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Abstract

Schrijver graphs are vertex-color-critical subgraphs of Kneser graphs having the same
chromatic number. They also share the value of their fractional chromatic number but
Schrijver graphs are not critical for that. Here we present an induced subgraph of every
Schrijver graph that is vertex-critical with respect to the fractional chromatic number.
These subgraphs turn out to be isomorphic with certain circular complete graphs. We
also characterize the critical edges within this subgraph.
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1 Introduction

Kneser graphs KG(n, k) are defined for every pair of positive integers n, k satisfying
n ≥ 2k. Kneser [11] observed (using different terminology) that their chromatic number
is not more than n − 2k + 2 and conjectured that this upper bound is tight. This was
proved by Lovász in his celebrated paper [14] using the Borsuk-Ulam theorem. Soon
afterwards Schrijver [17] found that a certain induced subgraph SG(n, k) of KG(n, k), now
called Schrijver graph, still has chromatic number n − 2k + 2 and is also vertex-critical
for this property, that is, deleting any of its vertices the chromatic number becomes
smaller. It is also well-known that the fractional chromatic number of KG(n, k) is n

k
, a

consequence of the vertex-transitivity of these graphs and the Erdős–Ko–Rado theorem.
Proving a conjecture of Holroyd and Johnson [6] Talbot [20] gave the exact value of the
independence number of Schrijver graphs that easily implies, as already observed in [18],
that their fractional chromatic number is also n

k
. Most Schrijver graphs are not vertex-

critical for this property (the only exceptions are the trivial cases when k = 1, n = 2k,
or n = 2k + 1, cf. Corollary 18 in Section 3) and this suggests the problem of finding
critical subgraphs of Scrijver graphs for the fractional chromatic number. In this paper
we present such a subgraph for all values of n and k with n ≥ 2k. These subgraphs, that
turn out to be isomorphic to the circular (also called rational) complete graphs Kn′/k′

for n′ = n
gcd(n,k)

, k′ = k
gcd(n,k)

, (cf. Corollary 20 in Section 3), are vertex-transitive, so
deleting any of their vertices the value of the fractional chromatic number drops to the
same smaller value. We also locate the edges of these special subgraphs that are critical
for the fractional chromatic number and show that their deletion already results in the
same decrease of the fractional chromatic number as the deletion of a vertex.

The paper is organized as follows. In the next section we give the necessary definitions
to define the above mentioned vertex-critical subgraph. In Section 3 we prove the vertex-
criticality of these graphs and also show the above mentioned relation to circular complete
graphs. The last section is devoted to characterizing the critical edges of our subgraphs
for the fractional chromatic number.

2 Well-spread subsets and the subgraph Q(n, k)

Definition 1. For positive integers n ≥ 2k the Kneser graph KG(n, k) is defined on
the vertex set that consists of the

(
n
k

)
k-element subsets of [n] = {1, . . . n} with two such

subsets forming an edge if and only if they are disjoint. A k-subset X of [n] is called
r-separated if for any two of its elements x, y we have r ≤ |x− y| ≤ n− r. The Schrijver
graph SG(n, k) is the subgraph of KG(n, k) induced by vertices representing 2-separated
sets.

Notice that arranging the elements of the basic set [n] around a cycle, the r-separated
sets are exactly those any two elements of which have at least r − 1 elements on both of
the two arcs between them on this cycle.
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The following theorem is a condensed version of the well-known results in [14, 17].

Theorem 1. (Lovász–Kneser and Schrijver theorem [14, 17]) For every n ≥ 2k we have

χ(SG(n, k)) = χ(KG(n, k)) = n− 2k + 2.

Moreover, SG(n, k) is vertex-color-critical, i.e.,

∀X ∈ V (SG(n, k)) : χ(SG(n, k) \ {X}) = n− 2k + 1.

The graphs KG(n, k) and SG(n, k) are widely investigated, cf. e.g. [1, 2, 3, 4, 8, 9, 10,
15, 19] to mention just a few more of the results related to them.

The fractional chromatic number χf (G) of a graph G is the minimum total non-negative
weight one can put on the independent sets of G such that for each vertex the independent
sets containing it get at least weight 1 altogether. It is well-known that, denoting the
independence number of graph G by α(G), one always has

χf (G) ≥ |V (G)|
α(G)

and equality holds whenever the graph is vertex-transitive, see e.g. [16] for this and other
basic facts about the fractional chromatic number.

The independence number of Kneser graphs is given by the famous Erdős–Ko–Rado the-
orem.

Theorem 2. (Erdős–Ko–Rado [7])

α(KG(n, k)) =

(
n− 1

k − 1

)
.

Moreover, for n > 2k the only independent sets of this size are the ones whose vertices
represent k-element subsets that all contain a fixed element i ∈ [n].

Corollary 3. (cf. e.g. [16])

χf (KG(n, k)) =
n

k
.

Holroyd and Johnson [6] conjectured that a similar phenomenon to the one expressed
by the Erdős–Ko–Rado theorem is also true for Schrijver graphs and more generally, for
families of r-separated sets. Here we state the result only for r = 2.
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Theorem 4. (Talbot [20])

α(SG(n, k)) =

(
n− k − 1

k − 1

)
.

Moreover, for n > 2k, n 6= 2k+2 the only independent sets of this size in SG(n, k) are the
ones whose vertices represent k-element subsets that all contain a fixed element i ∈ [n].
For n = 2k + 2 other independent sets of this size exist, too.

Since |V (SG(n, k))| = n
k

(
n−k−1
k−1

)
and obviously χf (SG(n, k)) ≤ χf (KG(n, k)) the above

theorem has the following immediate consequence already noted in [18].

Corollary 5.

χf (SG(n, k)) =
n

k
.

Let Cn denote the cycle on vertex set [n] where the edges are formed by the pairs of
vertices {i, i+ 1} for i ∈ {1, . . . , n− 1} and {1, n}. In particular, the vertices of SG(n, k)
are exactly the k-size independent sets of Cn. (We will refer to this cycle as the defining
cycle for SG(n, k).)

Definition 2. We call a subset U of Cn well-spread if for any two sets A,B ⊆ [n] with
|A| = |B| ≤ n− 1 satisfying that both induce a (connected) path in Cn we have

||A ∩ U | − |B ∩ U || ≤ 1.

The induced subgraph of SG(n, k) on all well-spread k-subsets will be denoted by Q(n, k).

Note that a set U ⊆ V (Cn) need not be separated (that is r-separated for some r ≥ 2)
for being well-spread. Moreover, it follows from the definition that U is well-spread if and
only if U := V (Cn) \ U is well-spread. Since at least one of U and U has size at most
n/2, one of them is always a separated set and both can be separated if and only if both
has exactly n/2 elements. Therefore if gcd(n, |U |) = 1 (and n > 2) then exactly one of U
and U is a separated set.

Now we state a basic property of the graphs Q(n, k).

Proposition 6. Let n ≥ 2k and ` ≥ 2 be any positive integer. Then the graphs Q(n, k)
and Q(`n, `k) are isomorphic.

Proof. Let U ⊆ V (C`n) = [`n] be a well-spread set of size `k. Consider the n-element sets
Ai ⊆ [`n], i ∈ [`n] defined by

Ai := {i, i+ 1, . . . , i+ n− 1},
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where the addition is intended modulo `n (and 0 is represented by `n), that is the sets
Ai are exactly those subsets of [`n] that induce a path of length n in C`n. The number of
pairs in the set

{(j, Ai) : j ∈ Ai ∩ U},

where j ∈ [`n] and Ai is one of the sets just defined is `kn since each j ∈ U will appear in
exactly n distinct Ai’s and |U | = `k. Since there are `n distinct Ai’s, this means that if
any Ai would contain less than k elements of U , then some other Ai′ should contain more
than k resulting in two sets Ai, Ai′ of the same size, both inducing a path of C`n whose
size of intersection with U differs by at least 2. This would contradict the well-spread
property of U , so this is impossible. The situation is similar if any Ai would contain more
than k elements of U , therefore we have

∀i : |Ai ∩ U | = k.

This means that i ∈ U if and only if i+ n (mod `n) ∈ U for every i ∈ V (C`n) (otherwise
|Ai ∩ U | = |Ai+1 ∩ U | would not be satisfied). Hence, if we have X ∈ V (Q(`n, `k)), that
is X is a well-spread (`k)-subset of [`n] and we rotate the defining cycle C`n exactly n
times then we get a vertex Y ∈ Q(`n, `k) that is identical with X. So we always get back
the same vertex by a jn rotation (where 0 ≤ j ≤ ` − 1) and thus the same graph that
we get if we identify all the vertices of C`n that are jn-rotations of each other for some
1 ≤ j ≤ `− 1 and consider well-spread k-element subsets. This proves the statement. �

Note that Proposition 6 implies that Q(n, k) ∼= Q
(

n
gcd(n,k)

, k
gcd(n,k)

)
, therefore when dis-

cussing the properties of Q(n, k) we may assume that gcd(n, k) = 1.

Now we can already state our result on the vertex-criticality of Q(n, k) for the fractional
chromatic number.

Theorem 7. Assume n ≥ 2k, gcd(n, k) = 1 and let a and b be the smallest positive
integers for which ak = bn − 1. The graph Q(n, k) ⊆ SG(n, k) satisfies the following
properties.

• χf (Q(n, k)) = n
k

= χf (SG(n, k)).

• ∀U ∈ V (Q(n, k)) χf (Q(n, k) \ {U}) = a
b
< n

k
, that is Q(n, k) is vertex-critical for

the fractional chromatic number.

• Q(n, k) contains an induced subgraph isomorphic to Q(a, b).

We are going to prove this theorem in the next section.

4



3 Proof of vertex criticality

For proving Theorem 7 it would be enough to show that if gcd(n, k) = 1 then the Q(n, k)
subgraph is isomorphic to the circular complete graph Kn/k (that we will define later
in Definition 4). This would suffice because of the following reasoning. The fractional
chromatic number of Kn/k is n/k since it is vertex transitive and has n vertices, while its
independence number is k (cf. [5]). It is known that removing any vertex x from it, the
remaining graph Kn/k−{x} is homomorphically equivalent to Ka/b where a and b are the
unique solution for nb− ka = 1, see Lemma 6.6 in [5] where a retract of Kn/k isomorphic
to Ka/b is shown. This would already give all the three statements of Theorem 7. We will
show this required isomorphism later in this section after all the necessary lemmas will
have been provided that will also be needed for the different proof we give (which also
has some essential similarities to the one of Lemma 6.6 in [5] for Kn/k). Nevertheless, it
focuses on the Q(n, k) representation and on this graph being a subgraph of SG(n, k).
In Section 4 we will modify our proof to obtain a stronger result that characterizes the
(fractionally) critical edges of Q(n, k) as well.

Our argument will need the following alternative characterization of well-spread k-subsets.

Lemma 8. A subset U ⊆ V (Cn) is well-spread if and only if whenever A,B ⊆ V (Cn)
are two sets inducing a minimal path containing the same number s ≤ |U | elements of U
then

||A| − |B|| ≤ 1.

Note that the minimality of the paths referred to in the statement of Lemma 8 does not
mean that they have minimum length. On the other hand, their minimality implies that
both A and B must start and end with vertices of Cn belonging to U .

Proof. Assume to the contrary that ||A|−|B|| ≥ 2 and w.l.o.g. assume that |A|−2 ≥ |B|.
Then, we can modify the subset A by removing its two extremal (that is starting and
ending) vertices and |A|− |B|− 2 more vertices from one end. This way we obtain a path
A′ for which |A′| = |B| but ||A′ ∩ U | − |B ∩ U || ≥ 2 which means that U cannot be a
well-spread set.

For the other direction suppose that U is not well-spread. Then there exist A and B
paths in Cn for which |A| = |B| but ||A ∩ U | − |B ∩ U || ≥ 2. W.l.o.g. assume, that
|A ∩ U | ≥ |B ∩ U |+ 2. We may assume that A induces a minimal path in Cn containing
s := |A ∩ U | elements of U because if not, then we can make both A and B shorter so
that |A ∩ U | does not change while |B ∩ U | may only become smaller, so the relations
|A∩U | ≥ |B ∩U |+ 2 and |A| = |B| remain valid. Now extend B at both of its ends until
it will contain a new element of U at both ends, that is we obtain a B′ which induces
a minimal path that intersects U in |B ∩ U | + 2 elements. If this number is still less
than s than extend B′ further (on one end) to make it a minimal path containing exactly
s elements of U . Since in the first step we extended B at both ends we certainly have
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|B′| ≥ |A|+ 2, so regarding A and B′ the condition in the statement cannot hold for our
not well-spread set U . This completes the proof. �

Lemma 9. Well-spread sets are unique up to rotations of the cycle Cn. In particular, the
graph Q(n, k) is vertex-transitive for any n and k and if gcd(n, k) = 1 then |V (Q(n, k)| =
n.

Proof. Let U be a well-spread set of size k on the cycle Cn. We may (and do) assume
gcd(n, k) = 1, since the other cases are taken care of by Proposition 6 (and its proof).

Call x, y ∈ U neighboring in U if on one of the arcs between them @z ∈ U . By Lemma 8
if x, y ∈ U are neighboring, then x and y should be q1 :=

⌊
n
k

⌋
or
⌊
n
k

⌋
+ 1 distance apart

(including x, but not y, that is, they are separated by q1 − 1 or q1 other elements of the
cycle, respectively). If n = q1k+ r1 then we have exactly r1 neighboring pairs of elements
in U whose distance is q1 + 1 and k − r1 neighboring pairs have distance q1. Remove
q1 − 1 vertices of Cn from the arc between every neighboring pair x, y ∈ U . This way we
obtain a shorter cycle Cn−(q1−1)k on which U is still well-spread and (by the observation
given after Definition 2) U := V (Cn−(q1−1)k) \ U is well-spread as well. On this shorter
cycle U is not separated any more, so U is a separated set (again by the observation after
Definition 2). Using the notation n1 := n− (q1−1)k = k+r1 we have |U | = n1−|U | = r1

and the neighboring elements of U are separated by q2 :=
⌊
k+r1
r1

⌋
or by q2 − 1 elements

of U . Now performing the previous removal process with Cn1 in the place of Cn and its
r1-element subset U in place of U is essentially performing a second step of the Euclidean
algorithm with k + r1 and r1 (instead of k and r1 but this is not an essential difference).
Thus iterating this process we will arrive to a situation where we have a cycle Cm for some
smaller m and our current separated set will have only gcd(n, k) = 1 element. Clearly
a 1-element set can be placed on the vertex set of Cm in a unique way (up to rotations
of the cycle). Noticing that reversing our removal process is completely deterministic,
this proves that the original k-element well-spread set can also be placed on Cn only in a
unique way up to rotations of the cycle. This proves the first statement from which the
vertex-transitivity of Q(n, k) immediately follows along with |V (Q(n, k))| ≤ n.

We still have to prove that gcd(n, k) = 1 also implies |V (Q(n, k))| ≥ n. Assume to the
contrary that the shortest rotation f of Cn that maps a vertex X of Q(n, k) to itself is
shorter than n, that is, f is a t-fold rotation for some t < n. We claim that ∀i, j ∈ X the
arcs Ai = (i, i + 1, . . . , i + t) and Aj = (j, j + 1, . . . , j + t) contain the same number of
elements of X. Let s := |Ai ∩X| and assume for contradiction w.l.o.g. that s > |Aj ∩X|.
Then add elements j+t+1, j+t+2, . . . , j+t+h to Aj to obtain A′j, where h is the smallest
number that makes |A′j ∩ X| = |Ai ∩ X| = s. Then Ai and A′j are both minimal arcs
containing s elements of X. Since X is a separated set, we have h ≥ 2. Since |Ai| = |Aj|
by their definition, this implies |A′j| ≥ |Ai|+ 2 contradicting the well-spreadness of X by
Lemma 8.

That means that we must have |Ai ∩X| = s = |Aj ∩X|. In other words this means that
every (s− 1)th element of X is t (= |Ai| − 1) clockwise rotations away in Cn. As f was
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chosen to be the shortest rotation mapping X to itself, and since the n-fold rotation also
maps X to itself, this means that s−1 divides k, t divides n and the two ratios are equal,
that is,

k

s− 1
=
n

t
=: d.

But then d is a common divisor of n and k, so it must be 1 contradicting that f is a
less-than-n-fold rotation. �

→ →

Figure 1: The process in the proof of Lemma 9 performed for n = 14, k = 5.

Corollary 10. If gcd(n, k) = 1 then for every X, Y ∈ V (Q(n, k)) there is a unique
rotation of Cn that maps X to Y .

Proof. We have |V (Q(n, k))| = n, where the vertices can only be different by some rotation
and we have exactly n possible rotations for each vertex. �

Lemma 11. Let gcd(n, k) = 1 and X, Y ∈ V (Q(n, k)) be such that XY /∈ E(Q(n, k)),
that is, X ∩ Y 6= ∅. Let f : V (Cn) → V (Cn) be the unique clockwise rotation moving X
to Y and let i be an element of X ∩ Y . Then the number of elements of Y on the arc of
Cn between i and f(i) (moving from i to f(i) in the clockwise direction) is independent
of the choice of i ∈ X ∩ Y .

Proof. The argument needed here is almost the same as in the last part of the proof
of Lemma 9. Let i, j ∈ X ∩ Y and let A and B be the arcs of Cn between i and f(i)
and between j and f(j), respectively (i, f(i) and j, f(j) included). We obviously have
|A| = |B|. Assume to the contrary that w.l.o.g. |A∩ Y |+ 1 ≤ |B ∩ Y |. Add the minimal
number of consecutive vertices to A from Cn in the same (clockwise) direction to get A′,
such that |A′ ∩ Y | = |B ∩ Y |. Y ∈ V (SG(n, k)), therefore it is a 2-separated set, so
|A′| ≥ |A|+ 2 = |B|+ 2. Since A′ and B are minimal arcs containing the same number of
elements of Y , this gives a contradiction by Lemma 8 with the well-spreadness of Y . �

Definition 3. Under the conditions of the previous lemma we call vertex Y ∈ V (Q(n, k))
a right j-neighbor of vertex X ∈ V (Q(n, k)) if the number of elements of Y on the arc
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of Cn between i and f(i) for some i ∈ X ∩ Y (moving from i to f(i) in the clockwise
direction) is j (including f(i) but not including i)1.

Note that by Lemma 11 the previous definition is meaningful as it does not depend on
the choice of i ∈ X ∩ Y . Since X is a well-spread set on Cn, it has only two different
right j-neighbors for each j ∈ {1, . . . k − 1} and they are exactly one rotation apart from
each other (by Lemma 8), meaning that they are adjacent since they must be disjoint.
Therefore the following is true.

Corollary 12. Let gcd(n, k) = 1, A ⊆ V (Q(n, k)) be an independent set of Q(n, k) and
X ∈ A. Then for each j ∈ {1, . . . k − 1} A can contain at most one right j-neighbor of
X. In particular,

|A| ≤ k.

�

For a complete proof of Theorem 7 we should investigate further the maximum indepen-
dent sets of Q(n, k). To this end the following representation of the graph will be helpful
that we will call its natural representation. We arrange the vertices of Q(n, k) around a
cycle, which we will call the base cycle, according to the rotation of the defining cycle
of the points of our n-set, that is, X is right after Y in the clockwise direction on the
base cycle if we get the points of X with one clockwise rotation of the points of Y on the
defining cycle. Also, when we talk about an arc starting from a vertex X, we mean, that
X is the anticlockwise endpoint of this arc.

Lemma 13. In the natural representation of Q(n, k) if we look at any maximum inde-
pendent set A ⊂ V (Q(n, k)) it forms a well-spread set on the base cycle.

Proof. Let A be an arbitrary maximum independent set of Q(n, k) and X1, X2 ∈ A. Since
A is a maximum size independent set both X1 and X2 need to have a right j-neighbor in
this set for each j ∈ {1, . . . k − 1}. Let Y1 be a right j-neighbor of X1 and Y2 be a right
j-neighbor of X2 in A for some j. Let B1 be the arc in the cyclic arrangement between X1

and Y1 (containing both X1 and Y1), that is, the number of clockwise rotations needed to
get Y1 from X1 is |B1| − 1 (both on the defining cycle and on the base cycle), and let B2

be similarly defined for X2 and Y2. Obviously for i < j the number of clockwise rotations
needed for a right i-neighbor is less than the number of clockwise rotations needed for
a right j-neighbor. This means that |A ∩ B1| = |A ∩ B2| = j + 1. By Lemma 8 and
Definition 3 we have ||B1|− |B2|| ≤ 1 (as the distance of right j-neighbors on the defining
cycle can be one of only two consecutive values) and also by Lemma 8 this means that A
is a well-spread subset of the base cycle. �

1Note that the number of elements of Y between i and f(i) is the same as the number of elements of
X between f−1(i) and i. This observation is behind the terminology we introduce here.
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The above statements already provide the independence number of Q(n, k) along with an
Erdős-Ko-Rado type property: the maximum independent sets are formed by k-subsets
that intersect each other in the same element.

Corollary 14. If gcd(n, k) = 1, then

α(Q(n, k)) = k

and every k-element independent set consists of vertices that represent subsets containing
a common element.

Proof. In Corollary 12 we have seen that α(Q(n, k)) ≤ k (we assume gcd(n, k) = 1
all along). On the other hand, k-element independent sets do exist: consider a vertex
X consisting of the elements i1, i2, . . . , ik and then take all its rotated versions on the
defining cycle that moves i2 to i1, then i3 to i1, etc., until ik to i1. This gives a k
element independent set each vertex of which contains the element i1. This shows that
α(Q(n, k)) ≥ k and since by Lemma 13 all the maximum independent sets “look alike”,
they all must have the property that each of their vertices contains a common element. �

Lemma 15. Let gcd(n, k) = 1, a, b be the smallest positive integers for which ak = bn−1
and X ∈ V (Q(n, k)). Then

χf (Q(n, k) \ {X}) ≤ a

b
.

Proof. Arrange the vertices of Q(n, k) along the base cycle according to the natural rep-
resentation. Let A1 be a maximum independent set in Q(n, k) and let A2, . . . , Aa be the
independent sets we obtain with 1, . . . , a− 1 anticlockwise rotations of A1. Let L be the
collection of the n distinct a-length arcs of the base cycle. Since every vertex of Q(n, k)
appears in exactly a of the a-length arcs of the base cycle and |A1| = k, the set

{(v, L) : v ∈ A1, L ∈ L}

has cardinality ak which by the choice of a and b is equal to b(n− 1) + (b− 1). Since by
Lemma 13 A1 is well-spread on the base cycle, |{(v, L) : v ∈ A1, L ∈ L}| = b(n−1)+(b−1)
means that exactly one of the n arcs of length a in L contains b−1 elements of A1 and the
remaining n−1 such arcs contain b elements of A1. (Otherwise we would have a-length arcs
containing at least b+1 and others containing at most b−1 elements of A1 contradicting its
well-spreadness.) Let X ∈ V (Q(n, k)) be the starting vertex (i.e. anticlockwise endpoint)
of the unique a-length arc containing only b − 1 elements of A1. Since Q(n, k) is vertex
transitive, we may assume that we delete this vertex X. Remove X and put weight 1

b

on each of the independent sets A1, . . . , Aa. Every vertex Y ∈ V (Q(n, k)) \ {X} will be
contained in as many of these independent sets as many elements of A1 are in the a-length
arc starting with Y , which is b. Thus the total weight on each such Y is 1, that is, we
obtain a fractional coloring this way with total weight a

b
proving the statement. �
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Proof of Theorem 7.

The first statement follows from Lemma 9 and Corollary 14: Q(n, k) is vertex-transitive
on n vertices with independence number k, so χf (Q(n, k)) = n

k
.

The second statement of Theorem 7 follows from Lemma 15 and the third statement so
all we have to do is to prove the third statement.

Let H be a subgraph of Q(n, k) induced by any a vertices X1, . . . , Xa consecutive on
the base cycle according to the natural representation. Here we consider Xi+1 to be one
anticlockwise rotation away from Xi (for i ∈ {1, . . . , a − 1}). We will show that H is
isomorphic to Q(a, b).

Since X1 is a well-spread set on the defining cycle Cn, we know by the choice of a and b
that there is only one a-length arc B′ in Cn for which |B′∩X1| = b−1 (the other a-length
arcs intersect X1 in b elements). Let B be the arc of Cn that we get from B′ with one
clockwise rotation. Now, for every Xi (i ∈ {1. . . . , a}) we have |Xi ∩ B| = b since a < n
and only the (n − 1)-fold anticlockwise rotation of X1 (that we would call Xn) has only
b− 1 elements in B.

Let the elements of B be labeled 1, 2, . . . , a as they follow each other on Cn in the clockwise
direction. A simple consequence of the choice of the arc B is that in every rotation moving
Xi to Xi+1 the last vertex (clockwise endpoint) of B will belong to Xi+1 if and only if
the first vertex of B belonged to Xi and this holds for every i = 1, . . . a− 1. (Otherwise
we would have an a-length arc different of B′ that intersects X1 in a different number of
elements than b.) So B ”behaves” like an a-length defining cycle: if we consider its first
endpoint labeled 1 and last endpoint labeled a as neighbors on an a-length cycle, then
we find that the b-element sets Xi ∩ B are all well-spread on the so-obtained Ca and for
1 ≤ i, j ≤ a Xi ∩ Xj = ∅ is equivalent to (Xi ∩ B) ∩ (Xj ∩ B) = ∅. (The latter can be
seen by observing that from the point of view of their relative position rotating Xi one
anticlockwise rotation is equivalent to moving B one clockwise rotation.) Let g be the
function that assigns the two endpoints of B to two adjacent vertices of the defining cycle
Ca as said above and the rest according to their distance from the endpoints. Let the
vertices of Q(a, b) be Yi defined by {g(v)|v ∈ Xi ∩B} on Ca for each i ∈ [a].

Now we have to show, that the function g(Xi) = Yi (i = 1, . . . , a) is an isomorphism.
However, this follows from what is already said above that Xi ∩Xj = ∅ is equivalent to
(Xi ∩B) ∩ (Xj ∩B) = ∅ �

Proposition 16. Assume n ≥ 2k, gcd(n, k) = 1 and let a and b be the smallest positive
integers for which ak = bn−1. Then ∀U ∈ V (Q(n, k)) Q(n, k)\{U} is homomorphically
equivalent to Q(a, b).

Proof. From the previous proof we know that Q(a, b) is a subgraph of Q(n, k) so we
have Q(a, b) → Q(n, k). By modifying the previous proof we can also easily get the
reverse homomorphism. Let arc B and vertex X1 be defined similarly as in the proof
of Theorem 7 above and let X2, . . . , Xn−1 be the vertices obtained by 1, 2, . . . , n − 2
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X1 :

1

2

3

4
5

B′

B

X2 :

1

2

3

4
5

B

. . . X5 :

1

2

3

4
5

B

Y1 :

1

2

34

5
Y2 :

1

2

34

5
. . . Y5 :

1

2

34

5

Figure 2: Finding the subgraph Q(5, 2) in Q(13, 5) according to the proof of Theorem 7.

anticlockwise rotations of X1 on the defining cycle Cn. We assume that the deleted
vertex U is just the nth vertex of Q(n, k) that is not appearing on this list, that is, it
is the vertex we would obtain from X1 by n− 1 anticlockwise rotations (or equivalently,
with 1 clockwise rotation). Thus U is the unique vertex for which |U ∩B| = b− 1, so we
still have that for each i ∈ [n− 1] |Xi ∩B| = b. This means that whenever some element
of B is in Xi for some i then it is also in Xi+a (since |B| = a).

Using again the notation Yi for the vertex of Q(a, b) represented by Xi∩B if the interval B
is “closed” to an a-length cycle by making its first and last endpoints consecutive elements
of Ca, the function

g : Xi′ 7→ Yi iff i′ ≡ i (mod a)

is a homomorphism from Q(n, k) \ {U} to Q(a, b). �

Now we show that SG(n, k) itself is critical for the fractional chromatic number only in
the cases already mentioned in the Introduction. To this end we first prove the following.
(Note that Q(n, k) is a circulant graph, in particular, it is regular.)

Proposition 17. Let n > 2k and assume gcd(n, k) = 1. Then the degree of vertices in
Q(n, k) is n− 2k + 1.

Proof. We already know, that a vertex X ∈ V (Q(n, k)) has 2(k − 1) other vertices not
adjacent to it, because X has exactly two different right j-neighbors for each j ∈ {1, . . . k−
1}. So we have that X is adjacent to exactly n− 2(k − 1)− 1 other vertices. �

Corollary 18. We have Q(n, k) = SG(n, k) if and only if k = 1, n = 2k, or n = 2k + 1.
In particular, SG(n, k) is vertex-critical for the fractional chromatic number in exactly
these cases.
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Proof. We know from Schrijver’s theorem, that χ(SG(n, k)) = n − 2k + 2. By Propo-
sition 17 this is exactly one more than the (maximum) degree of Q(n, k). Thus (since
SG(n, k) is connected) by Brooks’ theorem, in case SG(n, k) = Q(n, k) we must have that
SG(n, k) is a complete graph or an odd cycle. This happens only in the cases listed in the
statement and in those cases we indeed have Q(n, k) = SG(n, k). �

Now we have all the necessary lemmas to prove that our Q(n, k) graph is isomorphic
to the circular complete graph Kn/k whenever gcd(n, k) = 1.

Definition 4. The circular complete graph Kn/k is defined as follows:

V (Kn/k) = {0, 1, . . . , n− 1}

E(Kn/k) = {{i, j} : k ≤ |i− j| ≤ n− k.}

Some important properties of these graphs are that they are vertex-transitive, that Kn/k

is homomorph equivalent to Kn′/k′ whenever n
k

= n′

k′
and that χ(Kn/k) =

⌈
n
k

⌉
(for these

and further properties, see [5]). Note that the just stated homomorph equivalence cannot
be an isomorphism if n 6= n′ since then |V (Kn/k)| = n 6= n′ = |V (Kn′/k′)|. This is
a crucial difference between the graphs Kn/k and Q(n, k) and shows that the condition
gcd(n, k) = 1 cannot be dropped in the following statement.

Proposition 19. Q(n, k) is isomorphic with the circular complete graph Kn/k whenever
gcd(n, k) = 1.

Proof. As |V (Q(n, k))| = |V (Kn/k)| = n and in both graphs each vertex has degree
n−2k+1 it is enough to show a bijection between the vertex sets that maps non-adjacent
vertices to non-adjacent vertices.

Let X1, . . . Xn be the vertices of Q(n, k) in this order in the natural representation
around the base cycle Cn. Let f : V (Q(n, k))→ V (Kn/k) be defined by

Xu 7→ uk (mod n)

This is a one-to-one function since gcd(n, k) = 1. Now look at Xu 6= Xv arbitrary non-
adjacent vertices in Q(n, k). Let ` := |u − v| be their distance measured in rotations.
If they are not adjacent, then one of them must be a right j-neighbor of the other for
some j ∈ {1, . . . k − 1}. Since all j-neighbors in Q(n, k) have to be either ` or ` − 1
rotations apart, or they all have to be ` or ` + 1 rotations apart one of the equations
(k − x)` + x(` + 1) = jn or (k − x)` + x(` − 1) = jn has an integral solution with
0 < x < k. (This is because if we consider the clockwise arc from each z ∈ Xu to the
z′ ∈ Xu for which this arc contains j elements of Xu including z′ but excluding z, then we
cover Cn exactly j times.) That means that k` must belong to the same congruent class
modulo n as x or −x, meaning that in the image the vertices uk (mod n) and vk (mod n)
should be either less than k, or more than n− k apart, i.e., they are indeed non-adjacent
in Kn/k. �
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Corollary 20.
Q(n, k) ∼= Kn′/k′

where n′ = n
gcd(n,k)

and k′ = k
gcd(n,k)

.

Proof. The statement is an immediate consequence of Propositions 19 and 6. �

Remark 1. It is not hard to see that Kn/k is always an induced subgraph of KG(n, k)
(see Proposition 6.19 in [5]), since putting the n elements of the basic set on a cycle,
the k-tuples of consecutive elements will be disjoint if and only if they are at least k
but at most (n − k) rotations apart. This subgraph, however, may not appear in the
Schrijver graph belonging to this defining cycle and it is not critical for the fractional
chromatic number if gcd(n, k) > 1. Our results show that KG(n, k) also contains Kn′/k′

as an induced subgraph for n′ = n
gcd(n,k)

, k′ = k
gcd(n,k)

, however, if we do not want to find
this subgraph within a Schrijver graph then this can also be seen more directly. Put the
elements of the basic n-set simply on ` := gcd(n, k) disjoint cycles of length n′ each and
consider the k-subsets formed by the union of k′ consecutive elements on each of the `
cycles positioned similarly as above. More formally, if the elements of the ith cycle are
xi,0, xi,1, . . . , xi,n′−1, then the k-subsets of the form

Ah = {xi,h+j : 1 ≤ i ≤ `, 0 ≤ j ≤ k′ − 1},

(where 0 ≤ h ≤ n′ − 1 and addition is intended modulo n′) induce a Kn′/k′ subgraph of
KG(n, k). Denoting the vertices of Kn′/k′ by 0, 1, . . . , n′ − 1 the isomorphism is given by
the mapping ϕ : h 7→ Ah. ♦

Remark 2. The structure of 4-chromatic Schrijver graphs SG(2k + 2, k) is quite well-
understood, cf. [1, 2, 12, 19]. This structure is made of several levels, most of which are
just cycles of length 2k + 2 with two exceptions at the two extremal levels. In one of
those the cycle is extended to a complete bipartite graph while the other is extended to a
Möbius ladder in case k is odd and is substituted by an odd cycle of length k+1 in case k
is even. This latter level is exactly the subgraph Q(2k + 2, k) induced by the well-spread
k-subsets in this case. ♦

Proposition 21. For all n ≥ 2k we have

χ(Q(n, k)) =
⌈n
k

⌉
.

Proof. From Corollary 20 and the properties of the circular complete graphs it follows
that

χ(Q(n, k)) = χ(Kn′/k′) =

⌈
n′

k′

⌉
=
⌈n
k

⌉
,

where n′ = n
gcd(n,k)

, k′ = k
gcd(n,k)

. �
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One can also get to the same conclusion in a different way. Following [13, 19] we call
an edge XY ∈ E(SG(n, k)) interlacing if the elements of X and Y alternate on the
defining cycle Cn. Let I(n, k) denote the interlacing graph with parameters n, k that is
the subgraph of SG(n, k) one obtains from SG(n, k) after removing all edges that are not
interlacing. It is proven in [13] and also follows from Theorem 6.33 in [5] that

χ(I(n, k)) =
⌈n
k

⌉
.

Note that it follows from Lemma 8 that all edges of Q(n, k) are interlacing and this
implies Q(n, k) ⊆ I(n, k) which by the above mentioned result in [13, 5] gives that
χ(Q(n, k)) ≤ χ(I(n, k)) =

⌈
n
k

⌉
. On the other hand, by the first statement in Theo-

rem 7 we have χ(Q(n, k)) ≥ χf (Q(n, k)) = n
k

and thus the integrality of χ(Q(n, k)) gives
the reverse inequality.

Note that Proposition 21 gives a second proof for Corollary 18 as Q(n, k) = SG(n, k)
implies the equality of their chromatic number and n− 2k+ 2 =

⌈
n
k

⌉
also implies that we

must have n = 2k, n = 2k + 1 or k = 1.

4 Critical edges

Here we are going to prove a strengthening of the second statement of Theorem 7.

Definition 5. For two adjacent vertices X, Y ∈ V (Q(n, k)) we call the edge XY ∈
E(Q(n, k)) a cycle-edge if the k-element set X can be moved to Y by rotating the defining
cycle Cn by just one element.

In other words, XY ∈ E(Q(n, k)) is a cycle-edge, if in the natural representation X and
Y are next to each other along the base cycle.

Theorem 22. An edge of Q(n, k) is critical for the fractional chromatic number if and
only if it is a cycle-edge. More precisely, if gcd(n, k) = 1, e ∈ E(Q(n, k)) and a, b are
defined as in Theorem 7 then

χf (Q(n, k) \ {e}) =

{
a
b

if e is a cycle-edge
n
k

otherwise.

Proof. As already mentioned it is a well-known fact that for every graph G χf (G) ≥ |V (G)|
α(G)

.

For Q(n, k) we have |V (Q(n, k))| = n and α(Q(n, k)) = k, so if we want to decrease the
fractional chromatic number by deleting an edge then we must find an edge whose absence
allows to put an additional vertex into a maximum independent set. This means that both
endpoints of this edge should form a maximum independent set of the original graph with
the rest of the vertices of the new maximum independent set. In other words, we must
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find two independent sets of largest size both containing only one vertex not contained in
the other.

Recall that the maximum independents sets, that is those of size k in Q(n, k) are well-
spread sets along the base cycle, so they are just rotations of each other.

Now consider a maximum independent set A1 in the natural representation. We show that
if we rotate A1 along this cycle a times (anticlockwise, say) then we get another maximum
independent set Aa+1 for which |A1 ∩Aa+1| = k− 1 and thus |A1 ∪Aa+1| = k+ 1. Recall
from the proof of Lemma 15 that if A is a well-spread subset of size k of an n-length cycle,
where a is the smallest positive solution of the diophantine equation ak = bn − 1, then
there is exactly one a-length arc of the cycle that contains only b − 1 elements of A, all
the other ones intersect A in exactly b elements. This means that all but one element of
A if moved by a rotations along the cycle will hit another element of A. Choosing A to be
our maximum independent set A1 this shows that |A1 ∩Aa+1| ≥ k − 1. This intersection
cannot be larger, however, because that would mean Aa+1 = A1, but since gcd(n, k) = 1
we do have n different rotations of A1, so since a < n we must have Aa+1 6= A1.

Let Y ∈ A1 \ Aa+1 and X ∈ Aa+1 \ A1 the two vertices in which A1 and Aa+1 differ.
We know that XY is an edge of Q(n, k) (otherwise A1 would have not been a maximum
independent set). Now we show that deleting this edge there exists a fractional coloring
using a

b
total weight. We will modify the coloring used in the proof of Proposition 15. Let

A2, . . . , Aa be the independent sets we get by 1, . . . , a− 1 (anticlockwise) rotations of A1.

The above argument implies that X is the unique vertex on the base cycle that is covered
only b − 1 times by the independent sets A1, . . . , Aa, all other vertices are covered by
them b times. This means that if we put 1

b
weight on the independent sets A1, . . . , Aa

then every vertex but X receives already a total weight 1 (as the sum of the weights of
independent sets containing it), while X receives only b−1

b
. But after deleting the edge

XY we can extend A1 to A′1 := A1 ∪Aa+1 = A1 ∪ {X}, and giving the 1
b

weight of A1 to
A′1 the total weight on X will also be 1. So this is a fractional coloring with total weight
a
b

proving that χf (Qn,k \ {XY }) ≤ a
b
. Since the fractional chromatic number was a

b
even

when deleting a vertex, this must hold with equality.

We still have to prove that XY was necessarily a cycle edge and in fact, more generally,
any edge the deletion of which from Q(n, k) leads to a larger than k independent set must
be a cycle edge. For this it is enough to show that if U and W are two well-spread sets of
size k on an n length cycle Cn such that |U \W | = |W \U | = 1 then the unique elements
u and w of U \W and W \ U , respectively, should be neighboring elements of the cycle.
We may also use that k ≤ n/2 so neither U nor W can contain consecutive elements of
the cycle.

Assume for contradiction that the above is not true. Let z ∈ U ∩W be the element which
is closest on the cycle to u on the arc which is the longer one between u and w and let s
be the neighbor of u on the cycle in the other direction (i.e. towards w on the arc where
it is closer). By our assumptions s 6= w and s /∈ U . Now consider the arc L starting with
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z and ending with u that gives |L∩U | = 2 by the choice of z. Let L′ be the first rotation
of L towards w. Thus L′ starts with the element following z (towards u) and ends with
s /∈ U . Thus L′ ∩ U = {u}, in particular, |L′ ∩ U | = 1 and since w /∈ L′ it also implies
|L′ ∩W | = 0. Since W must be a rotated version of U and |L| = |L′| this contradicts the
well-spreadness of U completing the proof. �

Similarly to the vertex-critical case, we can state a little stronger result.

Proposition 23. Assume n ≥ 2k, gcd(n, k) = 1, let a, b be the smallest positive inte-
gers for which ak = bn − 1 and let e be a cycle-edge of Q(n, k). Then Q(n, k) \ {e} is
homomorphically equivalent to Q(a, b).

Proof. Here the proof is essentially the same as that of Proposition 16. The homomor-
phism from Q(a, b) to Q(n, k) \ {e} we know to exist as before since Q(a, b) is a subgraph
of Q(n, k) so again we only have to show that the reverse homomorphism exists. We define
the arc B on the defining cycle Cn, the vertices X1, . . . , Xn−1 of Q(n, k), and Y1, . . . , Ya
of Q(a, b) and the function g(Xi) = Yi′ , where i ≡ i′ (mod a) similarly as in the proof of
Proposition 16. Furthermore, let Xn be the remaining vertex of Q(n, k). We still have for
each i ∈ [n − 1] that |Xi ∩ B| = b and now we have |Xn ∩ B| = b − 1. This means that
in almost every 1-element rotation from Xi to Xi+1 the last vertex (clockwise endpoint)
of B will belong to Xi+1 if and only if the first vertex of B belonged to Xi. There are
only two exceptions. The first one is the rotation from Xn−1 to Xn, where the first vertex
of B had to belong to Xn−1, but the last vertex cannot belong to Xn. The second is
the rotation from Xn to X1 where the number of vertices belonging to B has to increase.
So {g(v)|v ∈ Xn ∩ B} will not be the same as g(Xn). In the case of X1 and Xn we
will have that X1 ∩ Xn = ∅, but g(X1) ∩ g(Xn) 6= ∅. So {X1, Xn} ∈ E(Q(n, k)) while
{g(X1), g(Xn)} /∈ E(Q(a, b)). But {X1, Xn} is a cycle-edge of Q(n, k) so (by symmetry)
we may choose it to be the deleted edge e making g a homomorphism from Q(n, k) \ {e}
to Q(a, b). �

The circular chromatic number χc is a graph parameter that can be defined via the
existence of graph homomorphisms to circular complete graphs (cf. e.g. [5] for more
details). We know that χc(Kn/k) = n

k
and it has some interest to see how this value may

change if we remove an edge from Kn/k. By the previous results this can be answered as
follows.

Corollary 24. If gcd(n, k) = 1, e := {i, j} ∈ E(Kn/k) with j > i and a, b are defined as
in Theorem 7 then

χc(Kn/k) \ {e}) =

{
a
b

if j − i = k or n− k
n
k

otherwise.

Proof. We know from Proposition 19 thatQ(m, r) is isomorphic with the circular complete
graph Km/r when gcd(m, r) = 1 thus we have both Q(n, k) ∼= Kn/k and Q(a, b) ∼= K(a/b)
observing that gcd(n, k) = 1 and the definition of a, b also implies gcd(a, b) = 1.
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With this in mind the statement is just a consequence of Theorem 22, Proposition 23,
the fact, that for every graph G we have χf (G) ≤ χc(G) and the observation that the
isomorphism given in the proof of Proposition 19 maps the endvertices of cycle edges of
Q(n, k) to vertices having (circular) distance k in Kn/k. �
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