
COMBINATORICA 
CoMBINATORICA 10 (I) (199()) 27-40 

Ak.ademiai Kiado-:- Springer-Verlag 

ENTROPY SPLITTING FOR ANTIBLOCKING 
CORNERS AND -PERFECT GRAPHS 

I. CSISZAR, J. KORNER, L. LOV Asz, 
K. MARTON and G. SIMONY! 

Received October 12, 1988 
Revised December 15; 1988 

We characterize pairs of convex sets A, Bin the k-dimensional space with the property that 
every probability distribution (p1 , .•• , P~<) has a repsesentation 

p, =a;· b;, a EA, bE B. 

Minimal pairs with this property are antiblocking pairs of convex corners. This result is closely 
related to a new entropy concept. The main application is an information theoretic characterization 
of perfect graphs. 

1. Introduction 

The concept of antiblocking pairs of polyhedra was introduced by Fulkerson 
[4]; it can be extended to non-polyhedral convex sets in a straightforward way (see 
[6]). Let R~ denote the non-negative orthant of the k-dimensional Euclidean space. If 
a=(a1 , .•• , ak)T, b=(b1 , ••. , bk)TER~, then bT ·a denotes their inner product, 
and we write a;§.b if ai;§.bi for all i. 

Definition. A set A~RI:f- is called a convex con;er lf it is compact, convex, has non­
empty interior, and for every aEA, a' ER~ with a' ;§a we have a' EA. The anti­
blocker of the convex corner A is the convex corner 

A*= {bER~: br. a~ 1 V aEA}. 

If B=A* then (A, B) is called an antiblocking pair. It is well known~that (A*)*=A 
and hence if (A, B) is an antiblocking pair then so is (B, A) . 

. If A, B~R~ are convex corners and .A.~B then B*~.A.*. . 
A vector pER~ is called a probability distribution if its coordinates add up to 

1. We are interested in pairs of sets in R~ that generate all probability distributions 
in the following sense. 

Definition. For a, hER~, let aob denote the vector (ai · b,: i= 1, .,., k). For 
two sets A, B~RI:f-, we put AoB={aob: aEA, bEB}. (If A and Bare convex cor­
ners then A oB is not necessarily a convex corner.) A pair of_sets A, B~R~ is called 
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a generating pair if every probability distribution pER~ can be represented as 

(I) p = aob, aEA, bEB. 

For convex corners, this is equivalent to saying that S= {x~O, :Z;x(;§ l}~AoB. 
We shall prove that a pair of convex corners A, B~R~ is a generating pair iff 
A*~B (which is equivalent to B*~A). Also, if (A, B) is an antiblocking pair then 
the representation (1) is essentially unique. 

These results are closely related to a new entropy concept. 

Definition. Let A~R~ be a convex corner, and pER~ a probability distribution. 
The entropy of p with respect to A is 

(the log's are taken to the base 2). 

Observe that the function to minimize is convex, tends to oo at the boundary of 
the non-negative orthant but it tends monotone to - oo along rays from the origin. 
Hence the minimum is always achieved and finite, and is assumed at the boundary 
of A but in the ,interior of the non-negative orthant. It also follows easily that each 
coordinate ai of the minimizing vector a is uniquely determined provided pi>O. 

To justify the name "entropy" for this quantity, let us remark that the entropy 
H5 (p) of a probability distribution p with respect to the unit corner S= {x~O, 

' _2\xi;§J} is just the Shannon entropy H(p)=- ZiPilogpi. 
There is another way to obtain this value. Consider the mapping A: int 

'. R+-R" defined by 

A(x) =(-log x1 , ••• , -log x .. ). 

I~ is easy to see using the concavity of the log function that if A is a convex corner 
then A(A) is a closed, convex, fuii-dimensional set, which is up-monotone, i.e. 
aEA(A), a'?:a imply a'EA(A). Now HA(p)isthe'minimumofthelinearobjec­
tive function Z i pixi over A (A). 

Our main result is the following. 

Theorem 1. For convex corners A, B~R~ the following three conditions are equi­
valent: 

(i) A*~B; 
(ii) (A, B) is a generating pair; 

(iii) H(p)?:HA(p)+HB(p) for every probability distribution pER~. 

This and related results will be proved in Section 2. As a main application, in 
Section 3 we shall prove the following characterization of perfect graphs: a graph is 

-perfect iJf it "splits graph entropy". Graph entropy, introduced by Korner [7), is an 
information theoretic functional on a graph with a probability distribution given on 
its vertex set; it may also be considered as a probabilistic refinement of the notion 
of chromatic number. 
Definition. Let G =(V. 8) be a graph with vertex set V and edge set tf, and let p be a 
probability distribution on V. Let G<n> =(V", tt<">) denote the n-th conormal power 
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of G, i.e., V" is the set of sequences of length n from V, and 

g<n> = {(x, y)EV"XV.": :li: (xi! yJE&'}. 

Define the probability distribution p" on V" by p"(x)= jj p(x1). For U~V", 
1=1 

let a<n>(U) denote the subgraph induced by Uin G<">, and let x(G<">(U)) denote its 
chromatic number. Then for every 0< e< 1, the limit 

H(G, p) = lim ..!._ min log x(G(•l(U)) 
n-oo n p"(U)~l-e 

exists and is independent of e. H(G, p) is called the graph entropy of the graph G 
with respect to the probability distribution p. 

We may view the elements of V as an alphabet, two letters being connected 
by an edge iff they are "distinguishable". The elements of V" are words of length n. 
Two such words are connected in the n-th conormal power iff they are distinguish­
able (i.e., they are distinguishable in at least one position). We want to encode these 
words by 0-1 words of length as small as possible, so that distinguishable words get 
different codes (two words that are indistinguishable anyway may get the same code). 
Such an encoding corresponds to a coloring of the n-th conormal power. However, 
we only want to encode the "majority" of words, i.e., a fraction of e is allowed not 
to get codes. Then for large n, the optimum encoding uses words with length about 
H(G,p) ·n. . ; 

[7] contains a non-asymptotic formula for H(G, p), from which we shall derive 
(see Lemma 8 below) that H(G, p) is the entropy of p with respect to the s,o-called 
vertex packing polytope of G (which is a convex corner). 

Graph entropy can be used to obtain lower bounds for the minimum number 
of graphs of a given type needed to cover the edge set of a fixed graph (cf. [9], [1 1]). 
This is based on the foUowing sub-additivity property of graph entropy. Let F= 
=(V, GJ, G=(V, GJ be graphs on the same vertex set V; their union is the graph 

FUG= (V, l1 U t!J. 
In [9] it is proved that 

H(FUG, p) ~ H(F, p)+H(G, p) 

for all probability distributions p on V. In particular, for a graph G 

(2) H(p) = H(GUG,p) ~ H(G,p)+H(G,p). 

(The fact that the entropy of the complete graph with respect to the probability dis­
tribution pis H(p), follows from the formula for H(G, p) given in [7] or from Lemma 8 
below.) 

Korner and Longo [10] introduced the following notion. 

Definition. A graph G =(V, G) is strongly splitting if for every probability distri­
bution p on V, (2) holds with equality, i.e., 

(3) H(p) = H(G, p)+H(G, p) 
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for every probability distribution p on V. A graph is called weakly splitting if (3) 
holds for at least one probability distribution p>O. 

The results [8] and [10] show that every perfect graph is weakly splitting, but 
there are weakly splitting graphs that are not perfect. A graph-theoretic character­
ization of weakly splitting graphs is contained in (10] and [11]: a graph is weakly 
splitting if and only if it is normal, i.e., it contains a family .s:1 of independent sets 
and a family f1l of cliques, both covering all points, such that every AEd intersects 
every BE9J. 

Korner and Marton [11] showed that bipartite graphs are strongly splitting 
while odd cycles are not. They conjectured the following characterization, to be 
proved in Section 3 : 

Theorem 2. A graph is strongly splitting if! it is perfect. 

We use Theorems 1 and 2 to derive, for strongly splitting (i.e., perfect) graphs, 
a stronger version of normality. 

In Section 4 we generalize this characterization to some families of subsets of 
a given set. We give an information theoretic interpretation of the entropy of a pro­
bability distribution with respect to the convex corner spanned by the indicator vec­
tors of a family of subsets of a given set. Another example of entropy with respect 
to a convex conier is a probabilistic version of the functional B(G) introduced by 
Lovasz [14] to bound graph capacity from above. This example will be studied in 
·detail in [16]. 

1 In Section 5 we prove additivity and subadditivity properties of entropy with 
respect to a convex corner. For graph entropy these are known results, but for the 
functional of [16] the additivity is quite surprising. 

2. Generating pairs of convex corners 

We start with a simple lemma about entropy of convex corners. 

Lemma 3. For two convex corners A, C~R~, we have HA(p)?E.Hc(P) for all 
p if and only if A~C. 

Proof. The uif" part is obvious. Assume that Hc(p)§.HA(p) for allp. As remarked 
above, we have HA(p)=min {pTx: xEA(A)}, and hence if follows that we must 
have A(A)~A(C). This clearly implies A~C. I 

In particular, it follows from this lemma that a convex corner A is completely 
determined if we know HA(p) for allp. Note that HA(p) may be negative or larger 
than H(p). However, Lemma 3 has the following 

Corollary 4. We have 0"§.HA(p)§.H(p) for every probability distribution p iff A 
contains the unit corner and is contained in the unit cube. I · 

Our next lemma relates entropy to antiblocking pairs. 

Lemma S. Let A, B~R~ be convex corners and pER~, a probability distribution. 
Then . ' . . 
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(a) If p=aob for some aEA and bEB then 

H(p) S: HA(p)+Ha(p), 

with equality if and only if a and b achieve HA (p) and HB(p). 
(b) If A*~B then 

wich equality if! p=aob for some aEA, bEB. 

Proof. (a) We have 

H(p) =-Z Pi log a1b1 =-Z P1 log a1- Z P1log bi s: HA(p)+HB(p). 
i i i 

We have equality here if and only if a and b achieve HA(p) and H8 (p). 

31 

(b) Let aEA and bEB achieve HA(p) and H8 (p), respectively. Then the 
strict concavity of the log function and the relation b T a~ 1 imply 

Equality holds if and only if a1b1=p1 whenever pe·O. But then by 1 s:Z a;b1s= 
j 

s: Z p1= 1, equality also holds for those indices with Pi=O. I 
i 

Proof of Theorem 1. 
(i)~(ii): We have to show that if A*~B then every probability distribution 

pER~ has a representation (1). Let aEA minimize f(x)=- Z Pi log xi over A 

(i.e., achieve HA.(p)). If p(>·O then obviously ai>O, so the v~or b=(bi), 

{
pJai, if Pt > 0 

b- = 1 0, otherwise. 

is well defined, and all we have to show is that bEB. · 
Observe that the convex sets A and {xER~: f(x)<f(a)} are disjoint and so 

they can be separated by a hyperplane. But the two sets touch at the point a and the 
second one is smooth there, so this separating hyperplane must be its tangent there. 
Now the gradient of -fat a is (pJa1 , ••. ,pJa,J=b and so this separating hyperplane 
is bTx=l. But this means that brx;§l for every xEA, i.e., bEA*~B. · · 

(ii)~(iii) follows from Lemma 5(a). 
(iii)~(i): Notice first that, by the (already established) implication (i)~(iii) 

and by Lemma 5(b), we have 

H(p) = HA(p)+H_ .... (p) 

for every probability distribution pER~, and hence HA.*(p)s=H8 (p) for every p. 
By Lemma 3, this implies that A*~B. I 

Notice that we do not know how to decide for an arbitrary pair of convex 
corners A, B~R~, and a given probability distribution p whether p has a represen­
tation (1). Lemma 5 answers this question if A*~B. 
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Theorem 1 and Lemma 5 also imply the following characterization of anti­
blocking pairs : 

Corollary 6. Let A, B~R~ be convex corners. (A, B) is an antiblocking pair iff.. 

H(p) = HA(p)+HB(p) 

for every probability distribution pER'+. I 

The next assertion describes, for an antiblocking pair (A, B), the pairs (a, b) 
needed in representations of probability distributions. For a convex corner A, let 
A' denote the closure of that part of the boundary of A that is not contained in any 
of the coordinate hyperplanes xi=O. 

Corollary 7. Let A be a convex corner in R~ and aEA'. Let b~O be the normal 
vector to a supporting hyperplane to A through a, normalized by bTa=l. Then bEA*, 
and aob is a probability distribution. Every probability distribution pER~ has a 
representation by pairs (a, b) obtained this way, and if pi>O for all i then this repre­
sentation is unique. I 

Let us remark that this proposition motivates an alternative proof of the gen­
erating. property which is topological and ·essentially different from the one given 
above. Here is a sketch. Let A be a convex corner. Assume that A' is smooth. Then 
through any point aEA' ~here is a unique tangent hyperplane, and, consequently, 
a unique normal vector b=;=b(a)EA* satisfying bTa= 1. The function cp(a)=aob(a) 
is then a continuous mapping from A' into the simplex of probability distributions 
in R~. Using Brouwer's Fixed Point Theorem, one can establish that cp is onto. The 
Ca.se when A' is not smooth· follows by a compactness argument. 

3. Perfect graphs and entropy splitting 

Let us first recall the definition of perfect graphs and of certain polytopes 
associated with graphs. From now on, we assume V= {1, ... , k}. 

Definition. A graph G is perfect if for every induced sub graph G' of G, the chromatic 
number of G' equals the maximum size of a clique in G'. 

Perfect graphs have been introduced by Berge; cf. Berge [1] and Lovasz [15]. 
We need a pair of other important notions. from graph theory ([5, 15]; see also [6]): 

Definition. The ver.tex packing polytope VP(G) of the graph G is the convex hull of 
the indicator vectors of the independent sets of G. The fractional vertex packing 
polytope of G is defined as 

FVP(G) = {bER~: _2 bi ;§ 1 for all cliques K of G}. 
iEK 

It is easy to see that VP(G) and FVP(G) are convex corners. Moreover, 
FVP(G)=;::[VP(G)]*, .. and VP(G)~FVP(G) for every graph G. Equality holds here 
if and··:only if the.graph is perfect (Fulkerson [5], Chvatal [2]). We can express the 
graph entropy H(G,p) as the entropy ofp with respect to VP(G): 
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Lemma 8. For every graph G=(V, G) and every probability distribution p on V, 

H(G, p) = HvP(G)(p). 

Proof. We have to use some elementary concepts from information theory. The in­
terested reader may consult [3] or [17]. If X is a random vadable with values in the 
set V= {1, 2, ... , k} and distributed according to the probability distribution p then 
the Shannon entropy of X is H(X)=H(p)=- Z Pi log pi. If (X, Y) is a pair of 

iEV 

random variables having finite range then the mutual information of X and Y is 

l(XI\Y) = H(X)+H(Y)-H(X, Y). 

Here we consider (X, Y) as one random variable, and H(X, Y) stands for the entropy 
of this random variable. For graph entropy the following formula was proved in [7]: 

(4) H(G, p) = min {I(XI\Y): dist(X) = p, XEYEff(G)}. 

Here dist(X) denotes the distribution of X, ff(G) is the family of independent sets 
of G, and "XE YEff(G)" means that (X, Y) is a random pair, Y takes values in 
f!F(G), and the random vertex X is bound to belong to the random set Y. First we 
prove 

k 

H(G, p) ~ min - Z Pi log at. 
aEVP(G) i=l 

Let the min in (4) be achieved by a random pair (X, Y), dist(X)=p, XE YE!!F(G). 
Let q denote the conditional distribution of Y given X, and let r be the distribution of 
Y. By the definition of mutual information and some trivial identities, 

. r(F) 
H(G, p) = I(XI\Y) =-Z Pi Z q(Fiz) log -(FI") · 

i iEFE.F(G) q l 

By the concavity of the log function, the inner sum is at most log Z r(F). 
iEFEF(G) 

Define the vector a by ai= Z r(F); then aEVP(G), and H(G, p)?E 
iEFEJ'(G) 

~ - ZPi log ai. 
i 

To prove the reverse inequality, fix a point aEVP(G), say, a1= Z s(F), 
iEFE F(G) 

where s is a probability distribution on §(G), and define the transition probabilities 

. _ {s(F)fat> if iEF 
q(Fiz) - 0, if if. F 

(iEV, FEff(G)). We have 
. q(F!i) 

(5) H(G, p) ~ i?; piq(Fil) log r(F) , 

where r(F)= Z piq(Fii). By the concavity of the log function, 
i 

- Z r(F) log r(F) ~-Z r(F) log s(F), 
F F 
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and hence 
- Z p 1q(Fii) log r(F) ~- Z Pi q(Fii) log s(F). 

i.F i,F 

Thus (5) can be .continued: 

ncc,p)~ ~~piq(Fii)Iog ~er);) =-?pilogai. 1 

Now we can characterize not only the strongly splitting graphs, but also those 
for which (3) holds for a given p: 

Lemma 9. For a probability distribution p on V, we have H(p)=H(G,p)+H(G,p) 
iff HvPcolP)=HFvP(Glp). 

Proof. We have [VP(G)]*=FVP(G). Thus Lemma 8 and Corollary 6 imply 

H(G,p)+H(G,p)-H(p) = 

= HvP(G)(p)+HvP(G)(p)-H(p) = HvP(G)(p)-HFVP(G)(p). I 
Proof of Theorem 2. By Lemmas 9 and 3, G is strongly splitting iff VP(G)= 
=FVP(G). This is equivalent to the perfec~ness of G. I 

Let §(C§) and % (C§) denote the families of the independent sets and cliques, 
respectively, of the graph G. By definition, a vector aER'+ belongs to VP(G) iff 
there exists a probability distribution q on ff(G) such that the coordinates of a can 
be written as 

ai = Z q(F). 
iEFE.F(G) 

Thus, by Lemma 9, Theorem 2 can be stated in the following equivalent, and perhaps 
more transparent form ( c.f. [11], [12]): 

Corollary 10. The graph G=(V, tff) is perfect ifJ for every probability distribution 
p on V there exist probability distributions q on §(G) and r on %(G) such that for all 
iEV, 

Pi = Z q(F) Z r(K). I 
iEFEF(G) iEKE:t'"(G) 

By Corollary 7, q and rare concentrated on the maximal independent sets and 
maximal cliques of G, respectively, whenever p 1>0 for all i. In contrast to the uni­
queness of the representation (1), q and rare not uniquely determined. 

Another way to put this result is the following.1 It follows from Theorem 1 
that for each graph G, 

S = VP(G)oFVP(G) = FVP(G)oVP(G) 

(where S is the unit corner). Hence 

VP(G)o VP(G) ~ S ~ FVP(G)oFVP(G). 

1 We are grateful to the referee of our paper for this remark. 
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:Now Corollary 10 asserts that G is perfect if and only if VP(G)oVP(G)=S. This 
may be contrasted with a result of Fulkerson [4] that can. be phrased as follows: 
G is perfect if and only if FVP(G)oFV P(G)~S, i.e., that f. w:§ 1 for every 
JEFVP(G) and wEFVP(G) (this inequality is sometimes called the length-widih 
inequality or max-ma.:'C inequality). In view of the inequality above, this is equivalent 
to saying that FVP(G)oFVP(G)=S. 

By studying the structure of the representation in Corollary 10, we can derive 
the following strengthening of the normality of perfect graphs. 

Theorem 11. Let G be a perfect graph. Then G contains a family d of independent 
sets and a family go of cliques with the following properties: 

(a) ldl+lgol=k+l; 
(b) the sets in d (go) cover all points; 
(c) the incidence vectors of sets in d(go) are linearly independent; 
(d) every AEd intersects every BEPA. 

Proof. For every probability distribution p>O, we have a family d of independent 
sets and a family go of cliques, and non-negative reals AA (AEd) and fJ.B (BEJJ) 
such that ZAAA=l, ZBJJ.B=l, and for each iEV, 

(6) 

We may assume here that AA, p.8 >0 and that the incidence vectors a1 , ••• ,as of 
the members of d as well as the incidence vectors bu ... , b, of the members of fA 
are affinely independent. Adding up (6) for each i, we get that 

Hence we see that we must have IAnBI = 1 for every AEd' and BE fA, i.e . ., (d) 
holds. Since p>O, (b) is obvious. (c) follows by observing that every a1 satisfies 
a[b1 = 1 and hence the affine independence of the ai implies their linear independence: 
any linear dependence relation Z etiai=O would imply ~ Clj= Z etia[ b1 =0, i.e., 

i i i 

it would be an affine dependence. This proves (c). It is an easy linear algebra that (c) 
and (d) imply "one half" of (a): for each b1, (d) provides a linear equation bJx= 1 
satisfied by the ai> and since these relations are linearly independent by (c), the affine 
hull of the a1 has dimension at most k -IPA!. Since they are affine independent, the 
number of the at is at most k -I ell+ 1. This proves that Id!+ I all ::§ k + 1. 

To show that equality can be achieved here, we have to use that every p has 
such a representation. Note that there are only finitely many possible pairs d. f!J, 
and each fixed pair provides a representation of the form (6) for a closed set of proba­
bility distributions p. Hence there must be a pair d, fA that provides representation 
for a (k-1)-dimensional set of probability distributions. But (6) can be viewed as a 
polynomial mapping of the direct product of a simplex with ldl vertices and a 
simplex with lfll vertices into the simplex of probability distributions. Since such a 
mapping does not increase dimension, ths implies that 

(ldl-l)+(lfll-1) ~ k-1, 

which proves (a). I 
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Unfortunately, this theorem does not characterize perfect graphs: for example, 
the 9-cycle has the property stated in the theorem. In fact, let V= {1, ... , 9} be the 
vertex set of the 9-cycle, and consider the cliques 

{1, 2}, {2, 3}, {4, 5}, {5, 6}, {7, 8}, {8, 9} 

and the independent sets 

{2, 5, 8}, {I, 3, 5, 8}, {2, 4, 6, 8}, {2, 5, 7, 9}. 

To conclude this section, we consider briefly a notion analogous to graph en­
tropy, but defined using the normal, rather than the conormal, powers of a graph. 
Theorem 2 will imply that, for perfect graphs, the value of the entropy is independent 
of the graph multiplication involved. 

Definition. The n-th normal power G["l=(V", gr"l) of the graph G=(V, 6") IS 

defined by 

Note that the normal and conormal powers are related by complementation: 
G£"1=G(">. 

Definition. [I 0]. The re-entropy of the graph G =(V, G) ~ith respect to the probability 
distribution p on V is defined as 

Hli;(G, p) = Iim lim min ..!_log x(G["l(U)). 
<1-0 n-oo uc;vn n 

p"(u)~l-<1 

It was noted in [10] that H(p)~Hx(G, p)+H(G,p). Moreover, evidently, Hx(G, p):2. 
:§.H(G,p). Thus Theorem 2 implies the following. 

Corollary 12. If G is perfect then 

(7) Hli;(G, p) = H(G, p) 

for every probability distribution p on V. I 

In [10] the problem of characterization of the graphs satisfying (7) was raised. 
Though this Corollary gives some information, we still do not know whether there 
exist non-perfect graphs with the property (7). Note that no non-asymptotic formula 
is known for H1C(G,p) in general; indeed, such a formula would imply a formula 
for graph capacity (c.f. (16]). In (16] a lower bound is given for Hx(G,p). 

4. Families of subsets of a given set 

Here we discuss the limits of validity of Corollary 10 if :F(G) and ff(G) are 
replaced by arbitrary families of subsets of the set V ={1, 2, ... , k}. We only allow 
families the union of which covers the whole set V. · . 
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Definition. The hereditarv families ff and :£ of subsets of the set V are said to form a 
generating pair if for ev~ry probability distribution p on ·V there exist probability 
distributions q on ff and r on :£ such that 

(8) Pi = Z q(F) Z r(K), 
iEFE.F iEKE:£' 

for every iE V. 
Denote by C (ff) the convex hull of the indicator vectors of the members of ff; 

this is a convex corner. Our definition says that ffand :£ form a generating pair if 
(C(ff), C(Jf")) is a generating pair in R'+. Thus Theorem 1 implies the following: 

Corollary 13. (ff, :£)is generating if and only ifC(ff) and C(%) contain each other's 
antiblockers. 

Unfortunately, this characterization of generating pairs of families of sets is 
not easy to use. In the case when we have that !FnKI~l for each KE% and 
FE ff, we can give the following more definite description. (Note, however, that since 
the class of perfect graphs is not well-characterized in the sense of complexity theory, 
even in this special case the answer is not complete.) 

Theorem 14. For each pair of hereditary set-systems ff and Jf" on the same set V, 
the following conditions are equivalent: 

(i) IFnKI ~ 1 for all FEff and KEJf", and (ff, Jf") is a generating pair; 
(ii) (C(ff), C(%)) is an antiblocking pair; 

(iii) Hcc:FlP)+Hc<KlP)=H(p) for all p on V; 
(iv) there exists a perfect graph G =(V, rff) such that ff ·and:£ are exactly the 

independent sets and the cliques of G, respectively. 

Proof. (i)~(ii): By Corollary 13, (ff, ./f") is generating iff C(ff )*~C(./f"). On the 
other hand, IFnKI ~ 1 for every FEff and KEJf" means in polyhedral terms 
that uTv~ 1 holds for every vertex u of C(ff) and v of C(%). This is clearly equi­
valent to the same relation holding when u and v are arbitrary points in C(ff) and 
C(%), respectively. This is equivalent to saying that C(ff)*~C(%). 

(ii)~(i) by Corollary 6. 
(i)=>(iv): Define the graph G=(V, $), connecting two vertices iff they are 

contained in a common KEJf". Every KE% becomes then a clique, whereas, by 
(i), every FEff becomes an independent set. Hence 

C(ff) ~ VP(G) and C(%) ~ VP(G). 

By (iii) and Lemma 8, we have for any probability distribution p on V 

H(p) = Hq.F)(p)+Hcc:£')(p) ~ H(G, p)+H(G, p) ~ H(p), 

i.e., G is strongly splitting, and so perfect. Moreover, by Lemma 9, C(ff)=VP(G), 
i.e., the maximal independent sets of G coincide with the maximal sets in ff, and 
similarly for %. 

, (iv)=>(i) by Coro11ary 10. 
Finally, we mention an information theoretic interpretation of Hq.F)(p), 

where ff is a family of subsets of the set V (cf. [3], Chapter 2, §2). Let U be a finite set, 
and d: Vx U-{0, 1} a function called distortion function. We assume that, for 
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every iE V, there exists a jE U with d(i,j) =0. Let us consider a discrete memory less 
source emitting symbols from V according to a probability distributionp. A number R 
is called an achievable rate (at distortion level 0) if for every e>O and sufficiently 
large n, there exists a function f: vn- un (called coding function) such that the size 
of the range of [is at most 2"R, and for every xEV", 

Here 
Pr {d(x,f(x)) > 0} < e. 

for X=(x1, ... , x,.)EV11
, y=(yl, ... , y,.)E un. 

In data compression, one is interested in the infimum of the achievable rates. 
Let Rd(p) denote this infimum. (In information theory, Rd(p) is called the value of 
the rate distortion function of the source with probability distribution p, at distortion 
level 0.) 

Now define the family ff=fFd as follows. Write 

E'u = {vEV: d(v, u) = 0}, (uE U) 
and 

fF = ffd = {X: X~ E'u, uE U}. 
Then we have 

Lemma 15. Rd(p)=Hcc:Fd>(p). 

Proof. This is a generalization of Lemma 8. To prov~ it, we need the following 
generalization of ( 4): 

(9) Rd(p) = min {I(XI\Y): dist(X) = p, XEYEff4}. 

(9) is an equivalent form of the following well known formula (c.f. [3 Chapter 2, 
§21): 

Rd(p) = min {I(XI\Y): 

dist(X) = p, Y takes values in U, E {d(X, Y)} = 0}. 
(Here E denotes mathematical expectation). -Lemma 15 follows from (9) in exactly 
the same ways as Lemma 8 from (4). I 

Notice that Hc(:FlP) equals the entropy of the "probabilistic hyperclub 
(V,fF, p)" defined in [I 1] as the right-hand-side of formula (9). 

In the light of this interpretation of Hcc:FcJ(p), Theorem 14 can be considered 
as a characterization of those pairs (d, a) of (0, I)-valued distortion functions for 
which, given any source distribution p on V, there exists an essentially error-free loss­
less two-step encoding of the corresponding discrete memory less source in the sense 
of [10] and [13]. 
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5. Additivity and sub-additivity 

If aER~ and hER~ then their tensorial product ax hER~ is defined by 

(axb)if = ai. bi, i = 1, ... , k, j = 1, ... ,I. 

Note that if p and q are probability distributions then p Xq is the usual product 
:listribution. Recall that if k=l then also the dyadic product ash~R~ is defined by 

(aob)i = a1 • b1, i = 1, ... , k. 

Definition. Let A~R~ and B~R~ be convex corners. Their tensorial product 
A®B~R~ is the convex corner spanned by the tensorial products axb, aEA, 
bEE. The dyadic product A ®B of the convex corners A, B~R~ is the convex 
corner in that same space spanned by the vectors aob, aEA, bEE. In other words, 
A 0B=conv (A oB). 

Theorem16. (i) Let A~R'+, B~R1+ be convex corners, and pER~, qER~ pro­
bability distributions. Then 

HA®B(pXq) = HA(p)+HB(q) = HcA.*®B*)*(pXq). 

(ii) Let A, B~R~ be convex corners, and pER~ a probability distribution. 
Then 

Proof. (i) For aEA, bEB, we have ax bE A ®B, implying· 

k l k l 

HA®B(pXq) ~- Z Z piqilog aibi =- Z Pi log ai- Z qi log bi. 
i=l j=l i=l j=l 

Hence HA08(pXq)~HA(p)+H8 (q). By Corollary 6, 

H(pXq) = HA®B(pXq)+H(A®B)*(pXq). 

Since obviously A*®B*~(A®B)*, we obtain: 

(10) H(pXq) ~ HA0B(pXq)+HA*0B*(pXq) ~ 

~ HA(p)+HB(q)+HA*(p)+HB*(q) = H(p)+H(q) = H(pXq). 

We must have equality everywhere in (10), proving 

and 
HA®B(pXq) = HA(p)+HB(q) 

H(A®B)*(pXq) = HA*®B*(pXq) = HA*(P)+HB*(q). 

This proves (i). Statement (ii) is obvious. 
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