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Abstract 

G. Simonyi• 

Perfect hash functions, superimposed codes as well as some other fashionable ques­
tions in computer science and random-access communication are special cases of early-day 
information theoretic models in the zero-error case. 

A new class of problems in asymptotic combinatorics can be formulated as the deter­
mination of the zero-error capacity of a class of discrete memory less channels. (This model 
is also known as the compound channel). We solve an interesting class of these problems 
using our recent results in polyhedral combinatorics. 

1 Introduction 

We should like to argue that zero-error cases of classical information theory problems offer 

a natural language for many known and new problems in asymptotic combinatorics. While 

Shannon's theory does not always have the solution to these difficult mathematical questions, 

the very possibility of treating them in a unified manner is a non-negligible advantage. 

To illustrate this, let us start with two examples. Here and in the sequel log's are to the 

base 2. 

Example 1 

We shall say that the ternary sequences x E {0, 1, 2}1 and x' E {0, 1, 2}1 are symmetrically 

different if for any two-element subset of {0, 1, 2} there is a coordinate i for which the set 

{x;, xa is precisely this subset. Let us denote by N(t) the maximum cardinality of a set 

{0, 1, 2}1 any two sequences of which are symmetrically different. What is 

limsup ! log N(t)? 
f-+oo t 
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Example 2 

Let us denote by Q the quaternary alphabet Q = {0, 1, 2, 3}. Let us say that two quaternary 

11equences y E Q1, y' E Q1 are well separated if both 

1. there is a coordinate i for which IY•- Y~l is odd 

2. there is a coordinate i for which IY; - Y}l is even (and non-zero). 

Let us denote by P(t) the maximum cardinality of a set DC Q1 any two sequences of which 

IU'e well-separated. 

Once again, what is 

limsup .!:.logP(t)? 
, .... 00 t 

A common framework to treat these two problems is available, in information theory. A 

realization of this will immediately furnish non-trivial upper bounds. The information theory 

bound will be shown to be tight for Example 2. Further, an understanding of the information­

theoretic background helps us to relate our present problems to the more established topic 

of separating partition systems, including qualitatively independent partitions in the sense of 

Renyi (cf. N. Alon [1], etc .... ). 

A discrete memoryless channel (DMC) is characterized by a stochastic matrix W : X -+ 

Y. Here X is the input alphabet and Y the output alphabet. The rows of the matrix are 

probability distributions on Y. The different rows are indexed by the different elements of X. 

Shannon's basic model of information transmission described one-way communication between 

two terminals, called sender and receiver, respectively. The sender can select an element x E X 

of the input alphabet. Correspondingly, the elements of the output alphabet Y will appear 

at the output randomly, according to the probability distribution W(.lx), the x-th row of 

the matrix W. Perfect transmission would mean X= Y and W(yix) = 1- 6.,11 where 6.,11 is 

Kronecker's delta. To counterbalance random errors in transmission, the channel can be used 

repeatedly, to transmit long sequences from X. A code is simply an appropriate subset of X', 

the t-length input sequences. Lack of memory is modeled by setting 

(1) 

for x = x1, x2, ... ,x, y = Yt.Y2, ... ,y1• Here W(ylx) represents the probability of appearance 

of the sequence y E Y 1 at the output provided that x E X' has been selected at the input. 

Formula (1) means that the conditional probability of seeing y; in the i-th position of the 

output sequence depends solely on x; and no other position of x. The receiver, upon seeing a 

particular sequence yE Y 1 has to decide which x EX' has been selected by the sender. 

IT the code contains several sequences x E X' for which y E Y 1 has a positive conditional 

probability, errors will occur in transmission. We will not discuss the various ways of evaluating 
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the probability of such an error. The combinatorial approach is concerned with error-free 

transmission. Clearly, a subset C C X 1 is a code for error-free transmission over the chann•1l 

W iff for no two elements x E C, x' E C is there a y E yt with 

W(ylx) > O, W(ylx') > 0 

Let G(t) denote the largest cardinality of any such subset of xt. The quantity 

limsup ~log O(t) 
f-+00 t 

(which can be proved to be a true limit) is called the zero-error capacity of the discrete memo• 

ryless channel W. Its numerical determination is a tremendous open problem, cf. Lovasz [2) 
and Haemers [3]. It is customary to reformulate the above problem in a purely graph theoretic 

language as we will do somewhat later. 

Shannon's model is based on the assumption that the overall statistical behaviour of tho 

communication channel as described by the matrix W is known to the sender and the receiver, 

Somewhat later, Blackwell, Breiman and Thomasian [4] and Dobrusin [5] have generalize4 

Shannon's original model to the case when W is an unknown member of a set W of stochastlo 

matrices, each having the same input and output alphabet. In a way this was a trivial gene.. 

ralization and finding a formula for capacity was routine. Not so for zero-error capacity. In 
fact, somewhat surprisingly, this question has not been raised before. 

Let us be formal. Given a finite family W of stochastic matrices each having input alphabot 

X and output alphabet Y we shall say that a set C C X' is an error-free code for the compound 

discrete memoryless channel W if it is an error-free code for each W E W. Let G(W, t) denott 

the largest cardinality of an error-free code for W with elements in X'. The quantity 

Go(W) = limsup ~logG(W,t) 
t-+oo t 

(2) 

is called the zero-error capacity of the compound channel W. 

Clearly if lW I = 1, we are back to Shannon's zero-capacity. Hence there is little hope to fin4: 
a nice formula for (2) in the general case. 

Although one should stay away from generalizations of unsolved problems in the abOV@ 

spirit, we feel the present case is different. In fact, we would like to show that even in the cuo' 

when each channel in the family W is "trivial" in every sense, the determination of G0 (W) ish\, 

general a formidable problem. To explain this in more detail, some more information theor)' 

is needed. (Our reference is [6]). 

Given a DMC W: X-+ Y and a probability distribution (PD) P on X let 

W(yjx) 
I(P, W) = L P(x) L W(ylx) log E P( )W( I ) 

zEX 11EY zEX X Y X 
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dllnote the mutual information between an input of distribution P and the corresponding 

f)lltput over W. It is well-known that the capacity of the DMC is max I(P, W). It is shown in 

I4Jil.nd [5], (cf. also [6)) that the capacity of the compound channel W is 

C(W) = mffX ~~ I(P, W) (3) 

Jlnee the zero-error capacity is an analogou:s maximum under more severe criteria, it is an 

"Jltntentary fact from information theory that 

r~, 

\:~ 
Co(W):::; C(W) (4) 

~jn order to understand why the zero-error capacity of the compound channel seeiDB to feature 
J~;f-' 

interesting new mathematical problem the intrinsic difficulty of which is, in a sense, "dis­

t" from that of the zero-error capacity of a single channel, we should take a look at {3). 

going into tedious technicalities, we would like to explain why (3) is a trivial result. 

uninterested reader might skip the rest of this section, after the next definition. 

;B'tflnit;ioJn 1 Given a sequence x E :;et, its type is the probability distribution Px on X, defined 

every a EX by 

Px(a) = ~ l{i: x; = a,i = 1,2, ... ,t}l 

Since the capacity C(W) of the compound channel (which has not been defined here) is the 

~WYmpt<ltic exponent of the largest cardinality of the codeword set of a nearly error-free code 

the channel, it is quite clear that it does not change if we restrict ourselves to codes in 

h each codeword has the same type, (cf. !6]). Standard Shannon theory shows that if for 

quence of codes the type of the codewords converges to P, then the asymptotic exponent 

largest cardinality of a nearly error-free code is I(P, W) for the DMC W. Hence 

C(W) :::; ~ax j9j~ I(P, W) 

(The analogous bound for the zero-error capacity will be derived in a 

ur main point here is that the tightness of this simple bound is obvious. In fact, it is 

nown (cf. I6J) that for a single DMC the best code and the "average code" with the same 

type of codewords behave in the same asymptotic manner, i.e. "most codes are good". 

If lW I < oo we immediately see that within a fixed type, "most codes are good for every 

C(W) ~ m;x ~ I(P, W). 

words, the ease with which we proved result (3) is due to the "banal efficiency" of the 

od of random choice. Now, random choice does not produce good error-free codes and 

IOems to be at the core of the difficulty we will encounter with the combinatorial model. 
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2 The graph theory model 

Shannon [7] has observed that the determination of the zero-error capacity of a DMC is a purely 

graph-theoretic problem. He associated with a stochastic matrix W the following graph: lot 

the vertex set of the graph G be X, the input alphabet of W. Let E(G) the edge set of G, 

consist of those pairs (x, x') of elements from X for which 

l:W(ylx)W(ylx') = 0 
IIEY 

In other words, (x, x') constitutes an edge iff x and x' cannot result in the same output wit~~~ 

positive probability. (Actually, Shannon's graph is the complement of ours). The informatio , . 

theoretic problem leads to the following notion of the t-th power of G. The graph G' has vert 

set X' and (x,x') E E(G') iff (x1,x;) E E(G) for at least one coordinate i E {1,2, ... ,t}. 

}((G) denote the largest cardinality of a complete subgraph of G. It should be clear t 

C C X' is an error-free code for the DMC W iff the vertices C C X' form a complete subgra.p ~' 

of at. Hence the zero-error capacity of W can be defined equivalently as 

C(G) = limsup !.log}((G'). 
1-->co t 

Let us call C( G) the logarithmic capacity of the graph G. More on it can be found in Lovut~i 

brilliant paper [2]. 

Definition 2 Let 9 be a finite family of graphs, each having the same vertex set X. ,Uj~ 
}( (9, t) be the largest cardinality of a subset C C X' for which the vertices of C are a compl•tll ,,, 
subgraph in each graph of 9. Then the logarithmic capacity of the family of graphs 9 is '' 

C(9) = limsup !.log }((9, t). 
t-+co t 

It should be clear that if we associate a graph G with each of the matrices W of a compounli 

channel W in the above manner, then for the family 9 of graphs so obtained 

C(9) = Co(W) 

This means that, by (4), 

C(9) $ C(W). 

We will derive a better upper bound on C(9). 

Let X'(P, e) denote the set of those x E X' for which 

Let G1{P,e) be the subgraph induced by G' on X'(P,e). Write 

C(G,P) := lim limsup }((G'(P,e)). 
a-+0 1-->co 
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'!'his quantity was introduced in Csiszar-Korner [8] and studied in more detail in Marton [9]. 

Next we state a technical lemma that will be in a complete analogy to the upper bound 

C(W) ::; ~ax WJ~ I(P, W) 

for the capacity of the compound channel. 

J,omma 1 Given a family of graphs g we have 

0(9) ~ m,-x m,~O(G,P). 

Clearly, the number of possible types of sequences in X' is upper bounded by (t + 1)1XI. 

us denote the family of these types by }'t. Then, for every E: > 0, 

xt = U xt(P,t::). 
PEPt 

means that, for every E: > 0, 

Jl(9, t) ::; IPtl max min Jl(G'(P,t::)). 
PEPt GE9 

for every E: > 0, 

.!:.log Jl(9, t) < IX!Iog(t + 1) + max .!:.log m.in Jl(Gt(P,t::)). 
t - t P t GEB 

l~,llnee 191 < oo, the lemma follows. 0 

We are unable to decide whether Lemma 1 is tight. In fact, this is the main difficulty we 

~,'\ffould like to address in the rest of the paper. For the other problem of trying to convert the 

;~lmund into a nice formula is not due to us; it has been dealt with extensively in [9], and is not 

itfndependent of [7], [2] and [3]. 
9~ 

At this point,· there is little evidence that the bound should be tight. Yet, surprisingly 

~JI'OUgh, it will be shown to be precise in a non-trivial manner in some disconnected special 

iJ••· Typically, in these examples, determination of O(G, P) will be a trivial matter for every 

~- And P. The intriguing part will be to prove the lower bound, i.e. the converse of Lemma 1. 

i'tld• will be done in several different ways, depending on the special case in question. 

JY:I Two complementary graphs 

~~t G and G be the only elements of g. We will put O(G,G) = 0(9). We have 

O(G,G) ~ m,-x min(O(G,P),O{G,P)]. (5) 

~Jtbll bound is not computable. The following computable bound, however, is not always tight. 
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Theorem 1 

- 1 
G(G,G) ~ 2 log!V(G)I· 

Moreover, if G ~ G, i.e. G is isophormic to its complement, then 

1 
G(G, G) = 2Iog IV(G)I· 

Proof: 

Let us start by the trivial second part of the statement. Suppose we have G ~ G, and let 

tP: V( G)--+ V (G) be a mapping for which 

(x,x') E E(G) <=> (t/>(x),tj>(x')) E E{G). 

Then, obviously, the vertices (x, t/>(x)) form a complete subgraph both in G2 and cl, and hence 

1 
O(G,G) ~ 2Iog IV(G)I. 

Let us now turn to the first inequality of the Theorem. We shall apply an interestina 

inequality due to Marton [9]. (Her result is a consequence of recent works on convex cor~ 

ners including an information-theoretic characterization of perfect graphs, cf. Csiszar-Komer .. 

Lovasz-Marton-Simonyi [10]). A combination of theorems 1 and 2 of Marton [9] shows that 

for every distribution P on V (G) we have 

O(G,P) + O(G,P) ~ H(P) 

for every graph G. Hence, by (5), 

O(G,G) ~m_pxmin[O(G,P),O(G,P)] ~ m_px~[O(G,P) + O(G,P)] 

1 1 
~ m;x2H(P) ~ 2log!V(G)I. o 

It is easy to see that the result fails to be tight if G is not self-complementary. In fact, (5) 
shows that for the graph I having 3 vertices and a single edge 

1 
0(1,1) = max{q: h(q) = q} < 0.78 < 2log3, 

where h(q) = -q log q- (1- q) log(1- q) is the binary entropy. 

Unfortunately, we have been unable to determine 0(1, I). A somewhat complicated cOJ\li 

struction shows that 

O(I,I) ~ 0.71 

We have no reason to believe that any of these two is tight. 

On the other hand, the statement of our Theorem might be sharp also in the case of non~ 

self-complementary graphs. A case in point is our starting Example 2 to which we shall now 

return. (In fact, it is easily seen that the problem of the example can be reformulated in tbt 

form below). 
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l'roposition 1 Let a-~. be the cycle of length 4. Then 

l~roof: 

By our Theorem 1, 

To prove that this bound is actually achievable, let us represent the vertices of a4 and C4 by 

~he elements of {0, 1}2. Clearly, a4 can be represented by setting 

((x,y), (x',y')) E E(a4) iff x-# x'. 

~~onaequently, ((x,y), (x',y')) E E(C4) iff x = x',y -=J y1• 

;;:Qonsider the set At c [{0, 1} X {0, l}]t defined by the rule ((x1. y1), (x2 , y2), ••• , (xh Ye)) E At 

~jg 
~21) ~1;:: 0 

~,;11) J/1 = Xi+l 

~ht1re the indices are understood modulo t, i.e. t + 1 is replaced by 1. Clearly, the elements 

~:ltf A, are fully determined by the sequence (xt, x2 , ••• ,x1). Hence the different sequences from 

r:~l must differ somewhere in their x-coordinates. This means that 

for any two elements of A1 there is ani such that Xi -=J :<. Hence, between any two 

'i'Fjlllltl<mts of At there is an edge in (a4) 1• 

We claim that the same is true in (C4 )t. In fact, let us look at two different elements 

A- ,((x,,y,), ... ,(Xt.Yt)) and ((~,yD, ... ,(~,rlt)), say. Reading the x-parts of the two 

"'KJUen~ces from left to right, there must be a first coordinate in which they differ. H this is the 

coordinate, then j > 1, by definition. This means that 

x;-1 = xj_1, x; -# xj. 

ce Y;-1 -# yj_1 , and thus 

''~lfi\Jll)'in1g that our two sequences are connected by an edge in {C4 )t. Hence 

- 1 
a(G",G") ~ 11!_.~ tlogiAcl = 1. 0 

The last Proposition gives a construction that has some easy generalizations. In fact, for 

p the complete graph on p vertices gives rise to a graph on p2 vertices in the way G4 has 

constructed here from the complete graph on 2 vertices. Then a similar argument gives 

fl,tlb.logous result. We omit the details. 
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4 Other cases 

Another example where we can actually prove the bound of Theorem 1 to be tight arises when 

we define y to consist of all the star subgraphs of a complete graph. More formally we have 

Proposition 2 Let X finite and let Gx be the graph for which V(Gx) =X, E(Gx) = {(x,y); 

yE X,x =f:. y}. Then for the family g = {Gx,x EX} we have 

C(y) = h c~,). 
Proof: 

The upper bound C(y) ~ h(1/jXI) is obvious. To prove the lower bound, let us consider 

those values of t which are integral multiples of jXj. Write t = kjXj, and consider t-length 

sequences in which every element of X appears exactly k times. H for two such sequences no 

two elements of X appear at exactly the same k positions, then those two sequences are joined 

by an edge of (Gx)t for every x EX. 

By Baranyai's theorem [11], there exist (!-=:_~) equipartitions of at-element set such that 

the classes of the different partitions are all different k-element subsets of the t-element set. 

Assigning the elements of X to the classes of a partition in an arbitrary manner, we thus 

obtain (!=~) sequences with the desired properties. Hence 

Particularly intriguing special cases of our problem arise when all the graphs of g are edge­

disjoint and each of them contains just one edge. Unfortunately, we do not know the exact 

answer in any but one of these problems. For such a family the edges of the various graphs in 

the family form a single graph G and the family itself is fully determined by G. Let us denote 

such a family by .T (G). 

Proposition 3 Let Sr be a star with (r -1) edges. Then 

C(.T(SR)) :5 max (1- (r- 2)a) h ( (a ) ) . 
a 1- r-2o: 

Further, this bound is tight for r = 3. 

Proof: 

The upper bound is clear. 

Let us turn to the case r = 3. The upper bound becomes 

O(.T(Ss)) ~ max (1 - a) h (~) . 
a 1- a 
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It is not hard to see that this bound equals the logarithm of the reciprocal of (..;5- 1)/2, as 

it is the asymptotic exponent of the number of t-length binary sequences without consecutive 

ones. 
To prove that 

G(.1(Ss)) 2: log(2/(v'5 -1)), 

let us represent the vertices of 83 by {0,1,2}. Let 0 be at the center of the star. It is then 

clear that the set C, of those t-length ternary sequences in which every 1 is followed by a 2 

has the property that for any x E Ct there is a coordinate i in which {x;,xj} = {0,1} and a 

coordinate j in which {x;,xj} = {0,2}. 

Hence 

G(J'(Ss)) 2: limsup ~log ICe I· 
t->oo t 

On the other hand, clearly, C, has asymptotically as many elements as there are binary se-

quences of length t without consecutive ones. 0 

Finally, to reveal the extent of our ignorance, we should add that we do not even know the 

value of C(J'(Kn)) where Kn is the complete graph of n vertices. Our upper bound becomes 

C(J'(Kn)) ~ !. 
n 

Surprisingly, for the cycle of n vertices, our upper bound gives the same value, 

C(J'(Cn)) ~.:. 
n 

It is, however, quite unlikely that C(.1(Gn)) = C(.1(Kn)), if n > 3. 

AB for n = 3, this is our Example 1. We can prove 

Once again, we omit the details. 

5 Conclusions 

In a recent paper, 112] J. Komer and K. Marton have shown that the problem of perfect 

hashing can be interpreted as finding the zero-error capacity of a discrete memoryless channel 

for list codes of some fixed list size, a classical problem in information theory. In another 

recent paper 113], the connection of perfect hashing to other problems of separating partition 

systems is pointed out. Foremost among those is the problem of ( i, i)-separating systems. A 

system of bipartitions P1 , P2 , ••• P, of ann-element set is said to be an (i,j)-separating system 

if for any disjoint pairs of subsets (A, B) of the n-set with respective size i and j there is at 
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least one partition among the given ones so that A and Bare in the two different classes. The 

problem then is to determine, for given i and j, asymptotically inn, the minimum number 

t of partitions needed for said purpose. In [13] we have been dealing with lower bounding 

techniques for such problems. We have failed to point out that qualitatively k-independent 

bipartitions [1] can be regarded as a system P{, P;, ... Pt' of bipartitions of then-set such that 

for any disjoint pair of subsets (A, B) with IAI + IBI = k there is at least one partition among 

the given ones such that the two sets fall into its different classes. Hence good lower bounds on 

the minimum size of (i,i)-separating systems might help in dealing with the latter problem. 

In conclusion, we would like to point out that the problem of Example 1 is very similar to 

that of finding the maximum number N(t) of qualitatively independent partitions of at-set 

into 3 classes. In fact, if a 3-partition of the t-set is represented by an element of {0, 1, 2}t in 

the obvious manner, then the two 3-partitions x and x' are qualitatively independent iff for 

any ordered pair (a,b) E {0,1,2}2 there is a coordinate i such that for the ordered pairs we 

have (a, b) = (x;, xj). This condition is more demanding than that of Example 1 inasmuch here 

we have two requirements for every unordered pair {a, b} with a =f. b, plus a requirement for 

(a, b) with a= b, too. The latter, however does not play any role in the asymptotic problem. 

For qualitatively independent 3-partitions, cf. PolJak-Tuza [14]. 

References 

[1] N. Alon "Explicit construction of exponential sized families of k-independent sets", Dis­

crete Math 58 (1986), pp. 191-193. 

[2] L. Lovasz "On the Shannon capacity of a graph", IEEE Trans. on Information Theory, 

IT-25 n° 1, pp.1-7 (1979). 

[3] W. Haemers "On some problems of Lovasz concerning the Shannon capacity of a graph", 

IEEE Trans. on Information Theory, IT-25 nc2, pp. 231-323 (1979). 

[4] D. Blackwell, L. Breiman, A.J. Thomasian "The capacity of a class of channels", Annals 

of Math. Stat. 30 (1959), pp. 1229-1241. 

[5] R.L. Dobrushin "Optimal information transfer over a channel with unknown parame­

ters", (in Russian) Radiotechn i Electron. 4 (1959), pp. 1951-1956. 

[6] I. Csiszar, J. Korner "Information Theory. Coding Theorems for Discrete Memoryless 

Systems", Academic Press, New York (1982). 

1 !;A 



[7] C.E. Shannon "The zera-error capacity of a noisy channel", IRE Trans. on Information 

Theory 2, pp. 8-19 (1956). 

[8] I. Csiszar, J. Korner "On the capacity of the arbitrarily varying channel for maximum 

probability of error", Z. Wahrscheinlichkeitstheorie verw, Geb. 57, pp. 87-101 (1981). 

[9] K. Marton " On the Shannon capacity of graphs within a given type", preprint. 

[10] I. Csiszar, J. Korner, L. Lovasz, K. Marton, G. Simonyi "Entropy splitting for antibloc­

king pairs and perfect graphs", Combinatorica, to appear. 

[11] Zs. Baranyai "On the factorization of the complete uniform hypergraph", in Infinite 

and finite sets, Ed. A. Hajnal, R. Rado, V.T.-Sbs, NorthHolland, Amsterdam-London 

(1975). 

[12] J. Komer, K. Marton "On the capacity of uniform hypergraphs", to be submitted to the 

IEEE Trans. on Information Theory. 

[13] J. Komer, G. Simonyi "Separating partition systems and locally different sequences", 

SIAM Journal Disc. Math. 1, pp. 351-359 (1988). 

[14] S. Poljak, Zs. Tuza "On the maximum number of qualitatively independent partitions", 

preprint. 




