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Abstrat. We show some onsequenes of results of Gallai onerning edge olorings of ompletegraphs that ontain no triolored triangles. We prove two onjetures of Bialostoki and Voxmanabout the existene of speial monohromati spanning trees in suh olorings. We also determine thesize of largest monohromati stars guaranteed to our.Introdution. We onsider edge olorings of omplete graphs suh that no triangles are olored withthree distint olors. These olorings generalize 2-olorings and we shall all them Gallai olorings .A similar terminology, Gallai partition, is used in [10℄. The reason is the lose onnetion of theseolorings to the basi work of Gallai ([8℄) on omparability graphs. Gallai olorings also appear in apaper of Cameron, Edmonds and Lov�asz ([5℄) where the perfet graph theorem ([11℄) is extended (seeTheorem C below). They turned out to be relevant also in investigations onerning the additivityproperties of the information theoreti funtional alled graph entropy ([10℄,[9℄).In this paper we look at some Ramsey-type problems for Gallai olorings. The �rst problems ofthis type were studied by Erd}os, Simonovits and S�os in [7℄ where it was shown that Gallai oloringsof Kn an use at most n � 1 olors (see Proposition B). Equality holds for the oloring where, fori = 1; 2; : : : ; n � 1 olor i forms a star of i edges. This shows that a Gallai oloring may be suhthat all of its monohromati subgraphs are stars. However, like in 2-olorings, Gallai olorings havemonohromati spanning trees. This is observed by Bialostoki, Dierker and Voxman in [1℄. In [2℄ (alsoin [1℄) Bialostoki and Voxman raise three problems about the existene of spei� monohromatispanning trees in Gallai olorings. We answer these problems (two of them positively) as follows. Inany Gallai oloring there is a monohromati spanning broom, where a broom is a path with a star at�Computer and Automation Researh Institute of the Hungarian Aademy of Sienes, Budapest, P. O. Box 63, 1518,Hungary. E-mail: gyarfas�sztaki.hu. Researh supported in part by OTKA Grant T029074.yAlfr�ed R�enyi Institute of Mathematis, Hungarian Aademy of Sienes, Budapest, P. O. Box 127, 1364, Hungary.E-mail: simonyi�renyi.hu. Researh supported in part by OTKA Grants T032323, T037846.1



its end (Theorem 1). Burr ([3℄) proved this for 2-olorings (onjetured also by Bialostoki). Gallaiolorings also ontain monohromati spanning trees of height two (Theorem 2). We also prove thatthe largest monohromati star whih must appear in any Gallai oloring of Kn has at least 2n=5edges (Theorem 3). An easy onstrution shows that this bound is sharp implying a negative answerto the third question of Bialostoki and Voxman.It is obvious that Gallai olorings are losed under substitution: replaing a vertex in a Gallaioloring by a omplete graph with a Gallai oloring gives again a Gallai oloring. The followingimportant result shows that all Gallai olorings an be obtained by substituting into 2-olored ompletegraphs. Theorem A (and Lemma A) is impliite in [8℄ and also among the results of Cameron andEdmonds on Lambda Composition ([4℄). Due to its importane (and to keep the paper self-ontained)we state and prove it.Theorem A. Any Gallai oloring an be obtained by substituting omplete graphs with Gallai ol-orings into verties of 2-olored omplete graphs.Theorem A an be applied to extend results from 2-olorings to Gallai olorings. We shall referto the 2-olored omplete graph as the base graph and the graphs substituted into the verties of thebase graph will be alled the bloks .Theorem A will be derived from the following property of Gallai olorings whih is essentially theontent of Lemma (3.2.3) in [8℄.Lemma A. Every Gallai oloring with at least three olors has a olor whih spans a disonnetedgraph.Now Theorem A is obvious from Lemma A: If a Gallai oloring is just a 2-oloring, we are done.Otherwise we have a olor with at least two omponents. It is lear that edges between any twoomponents are olored with the same olor. Collapsing the omponents into verties, we have asmaller graph with a Gallai oloring whih, by indution, an be generated as required.Proof of Lemma A. Let G be a minimal ounterexample. We may learly assume that all olorsappear on some edge inident to any partiular vertex of G. Let x 2 V (G) and H = G n x. If H is2-olored then either the olors of H or any other olor spans a disonneted graph. Otherwise, byminimality, H is disonneted in some olor, say in olor 1 with omponents C1; : : : ; Ck. As notedbefore, all edges between any �xed pair of omponents have the same olor (di�erent from 1).We laim that G is disonneted in olor 1. Indeed, assume that there are edges of olor 1 from xto yi 2 Ci for every i. Let xu and xv be edges of olor 2 and 3.Case 1. If u; v are in the same omponent, say u; v 2 C1 then uy2 must be of olor 2 and vy2must be of olor 3 (using that the triangles xuy2 and xvy2 are not triolored). This ontradits thehomogeneous oloring of the edges between C1; C2.Case 2. If u; v are in di�erent omponent, say u 2 C1; v 2 C2 then uy2 must be of olor 2 and2



vy1 must be of olor 3 (using that the triangles xuy2 and xvy1 are not triolored). We get the sameontradition as in Case 1.Therefore the laim is proved, G is disonneted in olor 1. Thus G annot be a ounterexample.2Theorem A an be onveniently used to derive properties of Gallai olorings. The following resultis from [7℄.Proposition B. At most n� 1 olors an be used in any Gallai oloring of Kn.Proof. Apply indution for the bloks of the base graph. 2Theorem A an also be used to give the following generalization of the perfet graph theorem.The theorem is from [5℄, its relation to Gallai's work is further emphasized in [4℄. (See [10℄ for ageneralization of Theorem C where Lemma A also plays an important role.)Theorem C. If all but one olor lasses of a Gallai oloring span perfet graphs then all olor lassesspan perfet graphs.Monohromati spanning trees in Gallai olorings.An old remark of Paul Erd}os says that 2-olored omplete graphs have monohromati spanningtrees. One an also say something about the type of the spanning tree. Bialostoki, Dierker andVoxman proved ([1℄) that there is a monohromati spanning tree of height at most two. Burr ([3℄)proved, answering the onjeture of Bialostoki, that there is a spanning 'broom', whih means theunion of a path and a star with the entral vertex of the latter identi�ed with an endvertex of theformer. Bialostoki and Voxman onjetured that both results an be generalized to Gallai olorings.We use Theorem A to verify these onjetures. The proof of the next theorem follows the steps ofBurr's nie (unpublished) proof ([3℄).Theorem 1. In every Gallai oloring of a omplete graph K there is a monohromati spanningbroom.Proof. Using Theorem A, we assume that the base graph of K is olored with olors red and blue.Without loss of generality, assume that the red edges determine a k-onneted graph and the blueedges determine an at most k-onneted graph on the vertex set of K (k is a positive integer). Thisimplies that there is a subset A with jAj � k whose removal disonnets the blue graph. We may alsoassume that jAj is as small as possible, i.e., A is a minimal separator of the blue graph. If A is empty,i.e., the blue graph is disonneted, then the verties of K are spanned by a red omplete bipartitegraph whih ontains obviously a red spanning broom. Therefore A is nonempty. By de�nition,V (K) n A has a nontrivial partition into X;Y suh that there are no blue edges between X and Y .Claim. X [ Y has a red spanning omplete bipartite graph H.If there are no verties x 2 X and y 2 Y suh that x; y belong to the same blok of the base graphthen all edges between X and Y are red and the laim is proved. Otherwise there is a blok B of the3



base graph suh that U = B \X, V = B \ Y are nonempty. It follows that all edges between U [ Vand (X [Y ) n (U [V ) are red|unless U = X and V = Y . However, in this ase every vertex of A nBsends a blue edge to B, thus all edges between B and AnB are blue. This implies that the base graphis disonneted in red, a ontradition. Thus the laim is proved.Now the proof is �nished by applying a well-known result of Dira ([6℄) whih says that any kverties of a k-onneted graph an be overed by a yle of at least k + 1 verties. We use thistheorem for the k-onneted red graph and the k verties in A. Let the yle guaranteed to exist byDira's theorem be C. (In the degenerate ase when k = 1, C is de�ned as a red edge ontaining thevertex of A.) Thus the vertex set of K is overed by C [ H. Using that C and H have nonemptyintersetion one an easily �nd a red spanning broom. 2Theorem 2. In every Gallai oloring there is a monohromati spanning tree with height at mosttwo.Proof. By Theorem A, the Gallai oloring an be obtained by substitutions into a 2-olored basegraph H. It is not hard to see (f. Theorem 2.1 in [1℄) that H has a monohromati spanning treeT with height at most two (the root an be any vertex with maximum monohromati degree). Onean easily extend T : substituting a set X into a nonroot vertex x of T results in adding eah elementof X as a leaf with the same father; substituting into the root of T results in adding eah element butone (that remains the root) of X as a leaf with its father at an arbitrary vertex of level one in T . 2Monohromati stars in Gallai olorings.It is a natural question to ask for the maximum monohromati degree in a Gallai oloring of Kn.Consider the red-blue oloring of K5 where both olor lasses form pentagons. Substituting greenomplete graphs into this base graph, one an get a Gallai olored Kn with no monohromati degreeexeeding 2n5 . This onstrution is best possible as shown by the next theorem.Theorem 3. Any Gallai oloring of Kn has a olor with largest degree at least 2n=5.Proof. By Theorem A, the Gallai oloring an be de�ned by substituting into a base graph oloredwith olors 1,2. It is easy to hek that if the base graph has at most four verties then olor 1 or 2has degree at least n=2. If the base graph has at least �ve verties then there is a blok B with atmost n=5 verties. Therefore any vertex in B is adjaent to at least 4n=5 verties outside B in olors1 or 2 and the theorem follows. 2One an use Theorem 3 in the proof of Theorem 2 to show that the root of the monohromatispanning tree found there an be of degree at least 2n=5.
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