
es.Consider the �ve points 0; 1; 2; 3; 4 and the �ve hyperedges of the form fi; i + 1; i + 2gwhere i = 0; 1; 2; 3; 4 and the numbers are intended modulo 5. Noti
e that the hypergraphde�ned this way is isomorphi
 to its 
omplement and let us 
all it 
ower.4



De�nition 6 A 3-uniform hypergraph is light if the number of its edges indu
ed by anyfour verti
es is always even and it does not 
ontain an indu
ed 
ower.It turns out that the 
lass of light hypergraphs is equivalent to the 
lass of leaf-patterns.This was already proven by Gurvi
h in [8℄. We state his result for referen
e.Theorem G A 3-uniform hypergraph is a leaf-pattern if and only if it is light.This theorem of Gurvi
h proves one of the equivalen
es in the following lemma. Thelemma obviously implies Theorem 1.Lemma 1 The following four statements about a 3-uniform hypergraph F are equivalent:(i) F is strongly splitting(ii) F is light.(iii) F is a leaf-pattern(iv) F is redu
ibleAs a preparation for the proof we re
all some 
onsequen
es of already known results.As an immediate 
onsequen
e of the de�nition of hypergraph entropy, noti
e that theminimizing ve
tor a in (2) is always a maximal ve
tor of V P (F ). (We 
all a ve
tor bmaximal in some set of ve
tors, if this set does not 
ontain a b0 with b0i � bi for every i.)This also implies that all the independent sets of F that appear with positive 
oeÆ
ientsin some 
onvex 
ombination representation of this minimizing a must be maximal.For a hypergraph F let us denote the set of all maximal ve
tors in V P (F ) by V P 0(F ).The following lemma is an immediate 
onsequen
e of Corollary 7 in [4℄.Lemma A For every a 2 V P 0(F ) there exists a probability distribution P su
h thatH(F; P ) = �Pni=1 pi log ai. Furthermore, if no pi = 0 for this P then a is the uniqueminimizing ve
tor in the de�nition of H(F; P ).The following lemma is also not new (
f. [15℄, [16℄, [4℄ Corollary 10, [21℄ Lemma 3),but sin
e it is easy, we give a short proof for the sake of 
larity.Lemma B Let F and G be two hypergraphs, P an everywhere positive probabilitydistribution and let a 2 V P (F ), b 2 V P (G), 
 2 V P (F [ G) be the ve
tors a
hievingH(F; P ), H(G;P ), and H(F [G;P ), respe
tively. Now, if H(F; P ) +H(G;P ) = H(F [G;P ) then ne
essarily aibi = 
i for every i. Furthermore, then any two independent setsappearing with positive 
oeÆ
ients in some 
onvex 
ombination representations of a andb, respe
tively, must interse
t in a maximal independent set of F [G.ProofObserve that the interse
tion of an independent set of F and an independent set ofG is always an independent set of F [ G. (In fa
t, sub-additivity is a 
onsequen
e ofthis observation, 
f. [17℄.) This implies that the ve
tor (a1b1; :::; anbn) 2 V P (F [ G).So if H(F; P ) + H(G;P ) = �Pni=1 pi log(aibi) = H(F [ G;P ) then this ve
tor should5



be the minimizing ve
tor de�ning H(F [G;P ). The statement about the interse
tion isthen obvious by the remark that only maximal independent sets 
an appear with positive
oeÆ
ients in the representation of a ve
tor a
hieving entropy. 2For ve
tors a; b 2 Rn we will use the notation a Æ b = (a1b1; a2b2; :::; anbn): Similarly,for two sets of ve
tors in A;B � Rn, we write A Æ B = fa Æ b : a 2 A; b 2 Bg. Withthis notation, the meaning of the previous lemma is that equality in (1) for every P isequivalent to V P (F ) Æ V P (G) = V P (F [G).We will need three more lemmas.Let us 
all two verti
es of a uniform hypergraph F twins if they are dupli
ates of ea
hother (in the sense of De�nition 5) and siblings if they are twins either in F or in �F .Let F � x denote the hypergraph indu
ed by F on V (F ) � x. We say that a vertex udistinguishes between two other verti
es v and w in the hypergraph F , if v and w aresiblings in F�u but not in F . The following lemma states that redu
ibility is a hereditaryproperty. For simpli
ity, we 
onsider a hypergraph with no edge as a redu
ible hypergrapheven if it has fewer than 3 nodes.Lemma 2 If F is a redu
ible 3-uniform hypergraph then so is every indu
ed subhypergraphof F .ProofWe use indu
tion on jV (F )j. For jV (F )j � 3 the statement is obvious. Assumewe know it for jV (F )j = n. Now let jV (F )j = n + 1 and take an arbitrary (indu
ed)sub-hypergraph of F that we denote by D. We know that F is redu
ible. Consider its\evolution" a

ording to De�nition 5. Let the vertex appearing last in this evolution bea and the one dupli
ated when a appears be b. (So a and b are siblings.) Now 
learlyF � a is also a redu
ible hypergraph (it is just one step \behind" in the evolution ofF ). F � b is a redu
ible hypergraph, too, sin
e it is isomorphi
 to F � a. If D doesnot 
ontain both, a and b, then D is an indu
ed sub-hypergraph of at least one of theredu
ible hypergraphs F � a and F � b, so we are done by the indu
tion hypothesis. If D
ontains both a and b then identify a and b in D. What we get this way is isomorphi
 toan indu
ed sub-hypergraph of F � a again, so it is redu
ible. But now we 
an obtain Dby dupli
ating a vertex of this redu
ible hypergraph (and maybe taking its 
omplement).That means that D is redu
ible. 2We remark that the above lemma is also an easy 
onsequen
e of the fa
t that redu
ible3-uniform hypergraphs are leaf-patterns of trees that will be proven later as part of Lemma1Lemma 3 Let x be a vertex that distinguishes between verti
es u and v in a 3-uniformhypergraph F that 
ontains an even number of edges on every four verti
es. If u and vare twins in F � x, then fx; u; vg 2 E(F ), otherwise u and v are twins in �F � x andfx; u; vg 2 E( �F ). 6



ProofLet F; x; u and v be as in the statement. We may assume that u and v are twins inF � x. This means that for no y 2 V (F � x) will fu; v; yg 2 E(F ) be true. Assumeindire
tly that also fu; v; xg =2 E(F ). Sin
e x distinguishes between u and v, there mustbe a vertex w with the property that either fu; x; wg 2 E(F ) and fv; x; wg =2 E(F ) orvi
e versa. However, this would mean that the indu
ed sub-hypergraph of F on the setfu; v; x; wg 
ontains exa
tly one edge, a 
ontradi
tion, therefore the statement is true. 2We remark that the assumption of the above lemma trivially holds for both, redu
ibleand light 3-uniform hypergraphs, therefore so does its 
on
lusion.Finally, we need the followingLemma 4 If F is a redu
ible 3-uniform hypergraph on at least four verti
es, then it hasat least two disjoint pairs of siblings.ProofLet n = jV (F )j. We use indu
tion on n. For n = 4 the statement is obvious. Weassume the lemma is true for n = m and prove it for m + 1. Consider a redu
iblehypergraph F on m+1 verti
es. By de�nition, there must be at least one pair of verti
esin F that form siblings, let us denote them by x and y. By Lemma 2 and the indu
tionhypothesis there are at least two disjoint pairs of siblings in F � x, let them be 
alled z; tand u; v, respe
tively. If z; t and u; v are siblings also in F , we are done. Assume that zand t are not siblings in F . This means that x distinguishes between them in F . We mayassume that z and t are twins in F � x otherwise we would 
onsider �F . Then by Lemma3 we have fx; z; tg 2 E(F ). This, however, implies that y 2 fz; tg, otherwise, sin
e y isa sibling of x, we should have fy; z; tg 2 E(F ) 
ontradi
ting the assumption that z andt are twins in F � x, and therefore they 
annot both o

ur in the same edge. Sin
e y
annot be also one of u and v at the same time, x 
annot distinguish between them, too,so u and v will be still siblings in F . Then F 
ontains two disjoint pairs of siblings: u; vand x; y, hen
e the lemma is proven. 2Proof of Lemma 1:We prove by showing (i))(ii))(iii))(iv))(i). Among these impli
ations (iii))(iv)is more or less trivial, while for (ii))(iii) we 
an refer to Theorem G.(i))(ii):The 
lass of light hypergraphs is de�ned by some forbidden 
on�gurations. We willshow that none of these 
on�gurations is a strongly splitting hypergraph. This immedi-ately implies that no strongly splitting hypergraph 
an 
ontain these 
on�gurations asindu
ed sub-hypergraphs. Indeed, otherwise we 
ould 
on
entrate a probability distribu-tion violating (3) on this parti
ular sub-hypergraph, all the entropy values would be thesame as if the zero-probability verti
es did not exist, and so (3) would be violated, too.7



But if no strongly splitting hypergraph 
ontains these sub-hypergraphs, then all stronglysplitting hypergraphs are light.There are three forbidden 
on�gurations in the de�nition of light hypergraphs: one orthree edges on four verti
es and the 
ower. Sin
e the �rst two are 
omplements of ea
hother, these are essentially only two 
ases.Consider the �rst pair of forbidden 
on�gurations, the 3-uniform hypergraph on fourverti
es with one edge and its 
omplement that has three edges. Let us denote themby F and �F , respe
tively, and their four verti
es by x; y; z; t, in su
h a way that theonly edge of F is fx; y; zg. We will show that for no a 2 V P (F ) and b 2 V P ( �F ) 
anaibi = 12 ; (i = 1; 2; 3; 4) be satis�ed. Sin
e 
 = (12 ; 12 ; 12 ; 12) 2 V P 0(K(3)4 ), this implies thestatement by Lemmas A and B. (In fa
t, instead of the above 
 we 
ould 
onsider any
 2 V P 0(K(3)4 ) satisfying 0 < 
i < 1 for every i.)First observe that every maximal independent set of �F 
ontaining t has only twoelements, and for having bt > 0 it is ne
essary for at least one of these sets to get apositive 
oeÆ
ient in the 
onvex 
ombination representation of b. We may assume thatthe set fx; tg gets a positive 
oeÆ
ient. However, this set is a maximal independent setof K(3)4 , too, therefore by Lemma B, all maximal independent sets of F that will get apositive 
oeÆ
ient in the representation of a must 
ontain fx; tg 
ompletely. There areonly two su
h maximal independent sets in F : fx; y; tg and fx; z; tg. Both of these twosets should get a positive 
oeÆ
ient in the representation of a in order to have ay > 0 andaz > 0. Now going ba
k to �F , apart from fx; tg, it has only one maximal independent setthat interse
ts both of the previous two independent sets of F in a maximal independentset of K(3)4 , this is fx; y; zg. So, again by Lemma B, apart from fx; tg only this set 
an geta positive 
oeÆ
ient in the representation of a. Now observe that all the above mentionedsets 
ontain x, so whatever 
onvex 
ombination of them is taken, we will have ax = bx = 1,therefore axbx = 12 will not be satis�ed. By Lemma B, this proves that the hypergraphsin our �rst pair of forbidden 
on�gurations are not strongly splitting.For the 
ower a similar proof 
an be 
arried out. The following argument is shorter,however, it was suggested by one of the referees. Let M denote a 
ower and let the ve
tor
 2 V P 0(K(3)5 ) we want to have in the form 
 = a Æ b with a 2 V P (M), b 2 V P ( �M), be
i = 25 ; i = 1; ::; 5. Assume we have su
h an a and b. Sin
e the independen
e number ofMis 3, we have a1 + :::+ a5 � 3 and similarly for the bi's. By the 
onvexity of the fun
tion1x we 
an write 3 � 5Xi=1 bi = 25 5Xi=1 1ai � (25)5(53) = 103 ;a 
ontradi
tion. This 
on
ludes the proof of (i))(ii).(ii))(iii):This follows from Theorem G.(iii))(iv): 8



Let F be a leaf-pattern and T be the two-
olored tree that F belongs to. We mayassume that T has no vertex of degree two. T 
ertainly has two leaves x and y, say, thatare joint to the same inner node. If this inner node is 
olored by 0 then x and y aretwins in F . By identifying these two nodes we arrive to F � x being the leaf-pattern ofthe tree we obtain by deleting x. If the 
ommon neighbour of x and y is 
olored 1 inT then the same 
an be done after a 
omplementation of both F and the 
oloring of T .This argument implies that from any leaf-pattern we 
an "go down" to one single edge byiterative use of two transformations: identifying twins and 
omplementation. But sin
eidentifying twins is the inverse of vertex dupli
ation, this means that any leaf-pattern isa redu
ible hypergraph.(iv))(i):We use indu
tion on n = jV (F )j. For n = 3 the statement is trivial. We assumeit is true for n = m and prove it for n = m + 1. Consider a redu
ible hypergraphF on m + 1 verti
es. Let us be given an arbitrary probability distribution P on theverti
es of F and let 
 2 V P (K(3)m+1) be the ve
tor a
hieving H(K(3)m+1; P ). Observe thatV P (K(3)n ) = fh : 0 � hi � 1;Pni=1 hi � 2g and sin
e 
 must be a maximal ve
tor inV P (K(3)m+1) we surely have Pm+1i=1 
i = 2.By Lemma 4 there exist two disjoint pairs of siblings in F , let them be x; y and z; t. ByPm+1i=1 
i = 2 we have that at least one of the two inequalities, 
x+ 
y � 1 and 
z + 
t � 1,holds. We may assume that the �rst one is valid and label the verti
es so that x = 1 andy = 2. Then we have 
0 = (
1 + 
2; 
3; 
4; :::; 
m; 
m+1) 2 V P 0(K(3)m );and by Lemma A there exists a probability distribution P 0 for whi
h H(K(3)m ; P 0) isa
hieved by 
0. Now 
onsider the hypergraph on m verti
es that we obtain by identi-fying the verti
es x and y (i.e., 1 and 2) of F in the obvious manner. The new vertexwill be denoted by x0, and the hypergraph obtained this way we denote by F 0. By theindu
tion hypothesis, F 0 is strongly splitting, in parti
ular, we haveH(F 0; P 0) +H( �F 0; P 0) = H(K(3)m ; P 0):This means that the ve
tors a0 and b0 a
hieving H(F 0; P 0) and H( �F 0; P 0), respe
tively,satisfy a0Æb0 = 
0. Now we obtain an a 2 V P (F ) and a b 2 V P ( �F ) from a0, b0, respe
tively,that will satisfy a Æ b = 
. To this end we assume that 1 and 2 (the former x andy) are twins in F , otherwise we 
ould 
hange notation and 
onsider �F . Look at themaximal independent sets of F 0 and �F 0 that appear with positive 
oeÆ
ients in somerepresentations of a0 and b0, respe
tively. Let the 
oeÆ
ient of the independent set I ofF 0 be �0(I) in the representation of a0. For x0 =2 I let �(I) = �0(I) and for x0 2 I let�((Infx0g) [ fx; yg) = �0(I). The 
oeÆ
ient of an independent set J of �F 0 we denoteby � 0(J). For x0 =2 J we let �(J) = � 0(J) while for x0 2 J we let �((Jnfx0g) [ fxg) =� 0(J) 
1
1+
2 and �((Jnfx0g) [ fyg) = � 0(J) 
2
1+
2 : It is easy to 
he
k that this way we gave9




oeÆ
ients to independent sets of F and �F , and that the a 2 V P (F ) and b 2 V P ( �F )they represent are: a = (a01; a01; a03; a04; :::; a0m; a0m+1)and b = (b01 
1
1 + 
2 ; b01 
2
1 + 
2 ; b03; b04; :::; b0m; b0m+1):Using a0ib0i = 
0i this immediately gives aibi = 
i for every i and soH(K(3)m+1; P ) = �m+1Xi=1 pi log 
i = �m+1Xi=1 pi log ai � m+1Xi=1 pi log bi � H(F; P ) +H( �F; P ):Together with the sub-additivity of hypergraph entropy this implies equality above andso F is strongly splitting.This 
ompletes the proof of Lemma 1. 2Proof of Theorem 1:The statement of Theorem 1 is the (i),(iii) part of Lemma 1 so it is proven by theforegoing. 2Remark We note that the last part of the above proof does make use of the fa
tthat we are in the 
ase k = 3, that is, though it may sound plausible, it is not proven,moreover, it is not true in general that vertex dupli
ation keeps the splitting propertyof a uniform hypergraph. If this were true then all redu
ible uniform hypergraphs werestrongly splitting 
ontradi
ting Theorem 3 of the next se
tion. (In 
ase of k = 2 theanaloguous statement is true and follows from Lov�asz' result in [23℄ stating that vertexdupli
ation keeps the perfe
tness of a graph.)In [8℄ Gurvi
h has proved a generalization of his Theorem G, that we 
an use toobtain a generalization of Theorem 1. First a generalization of the 
on
ept of leaf-patternis needed.De�nition 7 Let T be a tree with its inner nodes 
olored by 
olors 1, 2,..., r. The leaf-fa
torization of the r-
olored tree T is a 
olle
tion F1; F2; :::; Fr of 3-uniform hypergraphswith the following properties. The vertex set of Fi (i = 1; ::; r) is the set of leaves of Tand three leaves x; y; z form an edge in Fi if and only if the unique 
ommon point of thepaths xy, yz, and zx is 
olored with 
olor i in T .The 
olle
tion of hypergraphs F1; :::; Fr is 
alled a leaf-fa
torization if it is the leaf-fa
torization of some r-
olored tree T .The general result of Gurvi
h is the following.Theorem GG A 
olle
tion F1; :::; Fr of 3-uniform hypergraphs is a leaf fa
torizationif and only if all Fi's are light.Using this result we have 10



Theorem 2 Let F1; :::; Fr be 3-uniform hypergraphs on a 
ommon vertex set V and theirunion be the 
omplete 3-uniform hypergraph on V . Then havingrXi=1H(Fi; P ) = H(K(3)jV j; P )for every distribution P on V is equivalent to F1; :::; Fr forming a leaf-fa
torization.ProofBy Theorem 1 the equality in the statement implies that every Fi is a leaf-pattern, i.e.,all of them are light (by Theorem G). Then by Theorem GG they form a leaf-fa
torization.All we have to show is that leaf-fa
torizations satisfy the above equality. This goes by asimilar indu
tion as that in the proof of the (iv))(i) impli
ation part of Lemma 1.Let F1; :::; Fr be the leaf-fa
torization of the r-
olored tree T . Sin
e F1 is light ithas two disjoint pairs of siblings by Lemma 4. Let one su
h pair be x and y with theadditional property that 
x+ 
y � 1 where (
1; 
2; :::; 
jV j) denotes the ve
tor in V P (K(3)jV j)that gives H(K(3)jV j; P ) for some arbitrarily �xed P . Now observe that x and y are siblingsin all Fi's, moreover, they are twins in ea
h Fi ex
ept one, Fj, say. (This is be
ause, ifwe ex
lude degenerate 
olorings, then x and y must be two leaves of T with a 
ommonneighbour that is 
olored by j.) After this observation we 
an more or less literally repeatthe 
orresponding part ((iv))(i)) of the proof of Lemma 1 with Fj playing the role of �Fthere. 2Remark Theorem 2 is the analogon of Corollary 1 in [21℄ whi
h states that if(G1; :::; Gr) is a 
olle
tion of edge disjoint graphs with their union being the 
ompletegraph on their 
ommon vertex set, thenrXi=1H(Gi; P ) = H(P )for every P is equivalent to all Gi's being perfe
t and no triangle having its three edgesin three di�erent Gi's. It is interesting to note that while all Gi's being strongly splitting(i.e., perfe
t) is not enough for the above equality, all Fi's being strongly splitting issuÆ
ient for the analoguous equality in the 3-uniform 
ase.3 The 
ase k � 4In this se
tion we show that for k > 3 the only strongly splitting k-uniform hypergraphsare the two trivial ones.Theorem 3 If k � 4 and F is a strongly splitting k-uniform hypergraph on n verti
esthen F = K(k)n or F = �K(k)n . 11



ProofIt is enough to prove the above statement for n = k+1. This is be
ause being stronglysplitting is a hereditary property and a k-uniform hypergraph whi
h is 
omplete or emptyon every k + 1 verti
es must be 
omplete or empty itself. (The fa
t that being stronglysplitting is hereditary follows from the argument that a probability distribution 
an be
on
entrated on any subset of the vertex set and then the entropy values are just thesame as if the zero-probability verti
es did not exist.) The proof for n = k + 1 will usesimilar arguments as the proof of (i))(ii) in Lemma 1.Consider a k-uniform hypergraph F with k + 1 verti
es and m edges. Up to isomor-phism, there is only one su
h hypergraph. Its 
omplement �F has k + 1 �m edges. Themaximal independent sets of F ( �F ) are the edges of �F (F ) and those (k� 1)-element setsthat are not 
ontained in the former independent sets.Like in the proof of (i))(ii) of Lemma 1 our setting is this. We 
onsider an arbitrarilygiven probability distribution P . This singles out a ve
tor 
 2 V P (K(k)k+1) that a
hievesthe entropy of K(k)k+1 with respe
t to P . Now we look for an a 2 V P (F ) and a b 2 V P ( �F )giving a Æ b = 
, and thereby additivity of hypergraph entropy for the given P . Wewill investigate whi
h independent sets of F and �F may have positive 
oeÆ
ients in the
onvex 
ombination representations of a and b, respe
tively. It will follow that not every
 2 V P 0(K(k)k+1) 
an be represented this way if neither F nor �F is 
omplete, and then byLemmas A and B the theorem follows.So our next task is to 
hoose a 
 2 V P 0(K(k)k+1) that we will not be able to obtainin the required form. By Lemma A this is enough, sin
e then a 
orresponding P existsfor whi
h 
 a
hieves H(K(k)k+1; P ). Let this 
 be su
h that 0 < 
i < 1 for every i, andfurthermore, none of Pmi=1(1� 
i) = 1 and Pk+1i=m+1(1� 
i) = 1 holds. (In fa
t, the lattertwo are equivalent, sin
e Pk+1i=1 
i = k � 1 for every 
 = V P 0(K(k)k+1).) It is easy to 
he
kthat su
h a 
 2 V P 0(K(k)k+1) always exists. We show it 
annot be represented as a Æ b witha 2 V P 0(F ), b 2 V P 0( �F ).Assume the 
ontrary. First observe that it 
annot happen that in the representationsof both, a and b, some (k � 1)-element independent set o

urs with positive 
oeÆ
ient,be
ause (sin
e these sets 
ould not be identi
al) the interse
tion of su
h two sets, wouldnot be a maximal independent set of K(k)k+1, thereby violating Lemma B. We distinguishbetween two 
ases: either there is at least one (k�1)-element set with positive 
oeÆ
ientin the representation of, say, a, or no (k� 1)-element set appears with positive 
oeÆ
ientat all.In the se
ond 
ase, for every vertex i there is at most one independent set with positive
oeÆ
ient not 
ontaining i. This implies that for every i this unique independent set mustget 
oeÆ
ient (1� 
i). We get 
onvex 
ombinations this way only if Pmi=1(1� 
i) = 1 andPk+1i=m+1(1� 
i) = 1. But this is not satis�ed by the 
 we have 
hosen.In the �rst 
ase, only those two maximal independent sets may have positive 
oef-�
ients in the representation of b that 
ontain the (k � 1)-element set appearing in therepresentation of a. (This is again by Lemma B.) Sin
e we must have bi > 0 for every i,12



these two independent sets must really get positive 
oeÆ
ients there. This implies thatonly one (k� 1)-element set 
an get positive 
oeÆ
ient in the representation of a (again,by Lemma B). Now observe that this way there are m� 2 points that will be 
ontainedin all the independent sets that may appear in the representations of a or b with positive
oeÆ
ient. For all su
h points i we will have aibi = 1, a 
ontradi
tion, unless we havem � 2.If m = 2, then again, the 
oeÆ
ients of the k-element sets appearing in the repre-sentation of a are determined. Sin
e the set missing element i is the only set that doesnot 
ontain i, its 
oeÆ
ient must be 1 � 
i. Labelling the verti
es in su
h a way that 1and 2 are the two verti
es missed by our unique (k � 1)-element set in the representa-tion of a, the previous observation implies Pk+1i=3 (1� 
i) � 1. We may assume, however,that 
1 and 
2 are just the two largest 
oordinates of 
, implying 
1 + 
2 � 2(k�1)k+1 , i.e.,Pk+1i=3 (1� 
i) = ((k � 1)� (k � 1� (
1 + 
2)) � 2(k�1)k+1 . But 2(k�1)k+1 � 1 implies k � 3.It is already impli
it in the above argument that m 6= 1. Indeed, if m = 1, then thereis a vertex whi
h is not 
ontained in any independent set of �F that is larger than k � 1.Sin
e some independent set of �F 
ontaining this vertex must get positive 
oeÆ
ient, theremust be a k � 1-element independent set with positive 
oeÆ
ient in the representationof b. But we assumed we have a k � 1-element independent set with positive 
oeÆ
ientin the representation of a. Sin
e the latter two have too small an interse
tion, we havearrived to a 
ontradi
tion.The proof is 
omplete now. 2Theorem 2 of [4℄ together with our Theorems 1 and 3 implies the followingCorollary 1 If a k-uniform hypergraph F is strongly splitting then (at least) one of thefollowing three statements should hold:(i) k = 2 and F is a perfe
t graph(ii) k = 3 and F is a leaf-pattern(iii) F is K(k)n or �K(k)n . 24 Conne
tions with 
ographsCographs are de�ned as those graphs one 
an obtain starting from a single vertex andsu

essively and iteratively using two operations: taking the 
omplement and takingvertex disjoint union. (For their algorithmi
 importan
e, history, and other details, 
f.[2℄.) By a theorem of Corneil, Ler
hs, and Stewart Burlingham [2℄ 
ographs are identi
alto redu
ible graphs (i.e., redu
ible 2-uniform hypergraphs) in the sense of De�nition5. In fa
t, Corneil, Ler
hs and Stewart Burlingham [2℄ show the equivalen
e of eightdi�erent 
hara
terizations of 
ographs, relying also on earlier results by Jung [10℄, Ler
hs[22℄, Seins
he [28℄, and Sumner [30℄. (Related results 
an also be found in [8℄, 
f. also13



[12℄). Among others, this theorem shows that 
ographs also admit a 
hara
terization byex
luded 
on�gurations. In fa
t, they are equivalent to P4-free graphs, i.e., graphs thathave no indu
ed subgraph isomorphi
 to a 
hordless path on 4 verti
es.The de�nition of redu
ible hypergraphs gives a natural (although not ne
essarilyunique) way to des
ribe the evolution of su
h a hypergraph. We obtain this des
rip-tion by simply ordering the verti
es, telling for ea
h vertex whi
h pre
eding vertex it wasoriginally a twin of and saying at whi
h steps we should 
omplement the hypergraph wehave at hand. Sin
e this means that after having �xed the �rst three verti
es, the samedes
ription 
an des
ribe a 
ograph and also a 3-uniform redu
ible hypergraph, it is nat-ural that some 
orresponden
e 
an be found between them more dire
tly. This is reallyeasy to �nd.Proposition 1 A 3-uniform hypergraph F is redu
ible if and only if there exists a 
ographG on V (F ) su
h that in ea
h edge of F the number of edges of G has the same parity.2The proof is straightforward and left to the reader.Quoting results of Seidel [27℄, Hayward [9℄ de�nes the IP3-stru
ture of a graph G.This is the 3-uniform hypergraph on V (G) the edges of whi
h are exa
tly those triples ofverti
es that indu
e an even number of edges in G. (It is shown (
f. [27℄, [9℄) that the IP3-stru
tures of graphs are exa
tly those 3-uniform hypergraphs that on every four verti
eshave an even number of edges.) Using this terminology and the fa
t that the 
omplementof a 
ograph is also a 
ograph, the previous proposition says that leaf-patterns (redu
ible3-uniform hypergraphs) are equivalent to the IP3 stru
tures that arise from 
ographs. Forfurther details on the related topi
 of "Seidel's swit
hing" 
f. also [20℄.Finally, it is interesting to note, that sin
e all 
ographs are perfe
t (
f. Lov�asz [23℄,Seins
he [28℄), Corollary 1, together with the above proposition, shows a kind of \
onti-nuity" as we 
onsider strongly splitting graphs, strongly splitting 3-uniform hypergraphsand then strongly splitting k-uniform hypergraphs with k > 3.A
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