Connected matchings and Hadwiger's conjecture

Zoltán Füredi* András Gyárfás ${ }^{\dagger} \quad$ Gábor Simonyi ${ }^{\ddagger}$

Hadwiger's well known conjecture (see the survey of Toft [9]) states that any graph G has a $K_{\chi(G)}$ minor, where $\chi(G)$ is the chromatic number . Let $\alpha(G)$ denote the independence (or stability) number of G, the maximum number of pairwise nonadjacent vertices in G. It was observed in [1], [4], [10] that through the inequality $\chi(G) \geq \frac{|V(G)|}{\alpha(G)}$, Hadwiger's conjecture implies

Conjecture 0.1 Any graph G on n vertices contains a $K_{\left\lceil\frac{n}{\alpha(G)}\right\rceil}$ as a minor.
During the last five years it was a popular question to consider Conjecture 0.1 for graphs G with $\alpha(G)=2:$

Conjecture 0.2 Suppose G is a graph with n vertices and with $\alpha(G)=2$. Then G contains $K_{\left\lceil\frac{n}{2}\right\rceil}$ as a minor.

Duchet and Meyniel proved [1] that every graph G with n vertices has a $K_{\left\lceil\frac{n}{2 \alpha(G)-1}\right\rceil}$ minor, thus the statement of Conjecture 0.2 is true if $n / 2$ is replaced by $n / 3$ (for follow up and for some improvements see [4], [5], [2], [6]). The problem of improving $n / 3$ is attributed to Seymour [7]:

Conjecture 0.3 There exists $\epsilon>0$ such that every graph G with n vertices and with $\alpha(G)=2$ contains $K_{\left\lceil\left(\frac{1}{3}+\epsilon\right) n\right\rceil}$ as a minor.

Conjecture 0.3 has a fairly interesting reformulation with some "Ramsey flavor". A set of pairwise disjoint edges $e_{1}, e_{2}, \ldots, e_{t}$ of G is called a connected matching of size $t([8])$ if for every $1 \leq i<j \leq t$ there exists at least one edge of G connecting an endpoint of e_{i} to an endpoint of e_{j}.

[^0]Conjecture 0.4 There exists some constant c such that every graph G with ct vertices and with $\alpha(G)=2$ contains a connected matching of size t.

Conjecture 0.4 is probably discovered independently by several people working on Conjecture 0.3. Thomassé [8] notes that Conjectures 0.4 and 0.3 are equivalent (a proof is in [2]).

This note risks the stronger conjecture that $f(t)$, the minimum n such that every graph G with n vertices and $\alpha(G)=2$ must contain a connected matching of size t, is equal to $4 t-1$. The lower bound $f(t) \geq 4 t-1$ is obvious, shown by the union of two disjoint complete graphs $K_{2 t-1}$.

Conjecture 0.5 Every graph G with $4 t-1$ vertices and with $\alpha(G)=2$ contains a connected matching of size t.

A modest support of Conjecture 0.5 is the following.
Theorem 0.6 $f(t)=4 t-1$ for $1 \leq t \leq 17$.
Proof. Assume G is a graph with $4 t-1$ vertices and with $\alpha(G)=2$. Suppose, first, that the maximum degree of \bar{G} is at least $t-1$ and let v be a maximum degree vertex in \bar{G}. Let $A \subset V(G)$ consist of t (or all if there are only $t-1$) non-neighbors of v (in G), thus $t-1 \leq|A| \leq t$. Consider the bipartite subgraph $H=[A, B]$ of G, where $B=V(G) \backslash(A \cup\{v\})$. If H contains a matching of size t then it is a connected matching, since A induces a clique in G. Also, if $|A|=t-1$ and H contains a matching of size $t-1$, it can be extended by an edge incident to v to a connected matching of size t. If the required matching does not exist, by König's theorem, there is a $T \subset V(G)$ with $|T| \leq t-1$ (or $|T| \leq t-2$ if $|A|=t-1$) meeting all edges of H. As $|B| \geq 3 t-2$, this implies that there exists a vertex in $A \backslash T$ nonadjacent to at least $2 t$ vertices of G. Thus $K_{2 t} \subset G$ which clearly contains a connected matching of size t.

Therefore the maximum degree of \bar{G} is at most $t-2$. Now let A_{v} denote the set of non-neighbors and B_{v} the set of neighbors of v in G. Some vertex $w \in B_{v}$ is nonadjacent to at most

$$
\begin{equation*}
\frac{\left|A_{v}\right|(t-3)}{\left|B_{v}\right|} \leq \frac{(t-2)(t-3)}{3 t} \tag{1}
\end{equation*}
$$

vertices of A_{v}. The right hand side of (1) is less than 4 if $t \leq 16$. If $t=17$ then, as all vertices cannot have odd degree, v can be selected as a vertex nonadjacent to at most 14 vertices and the estimate (1) still gives a $w \in B_{v}$ nonadjacent to at most $14^{2} / 51<4$ vertices of A_{v}. Thus we have found an edge $v w$ in G such that the set $C \subset V(G)$ nonadjacent to both v and w satisfies $|C| \leq 3$. This allows to carry out the inductive proof: removing v, w and two further vertices (as many from C as possible) the remaining graph has a connected matching of size $t-1$ and the edge $v w$ extends it to a connected matching of size t. (Of course, it is trivial to start the induction with $f(1)=3$.)

An obvious upper bound for $f(t)$ comes from the Ramsey function: $f(t) \leq R(3,2 t)$ (which has order of magnitude $\frac{t^{2}}{\text { logt }}$, see [3] and the references therein). Using the proof method of Theorem 0.6 we give a better bound for $g(t) \geq f(t)$ where $g(t)$ is the minimum n such that every graph G with n vertices and with $\alpha(G)=2$ contains a " 2 -connected matching of size t ": a set of pairwise disjoint edges $e_{1}, e_{2}, \ldots, e_{t}$ of G such that for every $1 \leq i<j \leq t$ there exists at least two edges of G connecting an endpoint of e_{i} to an endpoint of e_{j}.

Theorem 0.7 Every graph G with $\alpha(G)=2$ and with at least $2^{3 / 4} t^{3 / 2}+2 t+1$ vertices contains a 2 -connected matching of size t.

Proof. Set $c=2^{5 / 4}$ which is the positive root of $\frac{4}{c}=\frac{c \sqrt{2}}{2}$. We want to establish the recursive bound $g(t) \leq g(t-1)+c t^{1 / 2}+2$, for the function $g(t)(t \geq 2, g(1)=3)$. Then (using the inequality between the arithmetic and quadratic means)

$$
g(t) \leq c\left(\sum_{i=2}^{t} i^{1 / 2}\right)+2(t-1)+g(1) \leq c \frac{(\sqrt{2})}{2} t^{3 / 2}+2 t+1=2^{3 / 4} t^{3 / 2}+2 t+1,
$$

the theorem follows (for $t=1$ it holds vacuously).
Using the argument of Theorem 0.6 , let N be the smallest integer satisfying $N \geq 2^{3 / 4} t^{3 / 2}+2 t+1$, let G be a graph with N vertices and with $\alpha(G)=2$. Assuming G has no 2 -connected matching of size t, any $v \in V(G)$ is nonadjacent to at most $2 t-1$ vertices of G. Using the argument from the proof of Theorem 0.6 , for any $v \in V(G)$ there is a $w \in B_{v}$ such that there are at most $M=\frac{(2 t-1)(2 t-2)}{N-2 t}$ vertices of G nonadjacent to both v and w. Therefore, it is possible to remove at most $M+2$ vertices of G so that the remaining graph does not contain 2 -connected matchings of size $t-1$. Thus,

$$
\begin{equation*}
g(t)<g(t-1)+\frac{(2 t-1)(2 t-2)}{N-2 t}+2 . \tag{2}
\end{equation*}
$$

Notice that $\frac{(2 t-1)(2 t-2)}{N-2 t} \leq c t^{1 / 2}$ because otherwise we get

$$
N<\left(\frac{4}{c}\right) t^{3 / 2}+2 t=2^{3 / 4} t^{3 / 2}+2 t
$$

implying

$$
2^{3 / 4} t^{3 / 2}+2 t+1 \leq N<2^{3 / 4} t^{3 / 2}+2 t,
$$

contradiction. Thus (2) gives the claimed recursive bound for $g(t)$.
It is natural to conclude this note by introducing $h(t)$, the minimum n such that every graph G with n vertices and with $\alpha(G)=2$ contains a 3-connected matching of size t : a set of pairwise disjoint edges $e_{1}, e_{2}, \ldots, e_{t}$ of G such that for every $1 \leq i<j \leq t$ there exists at least three edges of G connecting an endpoint of e_{i} to an endpoint of e_{j}.

Problem 0.8 Separate the functions $f \leq g \leq h \leq R(3,2 t)$.

References

[1] P. Duchet, H. Meyniel, On Hadwiger's number and the stability number, Annals of Discrete Math. 13 (1982), 71-74.
[2] K. Kawarabayashi, M.D. Plummer, and B. Toft, Improvements of the theorem of Duchet and Meyniel on Hadwiger's conjecture, manuscript, 2004.
[3] J.H. Kim, The Ramsey number $R(3, t)$ has order of magnitude $t^{2} / \log t$, Random Structures Algorithms, 7 (1995), 173-207.
[4] F. Maffray, H. Meyniel, On the relationship between Hadwiger and stability numbers, Discrete Math. 64 (1987), 39-42.
[5] M.D. Plummer, M. Stiebitz and B. Toft, On a special case of Hadwiger's Conjecture, Discussiones Mathematicae Graph Theory 23 (2003), 333-363.
[6] B. Reed, P. D. Seymour, Fractional colouring and Hadwiger's conjecture, J. Combin. Theory Ser. B, 74 (1998), 147-152.
[7] P. D. Seymour, unpublished
[8] Stephan Thomassé, in: Problems from Graph Theory 2002 meeting, Odense, University of Southern Denmark, August 19-23, 2002, page 4.
[9] B. Toft, A survey of Hadwiger's conjecture, Congressus Numerantium 115 (1996) 249-283.
[10] D. R. Woodall, Subcontraction-equivalence and Hadwiger's conjecture, Journal of Graph Theory 11 (1987), 197-204.

[^0]: *Alfréd Rényi Institute, Hungarian Academy of Sciences, Budapest 1364, P. O. Box 127 and Dept. of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL61801, USA. Email: furedi@renyi.hu Research partially supported by Hungarian National Science Foundation Grants OTKA T032452 and T037846 and by NSF grant DMS 0140692
 ${ }^{\dagger}$ Computer and Automation Research Institute of the Hungarian Academy of Sciences, Budapest, P. O. Box 63 , Hungary-1518. Email: gyarfas@sztaki.hu
 \ddagger Alfréd Rényi Institute, Hungarian Academy of Sciences, Budapest 1364, P. O. Box 127. Email: simonyi@renyi.hu Research partially supported by the Hungarian Foundation for Scientific Research Grant (OTKA) Nos. T037846 and T046376.

