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AbstratThe Hall-ratio of a graph G is the ratio of the number of verties and the independenenumber maximized over all subgraphs of G. We investigate asymptoti values of theHall-ratio with respet to di�erent graph powers.



Dediated to the memory of Claude Berge1 IntrodutionSeveral graph parameters show an interesting behaviour when investigated for di�erentproduts or powers of graphs. One of the most famous examples for suh behaviour isthat of the Shannon apaity of graphs whih is de�ned as a normalized limit of theindependene number under the so-alled normal power, f. [23℄.If �(G) denotes the Shannon apaity of graph G and �G is the omplementary graph,then C(G) := �( �G) is known to lie between the lique number !(G) and the hromatinumber �(G) of G (f. [23℄, [17℄). This property of Shannon apaity is known to havehad a strong inuene on Claude Berge when he introdued the elebrated onept ofperfet graphs. (For a detailed aount on this story, see [5℄.)By using the omplementary (to normal) onept of o-normal powers (de�nitions aregiven in the next setion) C(G) an be de�ned as the asymptoti value of the (appro-priately normalized) lique number. The same kind of limit for the hromati number isknown to be equal to the frational hromati number of G, f. [6℄, [20℄, [22℄, whih is ingeneral stritly larger than C(G), f. [17℄. (For other desriptions and basi properties ofthe frational hromati number we refer to [22℄.)The above disussion may already suggest that similar asymptoti values for param-eters falling into the interval [!(G); �(G)℄ are usually interesting. The parameter alledHall-ratio, we are onerned with in this paper, has the property of falling into the aboveinterval. In Setion 2 we will de�ne and investigate its asymptoti value analoguous toShannon apaity. (We remark that several other analogues of the Shannon apaity ofgraphs were already de�ned and investigated, f., e. g., [14℄ and [11℄.)It will be lear from its de�nition below that the Hall-ratio is also losely related to theindependene ratio i(G) := �(G)jV (G)j for whih asymptoti values under other graph expo-nentiations, namely the Cartesian and the diret (or ategorial) powers are investigatedin [13℄, [15℄, [25℄ and [7℄. In these ases the relevant limits are alled ultimate values. Wewill de�ne and investigate the orresponding ultimate values of the Hall-ratio in Setion3. Motivated by problems of list oloring, the Hall-ratio of a graph G is investigated in[8℄ where it is de�ned as �(G) = maxfjV (H)j�(H) : H � Gg;that is, as the ratio of the number of verties and the independene number maximizedover all subgraphs of G. (In [8℄ indued subgraph is said in the de�nition of �(G), butonsidering other subgraphs, as well, will not matter, sine deleting edges from a subgraphH may only inrease �(H).) It is lear that !(G) � �(G) by onsidering any maximallique as a subgraph. Also, �(G) � �(G) is immediate just like the stronger inequality1



�(G) � �f (G), where �f (G) is the frational hromati number of G. In [8℄ the authorsinvestigated the length of the intervals [!(G); �(G)℄ and [�(G); �(G)℄ and showed thatboth an be made arbitrarily large, even simultanously.Thus the Hall-ratio is indeed an invariant that lies between the lique number and thehromati number, so it oinides with them whenever these two are equal, e. g., for allperfet graphs. It will turn out that the relevant limit for o-normal powers will behaveas it does for the upper bound and is always equal to the frational hromati number.This will be shown in Setion 2 where we also disuss the behaviour of the Hall-ratio withrespet to the normal power.The later setions pursue a systemati study of asymptoti values of the Hall-ratiounder the Cartesian, diret and lexiographi exponentiations, i.e., the other three powersoming from graph produts treated as the most important ones in the book [16℄. In aseof the diret and the lexiographi powers we annot solve the problem of determining theasymptoti values in general, only onjeture that the orresponding limits are expressedagain by the frational hromati number. In ase of the Cartesian power we an useresults from [13℄ and [25℄ to show that the problem is equivalent to that of determiningthe ultimate independene ratio and it may atually di�er from the value of the frationalhromati number.2 Normal and o-normal powersWe �rst de�ne the o-normal and then the normal power of graphs.De�nition 1 The o-normal produt G � H of two graphs G and H is de�ned on thevertex set V (G �H) = V (G)� V (H) with edge set E(G �H) = ffuv; xyg : fu; xg 2 E(G)or fv; yg 2 E(H)g. The nth o-normal power Gn of G is the n-fold o-normal produtG �G � : : : �G.That is, Gn is de�ned on the n-length sequenes over V = V (G) as verties and twosuh sequenes are adjaent in Gn i� there is some oordinate where the orrespondingelements of the two sequenes form an edge of G.De�nition 2 The normal produt G�H of two graphs G and H is de�ned on the vertexset V (G � H) = V (G) � V (H) with edge set E(G � H) = ffuv; xyg : fu; xg 2 E(G)and fv; yg 2 E(H); or fu; xg 2 E(G) and v = y, or u = x and fv; yg 2 E(H)g. The nthnormal power G(n) of G is the n-fold normal produt of G�G� : : :�G.That is G(n) is de�ned on the n-length sequenes over V = V (G) as verties and twosuh sequenes are adjaent in G(n) i� their elements at every oordinate are either equalor form an edge in G.The term normal produt is used by Berge, for example in [4℄ (page 111), and is oftensubstituted by several other names, like AND produt ([2℄) or strong produt ([16℄).2



Similarly, the o-normal produt is alled OR produt in [2℄ and disjuntive produtin [16℄, [22℄.It is easy to hek that the above two graph powers are omplementary in the sensethat �Gn = G(n):2.1 Co-normal powersThe (normalized) asymptoti value of the hromati number referred to in the Intro-dution is given by the following theorem of MEliee and Posner [20℄, f. also Berge andSimonovits [6℄.Theorem 1 ([20℄) limn!1 nq�(Gn) = �f(G):Exhanging �(Gn) to !(Gn) above, we obtain the de�nition of the Shannon apaityof the omplementary graph of G (f. [23℄). What we are interested in here is the similarasymptoti value of the Hall-ratio.De�nition 3 h(G) := limn!1 nq�(Gn):The existene of the limit easily follows from the fat that �(Gk+m) � �(Gk) � �(Gm)whih is a onsequene of jV (Fk �Fm)j = jV (Fk)j � jV (Fm)j and �(Fk �Fm) = �(Fk) ��(Fm)applied to the subgraphs Fi of Gi ahieving �(Gi) (i = k;m). The existene of the limitis then implied by what is usually alled Fekete's theorem, f., e. g., [21℄.We know that !(Gn) � �(Gn) � �(Gn) and thus h(G) � �f(G) follows immediatelyfrom either the MEliee-Posner theorem or even more diretly from the well knownidentity �f(Gn) = [�f (G)℄n (f., e. g., Corollary 3.4.2 of [22℄) and the obvious inequality�(Gn) � �f(Gn).In general, there is a gap between the Shannon apaity of �G whih is C(G) :=limn!1 nq!(Gn) and �f (G). A famous example is G = C5, for whih C(G) = p5 and�f (G) = 52 , see [17℄. As �(G) an be arbitrarily far from both !(G) and �(G) (f. [8℄), itis not immediately obvious where h(G) should lie between the asymptoti values of !(G)and �(G), i.e., in the interval [C(G); �f(G)℄. The next theorem shows that it is alwaysat the upper end.Theorem 2 For every graph G we have h(G) = �f (G):Remark: Observe that a possible interpretation of Theorems 1 and 2 is that the uniqueommon point of the nested intervals [ iq�(Gi); iq�(Gi)℄; (i = 1; 2; : : :) is �f (G).For the proof of Theorem 2 we need some preparation. (For a detailed aount of thenotions and tehniques we will use, f. [10℄.)3



De�nition 4 For a sequene x 2 V n let the probability distribution de�ned by 8a 2 V :Px(a) = jfi:xi=agjn be alled the type of x. Let T nP denote the set of all sequenes in V n thathave type P .We will use the notation G[U ℄ for the indued subgraph of G on U � V . ThusGn[T nP ℄ denotes the indued subgraph of Gn on all those sequenes that have type P . LetV (G) = V:Lemma 1 �f (Gn) � (n + 1)jV jmaxP �f (Gn[T nP ℄):Proof. This follows from the fat that the number of di�erent types is at most (n+1)jV j,sine the number of appearenes of eah element of V in a sequene of length n an takeonly n + 1 di�erent values (f. [10℄.) It is obvious that �f(Gn) � �Mi=1�f(Gn[T nPi ℄) whereP1; : : : ; PM are all the possible types of sequenes of length n. (This is easiest to see byrepresenting all �f values in the inequality by maximal frational liques, that an bedone by the duality theorem of linear programming.) Using our previous estimation onthe number of di�erent types we obtain�f(Gn) � (n+ 1)jV jmaxi �f(Gn[T nPi ℄): 2Lemma 2 For every P whih is a possible type of sequenes of length n, we have�f(Gn[T nP ℄) = jT nP j�(Gn[T nP ℄) :Proof. Sine sequenes of the same type are permutations of eah other and the order ofthe elements of a sequene does not matter in the de�nition of the o-normal power, thegraph Gn[T nP ℄ is vertex-transitive. It is well known that the frational hromati numberof a vertex-transitive graph is just the ratio of its number of verties and its independenenumber (see, e. g., Proposition 3.1.1 in [22℄.) 2Proof of Theorem 2. We know h(G) � �f (G) thus it is enough to prove the reverseinequality.Taking nth root and limit in the inequality stated by Lemma 1 we get�f (G) � limn!1 nrmaxP �f(Gn[T nP ℄):But by Lemma 2 the right hand side here is justlimn!1 nvuutmaxP jT nP j�(Gn[T nP ℄) � h(G);4



where the last inequality follows from onsidering the indued subgraphs Gn[T nP ℄ as pos-sible andidates to ahieve the Hall-ratio. The last two inequalities give �f (G) � h(G)what we needed. 2We remark that the above proof used the standard information theoreti tehnique ofpartitioning an exponential size set of sequenes aording to their types. This is a verypowerful method used throughout the book [10℄, see also [9℄.2.2 Normal powersNotie that Lemmas 1 and 2 remain true even if we use the normal exponentiationin plae of the o-normal one. Thus by a similar argument we obtain an analoguousstatement for the variant of h(G) orresponding to the normal power.De�nition 5 hn(G) := limn!1 nq�(G(n)):The existene of the limit is somewhat less obvious here than in ase of h(G) beause�(G(n)) may get larger than [�(G)℄n. However, following the steps of Lemmas 1 and 2 weobtain nq�f (G(n)) � nr(n+ 1)jV jmaxP �f(G(n)[T nP ℄) == nvuut(n + 1)jV jmaxP jT nP j�(G(n)[T nP ℄) � nq(n+ 1)jV j�(G(n)) � nq(n+ 1)jV j�f(G(n)):Taking the limit everywhere here, we readily obtain the existene of the limit hn(G)by its equality to limn!1 nq�f(G(n)), whose existene will follow from its further equalityto limn!1 nq�(G(n)): The existene of the latter limit follows again from Fekete's theoremby observing �(G(k+m)) � �(G(k)) � �(G(m)), that an be seen by oloring the verties ofG(k+m) by the appropriate pairs of olors used in optimal olorings of G(k) and G(m). Theequality of limn!1 nq�f(G(n)) and limn!1 nq�(G(n)) an be shown similarly to the proofof Theorem 1 as follows. Key to the proof is a lemma of Lov�asz from [18℄ stating that�(G) � (1 + log�(G))�f(G) holds for every graph G. This implieslimn!1 nq�(G(n)) � limn!1 nq(1 + log�(G(n)))�f(G(n)) �� limn!1 nq(1 + n log jV (G)j)�f(G(n)) � limn!1 nq�f(G(n)):Sine the reverse inequality is obvious this proves the equality we stated.The orresponding asymptoti value for the hromati number is also a graph invariantonsidered for its own right, f. [24℄, [2℄, [3℄.5



De�nition 6 ([24℄) R(G) := limn!1 nq�(G(n))is the Witsenhausen rate of the graph G.Just like Shannon apaity, R(G) was de�ned for its information theoreti meaning,see [24℄, [3℄. It is similarly diÆult to determine as to determine C(G) and it an liestritly between the lique number and the hromati number. It follows from the resultsin [17℄ and [24℄, for example, that R(C5) = 5C(C5) = p5 whih is also smaller than thefrational hromati number of C5.The result thus obtained for hn(G) by the previous disussion is the following.Corollary 1 hn(G) = R(G): 2Remark: A somewhat surprising feature of the above equality is that the parameterR(G) may be both smaller and larger than �(G), thus the asymptoti value hn(G) issometimes larger, sometimes smaller than the original value �(G). For the latter relationthe already mentioned C5 is an example as �(C5) = 52 > p5 = R(G). An example whenR(G) > �(G) is provided by G = W5, the 5-wheel, whih is the graph we obtain froma C5 by onneting eah of its verties to a sixth vertex. It takes an easy heking that�(W5) = 3: On the other hand, R(W5) an be shown to be at least 1+p5 > 3. This followsfrom R(G) > C(G) whih is a onsequene of results of Marton in [19℄ and from the fatthat C(W5) = 1+p5:What we need from the latter is only C(W5) � 1+p5 whih followsfrom a general onstrution given by Shannon [23℄ proving �(F [ G) � �(F ) + �(G),where F [ G means the disjoint union of graphs F and G. (To see that equality holdsfor F = C5 and G = K1 one an use the properties of Lov�asz's theta-funtion de�ned in[17℄. Shannon atually onjetured that the last inequality is always an equality. Thislong-standing onjeture was reently disproved by Alon [1℄.)3 Cartesian and diret powersThe book [16℄ treats four assoiative graph produts as basi, three of whih are om-mutative, these are the normal (under the name \strong"), the Cartesian and the diret(often alled also \ategorial") produts. In this setion we investigate the behaviour ofthe Hall-ratio under the powers we obtain from the Cartesian and the diret produt.
6



3.1 Cartesian powersDe�nition 7 The Cartesian produt G2H of two graphs G and H is de�ned on thevertex set V (G2H) = V (G)�V (H) with edge set E(G2H) = ffuv; xyg : fu; xg 2 E(G)and v = y or u = x and fv; yg 2 E(H)g. The nth Cartesian power G2n of G is the n-foldCartesian produt G2G2 : : :2G:Thus the Cartesian power is also given on the n-length sequenes of the original vertiesand two suh sequenes form an edge if and only if they di�er at exatly one plae andat that plae the orresponding oordinates form an edge of the original graph.De�nition 8 The ultimate Hall-ratio with respet to the Cartesian power is de�ned ash2(G) = limn!1 �(G2n):The existene of the limit easily follows from �(F2G) � �(F )jV (G)j that implies�(G2(i+1)) � �(G2i) and from the obvious boundedness of �(G2n) by jV (G)j, say.Notie that here we do not have the multipliative-like behaviour of the Hall-ratio wefaed in the powers of the previous setion and so we do not have to take roots here.A related notion to h2(G) is the ultimate independene ratio. Formally introdued in[15℄ as I(G) := limn!1 i(G2n) where i(F ) = �(F )jV (F )j , it was extensively studied by Hahn,Hell, and Poljak in [13℄. A (surprisingly non-trivial) result of the latter paper (see asLemma 2.2 in [13℄) immediately implies that I(G) and h2(G) are essentially the samenotions.Lemma 3 ([13℄) If F is a subgraph of G then I(G) � I(F ):Corollary 2 h2(G) = 1I(G) :Proof. Sine h2(G) � 1I(G) is obvious, it is enough to prove the reverse inequality. Forevery i let Fi denote the subgraph of G2i ahieving �(G2i). Now we an write�(G2i) = 1i(Fi) � 1I(Fi) � 1I(G2i) = 1I(G)where the �rst inequality follows from the easy fat that i(F2r) is a dereasing sequeneof r (see as Corollary 2.2 in [15℄), the seond is a onsequene of Lemma 3, while the lastequality is easy to see. Letting i go to in�nity the required inequality follows. 2The results proven in [13℄, [15℄ and [25℄ for I(G) thus an also be stated in terms ofh2(G). We quote some of these to illustrate the relationship between h2(G) and �f(G).Theorem 3 ([13℄,[15℄) �f(G) � h2(G) � �(G):7



Zhu in [25℄ showed that h2(G) (i. e., 1I(G) in his language) an be stritly between thetwo bounds above and improved the upper bound �(G) to �(G), the irular hromatinumber of G. He also showed the following.Theorem 4 ([25℄) h2(G) = limn!1 �f(G2n):That is, while h2(G) an be stritly larger than the frational hromati number, italways oinides with its orresponding ultimate value.3.2 Diret powersNow we turn to diret powers.De�nition 9 The diret produt G�H of two graphs G and H is de�ned on the vertexset V (G�H) = V (G)� V (H) with edge set E(G�H) = ffuv; xyg : fu; xg 2 E(G) andfv; yg 2 E(H)g. The nth diret power G�n of G is the n-fold diret produt G�G�: : :�G:De�nition 10 The ultimate Hall-ratio with respet to the diret power is de�ned ash�(G) = limn!1 �(G�n):The existene of the limit follows again by monotoniity and boundedness. Mono-toniity is a onsequene of G�i � G�(i+1) that an be seen by simply dupliating the lastoordinate of eah sequene forming a vertex of G�i. A notion analoguous to the ultimateindependene ratio was introdued under the name ultimate ategorial independene ra-tio by Brown, Nowakowski, and Rall in [7℄. It is de�ned as A(G) := limn!1 i(G�n).The relation to h�(G), however, is quite di�erent to that we have seen in ase of theCartesian produt. The reason of the di�erene is, that while i(G2n) dereases with n,i(G�n) is inreasing. Sine G is an indued subgraph of G�n for all n (take the sequenesontaining the same letter at eah oordinate), we have h�(G) � �(G) = 1i(G) � 1A(G) ,and thus h�(G)A(G) > 1 whenever any of the two ultimate values di�er from the initialvalues of �(G) and i(G), respetively. It is proven in [7℄ that i(G) > 12 implies A(G) = 1.Thus adding jV (G)j isolated verties to any graph G will lift A(G) to 1, while it will nothange the value of h�(G). This shows that the parameters A(G) and h�(G) are highlyindependent of eah other.It is quite obvious that �f (G�n) = �f (G). (A frational oloring of G naturallyextends to a frational oloring of G�n by onsidering only the �rst oordinates. Thisimplies �f(G�n) � �f(G) while the reverse inequality follows from G � G�n.) Thisimplies h�(G) � �f(G). In all the ases we know the orresponding values, there isequality in the previous inequality. It seems plausible to beleive this is always the asebut we do not have a proof of this.Conjeture 1 h�(G) = �f(G)8



Let us remark that one we know a �nite k for whih we have �(G�k) � �f (G) thatimplies h�(G) = �f (G). This is beause the monotoniity of �(G�i) in i then impliesh�(G) � �f(G) and sine �f (G) is also an upper bound for h�(G), equality follows.The existene of some �nite k with �(G�k) = �f(G) is trivial if �f (G) = !(G) or ifG is vertex-transitive. (In both ases k = 1 will do.) A less trivial but still easy ase iswhen G is an odd wheel. Let the wheel onsisting of a yle of length m and an additionalpoint joint to every vertex of the yle be denoted by Wm.Proposition 1 h�(Wm) = �f (Wm) for every m � 3.Proof. The ases when m is even or m = 3 are trivial, sine then Wm is perfet, thus weare done by the general inequalities !(G) � h�(G) � �f(G) � �(G):Assume now that m = 2s+ 1 and s � 2. Then �f (Wm) = 3s+1s . Thus it is enough toshow a subgraph F of W�km for some k with �(F ) � [i(F )℄�1 = 3s+1s : Let the points of them-yle of Wm be 1; 2; : : : ; (2s+ 1) and the additional point be 0. Consider the 2-lengthsequenes in the union of the following sets: Z := f00g, A := f01; 03; 05; : : : ; 0(2s� 3)g,B := f10; 30; 50; : : : ; (2s�3)0g, D := f22; 44; 66; : : : ; (2s�4)(2s�4)g, L := f(2s�2)(2s�2); (2s � 1)(2s � 1); (2s)(2s); (2s + 1)(2s + 1)g: Let F be the subgraph of W�2m induedby the above sequenes. We show that [i(F )℄�1 = 3s+1s . Sine jV (F )j = 3s + 1 we haveto show �(F ) = s. Consider a maximal independent set S. Sine all verties in A areadjaent to all verties in B, at least one of S \ A and S \ B is empty. Without loss ofgenerality, we may assume S\B = ;. If 00 2 S then S\ (D[L) = ; and thus S � A[Z:But then jSj � jAj+ jZj = (s� 1)+ 1 = s and we are done. Thus we an assume 00 =2 S.In this ase S � A[D[L. Observe that the subgraph indued by A[D[L is isomorphito C2s+1, the yle of length 2s+ 1. But then jSj � �(C2s+1) = s, so we are done, again.2 Proposition 1 suggests that the following approah might lead to a proof of Conjeture1. Let G be an arbitrary graph and f(v) be a non-negative funtion on V (G) de�ning anoptimal frational lique, i. e., maximizing �v2V (G)f(v) under the onstraint �v2Sf(v) � 1holding for every independent set S. By the duality theorem of linear programming�v2V (G)f(v) is then equal to �f(G): Sine �f(G) is rational and all f(v)'s an be hosenrational (f. [22℄), there is some integer M suh that Mf(v) is integral for every v. Nowtake f(v) opies of v for eah v 2 V (G) as \one length sequenes". Their total numberis M�f (G) and the largest independent set they \indue" has size M , the only problembeing that many of our \sequenes" are idential. That is, if we ould extend these \onelength sequenes" to longer ones so that all of them beome di�erent while the size of thelargest independent set they indue in the orresponding power would not inrease thenwe were done. Indeed, our sequenes would then de�ne an indued subgraph F of G�nfor some n with jV (F )j�(F ) = �f (G): This would imply �(G�n) � �f (G) whih by our earlierdisussion would prove Conjeture 1. In the proof of Proposition 1 this approah workedwith n = 2. It might also be the ase that hoosing n =M and onsidering all sequenesof length M and type P , where P (v) is de�ned by P (v) = f(v)�f (G) , would give an induedsubgraph of G�M with [i(F )℄�1 = �f(G). If so, this would prove Conjeture 1.9



4 On the lexiographi powerUnlike the other produts leading to the graph powers treated in this paper the lexio-graphi produt (often alled also substitution) is not ommutative.De�nition 11 The lexiographi produt G ÆH of two graphs G and H is de�ned on thevertex set V (GÆH) = V (G)�V (H) with edge set E(GÆH) = ffuv; xyg : fu; xg 2 E(G)or u = x and fv; yg 2 E(H)g. The nth lexiographi power GÆn of G is the n-foldlexiographi produt G ÆG Æ : : : ÆG:That is, two sequenes of the original verties are adjaent in the lexiographi poweri� they are adjaent in the �rst oordinate where they di�er. It is straightforward fromthe de�nitions that G(n) � GÆn � Gn.De�nition 12 hÆ(G) := limn!1 nq�(GÆn):The existene of the limit follows similarly as in the ase of the o-normal powerusing that here we have the analoguous equalities jV (Fk Æ Fm)j = jV (Fk)j � jV (Fm)j and�(FkÆFm) = �(Fk)��(Fm) that an be applied to the subgraphs Fi of GÆi ahieving �(GÆi)(i = k;m). (The �rst of these is trivial, the latter is also easy to see, f. Proposition 8.9in [16℄, attributed to Geller and Stahl [12℄.)The above equalities readily give �(G) � hÆ(G), while R(G) � hÆ(G) follows fromG(n) � GÆn and Corollary 1. We know from the Remark after Corollary 1 that neither ofthese lower bounds is universally better than the other, thus we writehÆ(G) � maxf�(G); R(G)g:It is known that the frational hromati number behaves multipliatively with respetto the lexiographi produt (this is Theorem 8.40 in [16℄), so we havehÆ(G) � limn!1�f (GÆn) = �f(G):It is also a onsequene of the above and GÆn � Gn that the analogue of Theorem 1 isalso true for the lexiographi produt, see [14℄. Sine, unlike the sequene iq�(Gi), thesequene iq�(Gi); (i = 1; 2; : : :) onverges to �f (G) from below, the above relation of thepower graphs does not imply an analogue of Theorem 2 for lexiographi powers.In Setion 2 it was entral in our arguments that the subgraphs of the power graphsindued by all �xed type sequenes, i. e., Gn[T nP ℄ and G(n)[T nP ℄, were vertex-transitive.The analoguous statement is not true here in general beause of the non-ommutitativenature of the lexiographi produt.Nevertheless, we beleive that the analoguous statement to that of Theorem 2 is truehere, but we do not have a proof of this. We �nish our disussion by stating it as aonjeture.Conjeture 2 hÆ(G) = �f (G):10
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