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Abstract

We introduce a directed analog of the local chromatic number defined by Erdés et al.
in [10] and show that it provides an upper bound for the Sperner capacity of a directed
graph. Applications and variants of this result are presented. In particular, we find a
special orientation of an odd cycle and show that it achieves the maximum of Sperner
capacity among the differently oriented versions of the cycle. We show that apart from
this orientation, for all the others an odd cycle has the same Sperner capacity as a single
edge graph. We also show that the (undirected) local chromatic number is bounded from
below by the fractional chromatic number while for power graphs the two invariants have
the same exponential asymptotics (under the co-normal product on which the definition of
Sperner capacity is based). We strengthen our bound on Sperner capacity by introducing
a fractional relaxation of our directed variant of the local chromatic number.

Key words: local chromatic number, Sperner capacity, Shannon capacity, fractional chro-
matic number



1 Introduction

Colouring the vertices of a graph so that no adjacent vertices receive identical colours
gives rise to many interesting problems and invariants, of which the book [17] gives an
excellent survey. The best known among all these invariants is the chromatic number, the
minimum number of colours needed for such proper colourings. An interesting variant
was introduced by Erdés, Fiiredi, Hajnal, Komjath, R6dl, and Seress [10] (cf. also [12]).
They define the local chromatic number of a graph as follows.

Definition 1 ([10]) The local chromatic number (G) of a graph G is the mazimum
number of different colours appearing in the closed neighbourhood of any vertex, minimized
over all proper colourings of G. Formally,

¥(G) = min = max [{c(u):u€Ta(v)},
where N is the set of natural numbers, I'g(v), the closed neighborhood of the vertex v €
V(G), is the set of those vertices of G that are either adjacent or equal to v and c :
V(G) — N runs over those functions that are proper colourings of G.

It is clear that ¢ (G) is always bounded from above by the chromatic number, x(G).
It is much less obvious that 1(G) can be strictly less than x(G). Yet this is true; in fact,
as proved in [10], there exist graphs with ¢(G) = 3 and x(G) arbitrarily large.

Throughout this paper, we shall be interested in chromatic invariants as upper bounds
for the Shannon capacity of undirected graphs and its natural generalization Sperner
capacity for directed graphs. For the sake of unity in the treatment of undirected and
directed graphs it is convenient and customary to treat Shannon capacity in terms that are
complementary to Shannon’s own, (cf. [24], [20] and [14], [18]). In this language Shannon
capacity describes the asymptotic growth of the clique number in the co-normal powers
of a graph. Shannon proved (although in different terms) that the Shannon capacity ¢(G)
of a graph is upper bounded by its fractional chromatic number.

We show that ¢(G) is bounded from below by the fractional chromatic number of G.
This proves, among other things, that ¢ (G) is always an upper bound for the Shannon
capacity ¢(G) of G, but it is not a very useful upper bound since it is always weaker than
the fractional chromatic number itself. We make this seemingly useless remark only to
stress that the situation is rather different in the case of directed graphs.

We introduce an analog of the local chromatic number for directed graphs and show
that it is always an upper bound for the Sperner capacity of the digraph at hand. The
proof is linear algebraic and generalizes an idea already used for bounding Sperner capacity
in [6], [1], [11], cf. also [8]. To illustrate the usefulness of this bound we apply it to show,
for example, that an oriented odd cycle with at least two vertices with outdegree and
indegree 1 always has its Sperner capacity equal to that of the single-edge graph K. We
also discuss fractional versions that further strengthen our bounds.



2 Local chromatic number for directed graphs
The definition of the directed version of ¥(G) is straightforward.

Definition 2 The local chromatic number 1¥4(G) of a digraph G is the mazimum number
of different colours appearing in the closed out-neighbourhood of any vertex, minimized
over all proper colourings of G. Formally,
= i : r
Ya(G) = Jgpin | max {e(w) : w e TE(v)}
where N is the set of natural numbers, T'&(v), the closed out-neighborhood of the vertex
v € V(G), is the set of those vertices w € V(G) that are either equal to v or else are

endpoints of directed edges (v,w) € E(Q), originated in v, and ¢ : V(G) — N runs over
those functions that are proper colourings of G.

Our main goal is to prove that 14(G) is an upper bound for the Sperner capacity of
digraph G.

3 Sperner capacity

Definition 3 For directed graphs G = (V,E) and H = (W, L), the co-normal (or dis-
Junctive or OR) product G - H is defined to be the following directed graph:

V(G-H)=V xW

and

E(G-H)={((v,w), (@, w")): (v,v") € E or (w,w')e L}.

The n'* co-normal (or disjunctive or OR) power G™ of digraph G is defined as the n-fold
co-normal product of G with itself, i. e., the vertex set of G" is V" = {x = (z1...2,) :
x; € V'}, while its edge set is defined as

E(G") ={(x,y) : 30 (z;,5:) € E(G)}.

(A pair (a, b) always means an oriented edge in this paper as opposed to undirected edges
denoted by {a,b}.)

Notice that G™ may contain edges in both directions between two vertices even if such a
pair of edges is not present in G.

Definition 4 A subgraph of a digraph is called a symmetric clique if its edge set contains
all ordered pairs of vertices belonging to the subgraph. (In other words, it is a clique with
all its edges present in both directions.) For a directed graph G we denote the size (number
of vertices) of its largest symmetric clique by ws(Q).



Definition 5 ([14]) The (non-logarithmic) Sperner capacity of a digraph G is defined as
0(G) = sup {Jws(G™).

Remark: Denoting the number of vertices in a largest transitive clique of G by tr(G), it

is easy to show that o(G) = sup,, {/tr(G™) holds, cf. [14], [22] and the references therein.
(By a transitive clique we mean a clique where the edges are oriented transitively, i. e.,
consistently with some linear order of the vertices. It is allowed that some edges be
present also in the reverse direction.) Since ¢tr(G™) > [tr(G)]™ this remark implies that
tr(G) < (@) holds for any digraph G.

For an undirected graph G let us call the digraph we obtain from G by directing all
its edges in both ways the symmetrically directed equivalent of G. In Shannon’s own
language the capacity (cf. [24]) of the complement of a(n undirected) graph G can be
defined as the Sperner capacity of its symmetrically directed equivalent. We denote this
quantity by ¢(G) and by slight abuse of the terminology we also refer to it as the Shannon
capacity of G' whenever it may not cause confusion.

Thus Sperner capacity is a generalization of Shannon capacity. It is a true general-
ization in the sense that there exist digraphs the Sperner capacity of which is different
from the Shannon capacity (c¢(G) value) of its underlying undirected graph. Denoting
by G both an arbitrary digraph and its underlying undirected graph, it follows from the
definitions that o(G) < ¢(G) always holds. The smallest example with strict inequality
in the previous relation is a cyclically oriented triangle, cf. [8], [6]. (See also [5] for an
early and different attempt to generalize Shannon capacity to directed graphs.)

Shannon capacity is known to be a graph invariant that is difficult to determine (not
only in the algorithmic but in any sense), and it is unknown for many relatively small and
simple graphs, for example, for all odd cycles of length at least 7. This already shows that
the more general invariant Sperner capacity cannot be easy to determine either. For a
survey on graph invariants defined via powers, including Shannon and Sperner capacities,
we refer the reader to [3]. There is an interesting and important connection between
Sperner capacity and extremal set theory, introduced in [19] and fully explored in [15].
Several problems of this flavour are also discussed in [18].

4 Main result
Alon [1] proved that for any digraph G

0(@) < min{A,(G),A_(G)} +1

where A, (G) is the maximum out-degree of the graph G and similarly A_(G) is the
maximum in-degree. The proof relies on a linear algebraic method similar to the one
already used in [6] for a special case (cf. also [11] for a strengthening and cf. [2] for a



general setup for this method in case of undirected graphs). We also use this method for
proving the following stronger result.

Theorem 1

o(G) < a(G).

Proof. Consider a proper colouring ¢ : V(G) — N that achieves the value of 94(G).
(Here N ={1,2,...}). Let N (v) denote the set of colours each of which appears as the
colour of some vertex in the (open) out-neighbourhood of v in the colouring c.

For each sequence a = aqas . ..a, € V(G™) we define a polynomial

n

Pac(@y,...zn) =] II (zi—17)-

1 jeNt(a:)

Let K be a symmetric clique in G". If a € K, b € K then by definition
P, (c(br),...,c(b,)) = 0if b # a, while P, (c(a1),...,c(an)) # 0 by the properness
of colouring c¢. This implies that the polynomials {Pa.(z1,...,%n)}ack are linearly in-
dependent over the reals. This can be shown in the usual way: substituting c¢(b) into
Y ack AaPac(x) = 0 we obtain A\, = 0 and this can be done for each b € K.

Since the degree of z; in P, .(x) is at most ¥4(G) — 1, the dimension of the linear
space generated by our polynomials is bounded from above by [¢4(G)|". By the previous
paragraph, this is also an upper bound for |K|. Choosing K to be a symmetric clique of
maximum size we obtain ws(G™) < [1)4(G)]™ and thus the statement. O

Let G, denote the “reverse of G”, i. e., the digraph we obtain from G by reversing
the direction of all of its edges. Since obviously ¢(G) = 0(Ge,), Theorem 1 has the
following trivial corollary.

Corollary 1
0(G) < min{ta(G), Ya(Grev) }-
O

In Sections 7 and 8 we will strengthen Theorem 1 by introducing a fractional version of

Ya(G).

5 Application: odd cycles

We call an oriented cycle alternating if it has at most one vertex of outdegree 1. (In
stating the following results we follow the convention that an oriented graph is a graph
without oppositely directed edges between the same two points, while a general directed
graph may contain such pairs of edges.) Clearly, in any oriented cycle the number of
vertices of outdegree 2 equals the number of vertices of outdegree 0. Thus, in particular,
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a 2k 4+ 1 length oriented odd cycle is alternating if it has £ points of outdegree zero, k
points of outdegree 2 and only 1 point of outdegree 1. It takes an easy checking that up
to isomorphism there is only one orientation of Cy; 1 which is alternating.

Theorem 2 Let G be an oriented odd cycle that is not alternating. Then
o(G) =2.

Proof. Since any digraph with at least one edge has Sperner capacity at least 2 (see the
Remark after Definition 5), it is enough to prove that 2 is also an upper bound.

Colour the vertices of G so that two points receive the same colour if and only if they
have a common in-neighbour, i. e., a vertex sending an oriented edge to both of them. It is
easy to check that this colouring is proper if and only if the odd cycle G is not alternating.
In this case, our colouring also has the property that any vertex has only one colour in
its out-neigbourhood proving ¢4(G) = 2. Then the statement follows by Theorem 1. O

Remark: 1t is easy to see that the following slightly stronger version of the previous
theorem can be proven similarly: If G is a directed odd cycle not containing an alternating
odd cycle, then o(G) = 2.

The Sperner capacity of an alternating odd cycle can indeed be larger than 2. This is
obvious for C'3, where the alternating orientation produces a transitive clique of size 3.
A construction proving that the Sperner capacity of the alternating Cj is at least v/5 is
given in [13], and this is further analyzed in [22]. The construction is clearly best possible
by the celebrated result of Lovéasz [20] showing ¢(Cs) = v/5.

In [22] the invariant D(G) = maxo(G) was defined where the maximization is over
all orientations of G. It follows from the definitions that D(G) < ¢(G), and it is asked
in [22] whether one always has equality. No counterexample is known, while equality is
trivial if x(G) = w(G) (just orient a maximum size clique transitively) and it is proven for
vertex-transitive self-complementary graphs in [22]. Denoting the alternatingly oriented
Cokt1 by CSi, Theorem 2 has the following immediate corollary.

Corollary 2
D(Copy1) = 0(Csityy)

holds for every positive integer k. O

The discussion in this section becomes more relevant in the light of a recent result by
Bohman and Holzman [7]. Until recently it was not known whether the Shannon capacity
(in our complementary sense) of the odd cycle Coy 1, i. €., ¢(Cory1) is larger than 2 for
any value of £ > 2. In [7] an affirmative answer to this question was given by an ingenious
construction, showing that this is always the case, i. e., ¢(Cy,y1) > 2 for every positive
integer k. This means that the bound provided by 9,(G) goes beyound the obvious upper
bound ¢(G) of Sperner capacity in case of non-alternatingly oriented odd cycles, i. e., the
following consequence of Theorem 2 can also be formulated.
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Corollary 3 If k is any positive integer and Cy} | is a non-alternatingly oriented Cop 1,
then

0(Copy1) < c(Copyr).

O

It is a natural idea to try to use the Bohman-Holzman construction for alternatingly
oriented odd cycles and check whether the sets of sequences inducing cliques in the ap-
propriate power graphs will contain transitive cliques in the oriented case. (If the answer
were yes it would prove D(Cyyy1) > 2 for every k strengthening the result ¢(Coxy1) > 2
of [7].) This idea turned out to work in the case of C7, thus showing D(C7) > 2. (To
record this we list the 17 vertices of C7 that contain a transitive clique defined by their
ordering on this list. The labels of the vertices of C7 are the first 7 non-negative integers
as in [7] and the unique point with outdegree and indegree 1 is the point labelled 5. Thus
the list is: 4444, 0520, 2030, 2051, 0605, 1205, 1320, 3006, 3012, 5106, 5112, 0561, 0613,
1213, 6130, 6151, 1361.) Strangely, however, the same construction did not work for Coy:
after our unsuccesful attempts to prove a similar statement, Attila Sali wrote a computer
program to check whether the clique of Bohman and Holzman in the 8 power of an
alternating Cy contains a transitive clique of the same size and the answer turned out to
be no. (Again, to record more than just this fact, we give six vertices of C§ that form
a directed cycle without inversely oriented edges in the clique of Bohman and Holzman
whenever the path obtained after deleting vertex 5 of Cy is oriented alternatingly. The
existence of this cycle shows that the Bohman-Holzman clique does not contain a transi-
tive clique whenever the only outdegree 1, indegree 1 point of the alternatingly oriented
Cy is 4 or 6, that is one of the neighbours of 5, the point the construction distinguishes.
So the promised cycle is: 20302040, 12072040, 12140720, 40121207, 20401320, 07204012.)
In spite of this, we believe that the Sperner capacity of alternating odd cycles will achieve
the corresponding Shannon capacity value ¢(Cog1).

One more remark is in order. It is easy to check that the vertices of C4y, 4 can be
mapped to those of C4,, in an edge-preserving manner. This immediately implies that
o(C8%5) < o(C8. ), 1. e., if there were any odd cycle Co,yq with D(Cogyq) = 2, then the
same must hold for all longer odd cycles as well.

6 The undirected case

Since identifying with any undirected graph G its symmetrically directed equivalent gives
both o(G) = ¢(G) and ¥4(G) = ¥(G), it is immediate from Theorem 1 that ¢(G) <
¥ (G). We will show, however, that ¢(G) is always bounded from below by the fractional
chromatic number of G, which in turn is a well known upper bound for ¢(G), cf. [24],
[20]. Thus, unlike in the directed case, the local chromatic number does not give us new
information about Shannon capacity. Looking at it from another perspective, this relation
tells us something about the behaviour of the local chromatic number.



One of the main tools in the investigations of the local chromatic number in [10] is
the recognition of the relevance of the universal graphs U(m, k) defined as follows.

Definition 6 ([10]) Let the graph U(m,k) for positive integers k < m be defined as
follows.
V(U(m,k)) :={(z,A):x € [m],AC [m|,|A|=k—-1,2z ¢ A}

and
E(U(m,k)) :={{(z,A),(y,B)}:z € B,y € A}

The relevance of these graphs is expressed by the following lemma. Recall that a
homomorphism from some graph F to a graph G is an edge-preserving mapping of V(F')

to V(G).

Lemma 1 ([10]) A graph G admits a proper colouring ¢ with m colours and
maxyeyv(q) [{c(u) : v € T'g(v)} < k if and only if there exists a homomorphism of G
to U(m, k). In particular, (G) < k if and only if there exists an m such that U(m, k) is
a homomorphic image of G.

We use these graphs to prove the relation between the fractional chromatic number
and the local chromatic number.

Recall that the fractional chromatic number is x*(G) = min 3 scg() w(A) where S(G)
denotes the family of independent sets of graph G and the minimization is over all non-
negative weightings w : S(G) — R satisfying > ,c 4 w(A4) > 1 for every z € V(G). It is
straightforward from the definition that x*(G) > w(G) holds for any graph G. Another
important fact we will use is that if G is vertex-transitive, then x*(G) = J%((%ﬂ For a
proof of this fact and for further information about the fractional chromatic number we
refer to the books [23], [16].

Theorem 3 For any graph G
¥(G) > x*(G).

The proof relies on the following simple observation.
Lemma 2 For allm > k > 2 we have x*(U(m, k)) = k.

Proof. It is easy to check that x*(U(m,k)) > w(U(m,k)) = k thus we only have to
prove that £ is also an upper bound. It is straightforward from their definition that the
graphs U(m, k) are vertex-transitive. (Any permutation of [m] gives an isomorphism, and
any vertex can be mapped to any other by such a permutation.) Consider those vertices
(z,A) for which z < q; for all a; € A. These form an independent set S. Thinking
about the vertices (z, A) as k-tuples with one distinguished element and the elements of
S as those k-tuples whose distinguished element is the smallest one, we immediately get

X (U(m,k)) = ‘Z((g((::f))))' < ‘V(Ul(g?’k))' = k proving the statement. O
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Proof of Theorem 3. Let us have ¢(G) = k. This means that there is a homomorphism
from G to U(m, k) for some m (cf. Lemma 1). Since a homomorphism cannot decrease the
fractional chromatic number, from Lemma 2 we obtain x*(G) < x*(U(m, k)) = k = ¢(G).
O
In the rest of this section we formulate a consequence of Theorem 3 for the asymptotic
behaviour of the local chromatic number with respect to the co-normal power of graphs.
It is a well-known theorem of McEliece and Posner [21] (cf. also Berge and Simonovits
[4] and, for this particular formulation, [23]) that
Jim {/x(G") = x*(G).
It is equally well-known (cf., e. g., Corollary 3.4.2 in [23]) that x*(G™) = [x*(G)]". These
two statements and Theorem 3 immediately imply the following.

Corollary 4
lim {/p(G") = x*(G).

n—oo

Proof. By x*(G™) < 9(G™) < x(G") we have x*(G) = {/x*(G") = lim, 0 {/x*(G") <
lim, 0 YY(G™) < lim, 00 {/X(G™) = x*(G) where the last equality is by the McEliece-

Posner theorem mentioned above. O
Corollary 4 can be proved also in a different way using the techniques of [9]. This
latter kind of proof can be generalized to show a similar statement for 14(G).

7 Fractional colourings

A non-negative weighting w : S(G) — R satisfying > ,c 4 w(A) > 1 for every z € V(G) is
called a fractional colouring. (As in the previous section, S(G) denotes the set of stable
sets of G.) Now we define the fractional version of the local chromatic number. For
v € V(G) let I'f(v) denote, as before, the closed out-neighbourhood of v, i. e., the set
containing v and its out-neighbours.

Definition 7 For a digraph G its (directed) fractional local chromatic number ¥5(G) is
defined as follows:

Yi(G):= min max Y = w(4),
w:S(G)—Ry o veV(G) I‘g(v)ﬂA;é(b

where the minimization is over all fractional colourings of G.

The fractional local chromatic number ¢*(G) of an undirected graph G is just V:(G)
where G is the symmetrically directed equivalent of G.

An r-fold colouring of a graph G is a colouring of each of its vertices with r distinct
colours with the property that the sets of colours assigned to adjacent vertices are disjoint.
More formally, an r-fold colouring is a set-valued function f : V(G) — (];] ) satisfying
f(u) N f(v) = 0 whenever (u,v) € E(G).



Definition 8 Let ¢4(G,r) denote the r-fold (directed) local chromatic number of digraph
G defined as

wd(Gv Ir) = mfin uIEnVaZ}G(’) ‘ Uvel"g(u) f(U)|,

where the minimization is over all r-fold colourings f of G. R
The r-fold local chromatic number ¢(G,r) of an undirected graph G is just ¥a(G, 1)
where G s the symmetrically directed equivalent of G.

It is obvious that

43(G) = int ED)
for every digraph G. This includes the equality
(@) = inf LG
r T

for undirected graphs, too.
For a digraph G let G[K,] denote the graph obtained by substituting a symmetric
clique of size r into each of its vertices. Formally this means

V(GIK,]) ={(v,i) :v € V(G),i € {1,...,7}}

and
E(GK,)) = {((u,1), (v,))) : (u,v) € E(G) or v = v and i # j}.

It is easy to see that ¢4(G[K,]) = ¥4(G,r) for every digraph G and positive integer 7.
It is also not difficult to see that ws((G[K,])") = r"ws(G™) for every n. Indeed, any vertex
of G™ can be substituted by r" vertices of (G[K,|)" in the natural way and a symmetric
clique K of G™ becomes a symmetric clique of size r"|K| in (G[K,])" this way proving
ws((GIK])") > r"ws(G™). To see the reverse inequality let us denote by a(x) the unique
vertex of G™ from which x € (G[K,])" can be obtained by the previous substitution.
(Thus the set Ay := {y : a(y) = a(x)} has r" elements for every x € V((G[K,])").)
The crucial observation is that if K is a symmetric clique in (G[K,])" and x € K, then
KU A, is still a symmetric clique (it may be identical to K but may also be larger). Thus
maximal symmetric cliques of (G[K,])" can always be obtained as the union of some
sets Ay, which means that they can be obtained as “blown up” versions of symmetric
cliques of G™. This proves our claim that w,((G[K,])") = r"ws(G™). This equality implies
0(G[K,]) = ro(Q) for every digraph G and positive integer r.

The observations of the previous paragraph provide the following strengthening of
Theorem 1.

Theorem 4 For every digraph G

holds.



Proof. By Theorem 1 and the previous observations we have

G[Kr]) < wd(G[Kr]) — Qﬁd(G,T)'

T r T

o(G) = il

Since this holds for every r» we can write

’(/)d(G, T)

o(G) < inf = 3 (Q).
O
We can formulate again the following trivial corollary.
Corollary 5
0(G) < min{y3(G), ¥g(Grev) }-
O

To illustrate the usefulness of Theorem 4 we consider the complement of a 7-cycle with
its only orientation in which all triangles are oriented cyclically. We denote this graph
by D7 (abbreviating double 7-cycle). None of the earlier bounds we know give a better
upper bound for the Sperner capacity of D; than 3. Now we can improve on this.

Proposition 1
5
V5 < o(D7) < 5

Proof. The lower bound follows by observing that D; contains an alternating 5-cycle.
The upper bound is a consequence of Theorem 4 since ¢(D;) = 2. We actually need
here only 13(D7) < 2 and this can be seen by giving weight £ to each 2-element stable

set of D-. O

This example can be further generalized as follows. Let Dy 1 denote the following
oriented graph.
V(D2k+1) = {0, 1, ey 2]€},

and
E(Dogy1) ={(u,v):v=u+j (mod2k+1), j€{2,3,...,k}}.

Observe that this definition is consistent with the earlier definition of D; and that the
underlying undirected graph of Dy, is the complement of the odd cycle Cy1 1. Now we
can state the following

Proposition 2

k—1 k
{?-‘ +1 < 0(Dagy1) < §+1-

In particular, o(Daog11) = g + 1 if k is even.

10



Proof. It is easy to verify for the transitive clique number that ¢r(Doxi1) = [551] + 1
and this gives the lower bound. The upper bound is proven by assigning weight % to
every 2-element independent set of D1 which clearly gives a fractional colouring. The
weight thus assigned to any closed out-neighbourhood is §+ 1 giving the upper bound by
Theorem 4.

If k£ is even, the two bounds coincide. O

Remark: For even k the (then sharp) upper bound in Proposition 2 can also be obtained
from Theorem 1 as in this case 4 and v coincide. In the case of odd k we get a real
improvement by using Theorem 4 instead of Theorem 1 but here we have little reason to
believe that our upper bound would be sharp.

We also remark that while the upper bound in Proposition 2 generalizes that of Propo-
sition 1, the lower bound does not; it is weaker in case £ = 3 than that of Proposition 1.
Therefore we consider the oriented graph D; a particularly interesting example.

As it was the case without fractionalization, Theorem 4 does not give us new infor-
mation in the undirected case, i. e., about Shannon capacity. The reason for this is the
following relation.

Theorem 5

To prove Theorem 5 we need the following generalization of the universal graphs
U(m, k).

Definition 9 We define the graph U.(m, k) for positive integers 2r < k < m as follows.
V(U (m, k) = {(X,A) : X, AC [m], X 1 A=0,|X| = r,|4| = k —r}

and
E(U,(m, k) == {{(X,4),Y,B)} : X C B,Y C A}.

Remark: Note that U;(m, k) = U(m, k), while U,(m,m) = K,,.,, the Kneser graph of
parameters m and r. Thus the graphs we just defined provide a common generalization
of Kneser graphs and the universal graphs U(m, k) of [10].

The following lemma is the general version of Lemma 1 for multicolourings.
Lemma 3 A graph G admits a proper r-fold colouring f with m colours in which the
closed neighbourhood of every vertexr contains at most k colours if and only if there exists

a homomorphism from G to U.(m,k). In particular, ¥(G,r) < k if and only if there
exists an m alongside with a homomorphism from G to U,(m, k).

11



Proof. The proof is more or less identical to that of Lemma 1 (cf. [10]). If the required
colouring f exists then assign to each vertex v a pair of sets of colours (X, A) with
X = f(v) and Ugyvyenq)f(u) € A. If f has the required properties then this assignment
is indeed a homomorphism to U, (m, k).

On the other hand, if the required homomorphism 5 exists then the r-fold colouring
f defined by the X-part of h(v) = (X, A) as f(v) satisfies the requirements. O

The following lemma is a generalization of Lemma 2.

Lemma 4 For all feasible parameters m, k,r

X (Ur(m, ) =+

Proof. Think of the vertices of U,(m, k) as k-sets of the set [m]| with r elements of the

k-set distinguished. The number of vertices is thus (T,’;) (:f), while the number of those
vertices in which the smallest element of the chosen k-set is among the distinguished ones

is (’Z) (’::i) Since the latter kind of vertices form an independent set in U,.(m, k), we have

a(U,(m, k)) > (m) (k_l). The reverse inequality a(U,(m, k)) < (Z‘) (fj) follows from the

k) \r—1
Erdos-Ko-Rado theorem: in fact, once the chosen k-set is fixed, we can have at most (':j)
vertices (X;, A;) with the property that if i # j then X; N X; # 0. If X; U A; = X; U A;,
then the latter is the very same condition as non-adjacency in U,(m, k). Thus we know
kf
a(Ur(m, k) = (7) (53)-
Since U,(m, k) is vertex-transitive (because any permutation of the elements of [m]

gives an automorphism), we have x*(U, (m, k)) = JLUrmk)| _ & O

a(Uyr (m,k)) r

Proof of Theorem 5.
We know by Lemma 3 that ¢(G,r) = k implies the existence, for some m, of a homo-
morphism from G to U,(m, k). Since a homomorphism cannot decrease the value of the
fractional chromatic number, this implies x*(G) < x*(U,(m, k)) = f = @, where, in
particular, the first equality holds by Lemma 4.

On the other hand, denoting by x(G,r) the minimum number of colours needed for
a proper r-fold colouring of G, inf, @ < x*(Q) follows from inf, @ = x*(G) (cf.
Theorem 7.4.5 in [16]) and the obvious inequality ¥ (G, r) < x(G, 7). O

We note that universal graphs can also be defined for the directed version of the
local chromatic number. Denoting these graphs by Uy(m, k) they have V(Uy(m,k)) =
V(U(m, k)) while

E(Ua(m, k)) = {((z, A), (4, B)) : y € A}.

To show the analog of Lemma 1 is straightforward. Comparing Uy(m, k) to U(m, k) one
can see that the symmetrically directed edges of Uy(m, k) are exactly the (undirected)
edges present in U(m, k). This means (but the same can be seen also directly) that
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ws(Ug(m, k)) = k. On the other hand, naturally, ¢4(Us(m, k)) = k, thus for these graphs
we have o(Uy(m, k)) = ws(Ug(m, k)) by Theorem 1 and the obvious inequality w,(G) <
o(G).

8 Fractional covers

A non-negative real valued function g : 2"(%) — R is called a fractional cover of V(G) if
>ver 9(U) > 1 holds for all v € V(G).

The most general upper bound of o(G) we prove in this paper is given by the following
inequality that generalizes Theorem 4 along the lines of a result (Theorem 2) of [11].

Theorem 6 For any digraph G we have

o(G) <min Y g(U)y*(G[U]),

! vcvie)

where the minimization is over all fractional covers g of V(G) and G([U]) denotes the
digraph induced by G on U C V(G).

By 0(G) = 0(G,ey) we again have the following immediate corollary (cf. Corollary 1
of Theorem 1).

Corollary 6

0(G@) < min {mln > g Y*(G[U]), mln > g 'rev[U])}

UCV(G UCV(G

O

The proof of Theorem 6 is almost identical to that of Theorem 2 of [11]. Yet, we give
the details for the sake of completeness.

We need some lemmas. Following [2], we can speak about the representation of a
(di)graph G = (V, E) over a subspace F of polynomials in m variables over a field F.
Such a representation is an assignment of a polynomial f, in F and a vector a, € F™ to
each vertex v € V' such that the following two conditions hold:

i) for each v € V, f,(a,) # 0,
and
ii) if (u,v) € E(G) then f,(a,) = 0.

Notice that we adapted the description of a representation given in [2] to our termi-
nology (where capacities are defined via cliques instead of stable sets) and to digraphs.

The following two lemmas are from [2]. Their proofs are essentially identical to those
of Lemma 2.2 and Lemma 2.3 in [2] (after some trivial changes caused by the different
language).
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Lemma 5 ([2]) Let G = (V, E) be a digraph and let F be a subspace of polynomials in
m variables over a field F. If G has a representation over F then wy(G) < dim(F).

Lemma 6 ([2]) If G and H are two digraphs, G has a representation over F and H has
a representation over H, where F and H are spaces of polynomials over the same field F,
then ws(G - H) < dim(F) - dim(#).

Remark: Lemmas 5 and 6 imply that if G and F are as in Lemma 5 then ¢(G) < dim(F)
(cf. Theorem 2.4 in [2]). Notice that our Theorem 1 is a specialized version of this
statement where the subspace F of polynomials is defined via a proper colouring of the
vertices attaining the value of 14(G).

Our next Lemma is analogous to Proposition 1 of [11].

Lemma 7 Let I\, Fs, ... F, be digraphs. Then
i=1

Proof. First observe that the argument for w,((G[K,])") = r"ws(G™) that led us to state
Theorem 4 generalizes to

ws(Fl[Kr] : FQ[KT] REPIPIPR Fn[KT]) == ans(Fl . F2 tal.t Fn)

(This is simply by realizing that in the argument mentioned above we have not used
anywhere that in the n-fold product in question all the graphs were the same whereby we
dealt with the n’th power of a fixed graph.)

Take the representation (by subspaces of polynomials) given in the proof of Theorem
1 now for Fi[K,|, F5[K,],..., F,[K,], i. e., represent F;[K,| for each i by the polynomials
{Pa;(xi) == jens ) (2; — J) Yaev(mi[k,]), Where ¢; is a colouring of V (F;[K,]) that attains
the value of 14(F;[K,]). The dimension of this representation of F;[K,| is bounded from
above by 14(F;[K,]). Now applying Lemma 6 we obtain

oy (FAK] - BoK] - .. FuKL) < f{lwd(ﬂ-[m) - ﬁwd(ﬂ,r)-

Thus

) = ws(A K] - B[K,) - ... - Fu[K,))

Tn

Sﬁwd(FiaT)'

=1

ws(Fl-FQ-...-Fn ,

Since this last inequality is true for every positive integer r we can also write

- F; n F
wy(Fy-Fy-...- F,) <inf ][ M — liminf || %(rz,r) _
=1 i=1
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Ear

f[ hm inf ————= Ya H vy (F;

O

Proof of Theorem 6. We call a function A assigning non-negative integer values to the
elements of 2V(%) an s-cover (s is a positive integer) of V(G) if ¥pcpy R(U) > s holds for
all v € V(QG).

It is clear that

mn 3 a0 (GlU) = inf “min Y KU)W (GIU)),

UCV(G s UCV(G)

where the minimization on the left hand side is over all fractional covers g while the
minimization on the right hand side is over all s-covers h.

Let us fix an s and let h be the s-cover achieving the minimum on the right hand side.
Let U be the multiset of those subsets of V(G) that are assigned a positive value by h
and let the multiplicity of U € V(G) in U be h(U).

Fixing any natural number n denote by U™ the multiset of all n-fold Cartesian products
of sets from Y. (The multiplicity of some A = U; x Us X ... x U, € U™ is thus given by
h(Uy) - h(U3) - ... - h(Uy,).)

We consider a maximum size symmetric clique K in G™ and observe that

SUKI < 30 ws(GMPXG i)

xn_ U;eUn

Each summand in this last inequality satisfies by Lemma 7
ws (G X Ui]) = ws(J] GIUH) < H (G[Ui]).-

Substituting this into the previous inequality we get

SRS S | TR @%mm]

X7 Uieun i=1

Since K is a maximum size symmetric clique of G™ and the multiplicity of U; in U is
h(U;), we obtained
n

oy (G slzh Ji(GIU))

UCV(G)

This implies

o(G) <1nf;( > WU de[U]>—m1n > g U)y;(GIU)),

UCV(G) UCv(G
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where the minimization is over all fractional covers g of V(G), i. e., we arrived at the
statement. O

To illustrate that the bound of Theorem 6 may indeed give an improvement over that
of Theorem 4 (or, in fact, over that of Corollary 5) consider the following digraph G. Let
V(G)={1,2,...,2k+1,a,b} and E(G) = E(C3; 1) U{(a,9),(3,b) : i € {1,...,2k+1}},
where Cy; | is an arbitrary non-alternatingly oriented cycle on 2k+1 vertices. It is easy to
check that 1(G) = 3++ (and also 1}(Grev) = 3+7) , i. €., Theorem 4 gives 0(G) < 3+
only, while Theorem 6 gives 0(G) < 3. Indeed, using the fractional cover (which is also an
integer cover) g(V1) = g(V3) = 1, where Vi = {1,2,...,2k+1},V5 = {a, b} (and g(U) =0
for all other U C V(G)) we get o(G) < ¢5(Coryy) + ¥5(K2) < ¢4(Csi4q) + 1 = 3. This
bound is sharp since GG contains transitive triangles.
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