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Abstract

The Hall-ratio of a graph G is the ratio of the number of vertices and the independence
number maximized over all subgraphs of G. We investigate asymptotic values of the
Hall-ratio with respect to different graph powers.



Dedicated to the memory of Claude Berge

1 Introduction

Several graph parameters show an interesting behaviour when investigated for different
products or powers of graphs. One of the most famous examples for such behaviour is
that of the Shannon capacity of graphs which is defined as a normalized limit of the
independence number under the so-called normal power, cf. [23].

If ©(G) denotes the Shannon capacity of graph G and G is the complementary graph,
then C'(G) := ©(Q) is known to lie between the clique number w(G) and the chromatic
number x(G) of G (cf. [23], [17]). This property of Shannon capacity is known to have
had a strong influence on Claude Berge when he introduced the celebrated concept of
perfect graphs. (For a detailed account on this story, see [5].)

By using the complementary (to normal) concept of co-normal powers (definitions are
given in the next section) C'(G) can be defined as the asymptotic value of the (appro-
priately normalized) clique number. The same kind of limit for the chromatic number is
known to be equal to the fractional chromatic number of G, cf. [6], [20], [22], which is in
general strictly larger than C'(G), cf. [17]. (For other descriptions and basic properties of
the fractional chromatic number we refer to [22].)

The above discussion may already suggest that similar asymptotic values for param-
eters falling into the interval [w(G), x(G)] are usually interesting. The parameter called
Hall-ratio, we are concerned with in this paper, has the property of falling into the above
interval. In Section 2 we will define and investigate its asymptotic value analoguous to
Shannon capacity. (We remark that several other analogues of the Shannon capacity of
graphs were already defined and investigated, cf., e. g., [14] and [11].)

It will be clear from its definition below that the Hall-ratio is also closely related to the
independence ratio i(G) = % for which asymptotic values under other graph expo-
nentiations, namely the Cartesian and the direct (or categorical) powers are investigated
in [13], [15], [25] and [7]. In these cases the relevant limits are called ultimate values. We
will define and investigate the corresponding ultimate values of the Hall-ratio in Section
3.

Motivated by problems of list coloring, the Hall-ratio of a graph G is investigated in

[8] where it is defined as

VH)|
p(G) = max{ o(H) H C G},
that is, as the ratio of the number of vertices and the independence number maximized
over all subgraphs of G. (In [8] induced subgraph is said in the definition of p(G), but
considering other subgraphs, as well, will not matter, since deleting edges from a subgraph
H may only increase a(H).) It is clear that w(G) < p(G) by considering any maximal
clique as a subgraph. Also, p(G) < x(G) is immediate just like the stronger inequality
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p(G) < x¢(G), where x;(G) is the fractional chromatic number of G. In [8] the authors
investigated the length of the intervals [w(G), p(G)] and [p(G), x(G)] and showed that
both can be made arbitrarily large, even simultanously.

Thus the Hall-ratio is indeed an invariant that lies between the clique number and the
chromatic number, so it coincides with them whenever these two are equal, e. g., for all
perfect graphs. It will turn out that the relevant limit for co-normal powers will behave
as it does for the upper bound and is always equal to the fractional chromatic number.
This will be shown in Section 2 where we also discuss the behaviour of the Hall-ratio with
respect to the normal power.

The later sections pursue a systematic study of asymptotic values of the Hall-ratio
under the Cartesian, direct and lexicographic exponentiations, i.e., the other three powers
coming from graph products treated as the most important ones in the book [16]. In case
of the direct and the lexicographic powers we cannot solve the problem of determining the
asymptotic values in general, only conjecture that the corresponding limits are expressed
again by the fractional chromatic number. In case of the Cartesian power we can use
results from [13] and [25] to show that the problem is equivalent to that of determining
the ultimate independence ratio and it may actually differ from the value of the fractional
chromatic number.

2 Normal and co-normal powers
We first define the co-normal and then the normal power of graphs.

Definition 1 The co-normal product G - H of two graphs G and H s defined on the
verter set V(G- H) =V (G) x V(H) with edge set E(G - H) = {{uv,zy}: {u,z} € E(Q)
or {v,y} € E(H)}. The n'" co-normal power G™ of G is the n-fold co-normal product
G-G-...-G.

That is, G™ is defined on the n-length sequences over V' = V(G) as vertices and two
such sequences are adjacent in G™ iff there is some coordinate where the corresponding
elements of the two sequences form an edge of G.

Definition 2 The normal product G ® H of two graphs G and H s defined on the vertex
set V(GO H) = V(G) x V(H) with edge set E(G ® H) = {{uv,zy} : {u,z} € F(G)
and {v,y} € E(H), or {u,z} € E(G) and v =1y, oru=x and {v,y} € E(H)}. The n'"
normal power G™ of G is the n-fold normal product of GO G ®...0G.

That is G™ is defined on the n-length sequences over V = V(G) as vertices and two
such sequences are adjacent in G iff their elements at every coordinate are either equal
or form an edge in G.

The term normal product is used by Berge, for example in [4] (page 111), and is often
substituted by several other names, like AND product ([2]) or strong product ([16]).



Similarly, the co-normal product is called OR product in [2] and disjunctive product
in [16], [22].

It is easy to check that the above two graph powers are complementary in the sense
that G" = G,

2.1 Co-normal powers

The (normalized) asymptotic value of the chromatic number referred to in the Intro-
duction is given by the following theorem of McEliece and Posner [20], cf. also Berge and
Simonovits [6].

Theorem 1 (/20])
lim {X(G") = x/(G).

n—o00
Exchanging x(G") to w(G™) above, we obtain the definition of the Shannon capacity
of the complementary graph of G (cf. [23]). What we are interested in here is the similar
asymptotic value of the Hall-ratio.

Definition 3
hG) == lim_ {/p(G").

The existence of the limit easily follows from the fact that p(GF¥™™) > p(GF) - p(G™)
which is a consequence of |V (F-F,,)| = |V (Fe)|- |V (Fn)| and a(Fy - Fr,) = a(Fy) - a(Fyy)
applied to the subgraphs F; of G' achieving p(G*) (i = k,m). The existence of the limit
is then implied by what is usually called Fekete’s theorem, cf., e. g., [21].

We know that w(G") < p(G™) < x(G™) and thus h(G) < x¢(G) follows immediately
from either the McEliece-Posner theorem or even more directly from the well known
identity x7(G") = [x7(G)]" (cf., e. g., Corollary 3.4.2 of [22]) and the obvious inequality
p(G") < Xs(G). ,

In general, there is a gap between the Shannon capacity of G which is C(G) :=
lim,, 0 {/w(G™) and x(G). A famous example is G = Cj, for which C'(G) = /5 an
x7(G) = 3, see [17]. As p(G) can be arbitrarily far from both w(G) and x(G) (cf. [8]), it
is not immediately obvious where h(G) should lie between the asymptotic values of w(G)
and x(G), i.e., in the interval [C'(G), x7(G)]. The next theorem shows that it is always
at the upper end.

Theorem 2 For every graph G we have h(G) = x¢(G).

Remark: Observe that a possible interpretation of Theorems 1 and 2 is that the unique

common point of the nested intervals [y/p(G?),\/x(G")], (i =1,2,...) is xf(G).

For the proof of Theorem 2 we need some preparation. (For a detailed account of the
notions and techniques we will use, cf. [10].)
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Definition 4 For a sequence x € V" let the probability distribution defined by Ya € V' :
Px(a) = @ be called the type of x. Let TZ denote the set of all sequences in V" that

have type P.

We will use the notation G[U] for the induced subgraph of G on U C V. Thus
G™[T#] denotes the induced subgraph of G on all those sequences that have type P. Let
V(G)=W.

Lemma 1
xs(G") < (n+1)V max x;(G"[T71)-

Proof. This follows from the fact that the number of different types is at most (n+ 1)V,
since the number of appearences of each element of V' in a sequence of length n can take
only n + 1 different values (cf. [10].) It is obvious that x;(G™) < B, x(G"[T}]) where
Py, ..., Py are all the possible types of sequences of length n. (This is easiest to see by
representing all x; values in the inequality by maximal fractional cliques, that can be
done by the duality theorem of linear programming.) Using our previous estimation on
the number of different types we obtain

X7(G™) < (n+ 1)V max x(G"[TZ]).

Lemma 2 For every P which is a possible type of sequences of length n, we have
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Proof. Since sequences of the same type are permutations of each other and the order of
the elements of a sequence does not matter in the definition of the co-normal power, the
graph G™[Tp] is vertex-transitive. It is well known that the fractional chromatic number
of a vertex-transitive graph is just the ratio of its number of vertices and its independence
number (see, e. g., Proposition 3.1.1 in [22].) O
Proof of Theorem 2. We know h(G) < x(G) thus it is enough to prove the reverse
inequality.
Taking n'* root and limit in the inequality stated by Lemma 1 we get

x7(G) < lim \/maxxf G"[T#]).

But by Lemma 2 the right hand side here is just
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where the last inequality follows from considering the induced subgraphs G"[7}] as pos-

sible candidates to achieve the Hall-ratio. The last two inequalities give x((G) < h(G)
what we needed. O

We remark that the above proof used the standard information theoretic technique of
partitioning an exponential size set of sequences according to their types. This is a very
powerful method used throughout the book [10], see also [9].

2.2 Normal powers

Notice that Lemmas 1 and 2 remain true even if we use the normal exponentiation
in place of the co-normal one. Thus by a similar argument we obtain an analoguous
statement for the variant of h(G) corresponding to the normal power.

Definition 5
ha(G) := lim {/p(G™).
The existence of the limit is somewhat less obvious here than in case of h(G) because
a(G™) may get larger than [o(G)]". However, following the steps of Lemmas 1 and 2 we
obtain

(@) < i D)V (GO[T)) =

- {j(n+1)|V| m}gX% <+ DVIp(G™) < /(0 + 1)Viy (G0,

Taking the limit everywhere here, we readily obtain the existence of the limit h,(G)
by its equality to lim,, . /x(G™), whose existence will follow from its further equality

to lim,, o /x(G™). The existence of the latter limit follows again from Fekete’s theorem
by observing y(G*+™) < x(G®)) . x(G™), that can be seen by coloring the vertices of
G +m) by the appropriate pairs of colors used in optimal colorings of G*) and G™. The
equality of lim,,_, /X (G™) and lim,,_, {/X(G™) can be shown similarly to the proof
of Theorem 1 as follows. Key to the proof is a lemma of Lovdsz from [18] stating that
X(G) < (1 +loga(G))xr(G) holds for every graph G. This implies

Jim {/x(G) < Jim {/(1+logo(GM))x(G™) <

n— 00

< lim {/(1+nlog [V(G))xs(G™) < lim {/x;(G™).

n—0o0 n—o0

Since the reverse inequality is obvious this proves the equality we stated.
The corresponding asymptotic value for the chromatic number is also a graph invariant
considered for its own right, cf. [24], [2], [3].



Definition 6 (/2/])
R(G) = lim {/(G™)

is the Witsenhausen rate of the graph G.

Just like Shannon capacity, R(G) was defined for its information theoretic meaning,
see [24], [3]. Tt is similarly difficult to determine as to determine C'(G) and it can lie
strictly between the clique number and the chromatic number. It follows from the results
in [17] and [24], for example, that R(C5) = C(‘Z,s) = /5 which is also smaller than the
fractional chromatic number of Cs.

The result thus obtained for h,(G) by the previous discussion is the following.

Corollary 1

O

Remark: A somewhat surprising feature of the above equality is that the parameter
R(G) may be both smaller and larger than p(G), thus the asymptotic value h,(G) is
sometimes larger, sometimes smaller than the original value p(G). For the latter relation
the already mentioned Cj is an example as p(C5) = g > /5 = R(G). An example when
R(G) > p(@Q) is provided by G = W5, the 5-wheel, which is the graph we obtain from
a C5 by connecting each of its vertices to a sixth vertex. It takes an easy checking that
p(Ws) = 3. On the other hand, R(Wj) can be shown to be at least 14++/5 > 3. This follows
from R(G) > C(G) which is a consequence of results of Marton in [19] and from the fact
that C(Ws) = 1++/5. What we need from the latter is only C'(Ws) > 1++/5 which follows
from a general construction given by Shannon [23] proving O(F U G) > O(F) + O(G),
where F'U G means the disjoint union of graphs F' and G. (To see that equality holds
for F' = C5 and G = K one can use the properties of Lovasz’s theta-function defined in
[17]. Shannon actually conjectured that the last inequality is always an equality. This
long-standing conjecture was recently disproved by Alon [1].)

3 Cartesian and direct powers

The book [16] treats four associative graph products as basic, three of which are com-
mutative, these are the normal (under the name “strong”), the Cartesian and the direct
(often called also “categorical”) products. In this section we investigate the behaviour of
the Hall-ratio under the powers we obtain from the Cartesian and the direct product.



3.1 Cartesian powers

Definition 7 The Cartesian product GOH of two graphs G and H is defined on the
vertez set V(GOH) = V(G) x V(H) with edge set E(GOH) = {{uv,zy}: {u,z} € E(G)
andv =1y oru=x and {v,y} € E(H)}. The n'™™ Cartesian power G™™ of G is the n-fold
Cartesian product GOGO. .. OG.

Thus the Cartesian power is also given on the n-length sequences of the original vertices
and two such sequences form an edge if and only if they differ at exactly one place and
at that place the corresponding coordinates form an edge of the original graph.

Definition 8 The ultimate Hall-ratio with respect to the Cartesian power is defined as

ho(G) = lim p(G™").

The existence of the limit easily follows from o(FOG) < «o(F)|V(G)| that implies
p(GPUH) > p(G™) and from the obvious boundedness of p(G™") by |V (G)], say.

Notice that here we do not have the multiplicative-like behaviour of the Hall-ratio we
faced in the powers of the previous section and so we do not have to take roots here.

A related notion to hg(G) is the ultimate independence ratio. Formally introduced in
[15] as I(G) := limy, 0 1(G"™) where i(F) = %, it was extensively studied by Hahn,
Hell, and Poljak in [13]. A (surprisingly non-trivial) result of the latter paper (see as
Lemma 2.2 in [13]) immediately implies that I(G) and hg(G) are essentially the same
notions.

Lemma 3 ([15]) If F is a subgraph of G then I(G) < I(F).

Corollary 2 hp(G) = ﬁ

Proof. Since hg(G) > ﬁ is obvious, it is enough to prove the reverse inequality. For

every i let F; denote the subgraph of G™ achieving p(G™). Now we can write

a1 1 1
PG = Ey S 1) S TG T 16

where the first inequality follows from the easy fact that i(F™") is a decreasing sequence
of r (see as Corollary 2.2 in [15]), the second is a consequence of Lemma 3, while the last
equality is easy to see. Letting ¢ go to infinity the required inequality follows. O

The results proven in [13], [15] and [25] for I(G) thus can also be stated in terms of
ha(G). We quote some of these to illustrate the relationship between ho(G) and x/(G).

Theorem 3 ([13],[15])
Xs(G) < ha(G) < x(G).



Zhu in [25] showed that ho(G) (i. e., ﬁ
two bounds above and improved the upper bound x(G) to x.(G), the circular chromatic
number of GG. He also showed the following.

in his language) can be strictly between the

Theorem 4 (/25]) ha(G) = lim, o X (G™).

That is, while ho(G) can be strictly larger than the fractional chromatic number, it
always coincides with its corresponding ultimate value.

3.2 Direct powers
Now we turn to direct powers.

Definition 9 The direct product G x H of two graphs G and H 1is defined on the vertex
set V(G x H) =V(G) x V(H) with edge set E(G x H) = {{uv,zy}: {u,z} € E(G) and
{v,y} € E(H)}. Then'™ direct power G*™ of G is the n-fold direct product GXxGx...xG.

Definition 10 The ultimate Hall-ratio with respect to the direct power is defined as
hy(G) = lim p(G™").

n—o0

The existence of the limit follows again by monotonicity and boundedness. Mono-
tonicity is a consequence of G** C G*(*+1 that can be seen by simply duplicating the last
coordinate of each sequence forming a vertex of G**. A notion analoguous to the ultimate
independence ratio was introduced under the name ultimate categorical independence ra-
tio by Brown, Nowakowski, and Rall in [7]. It is defined as A(G) := lim, , i(G*").
The relation to hy(G), however, is quite different to that we have seen in case of the
Cartesian product. The reason of the difference is, that while i(G™™) decreases with n,
i(G*™) is increasing. Since G is an induced subgraph of G*” for all n (take the sequences
containing the same letter at each coordinate), we have hy(G) > p(G) = ﬁ > ﬁ,
and thus hy(G)A(G) > 1 whenever any of the two ultimate values differ from the initial
values of p(@) and (@), respectively. It is proven in [7] that ¢(G) > 1 implies A(G) = 1.
Thus adding |V (G)]| isolated vertices to any graph G will lift A(G) to 1, while it will not
change the value of h,(G). This shows that the parameters A(G) and hy(G) are highly
independent of each other.

It is quite obvious that x;(G*") = xf(G). (A fractional coloring of G' naturally
extends to a fractional coloring of G*™ by considering only the first coordinates. This
implies x;(G*™) < x(G) while the reverse inequality follows from G C G*".) This
implies hy(G) < xy(G). In all the cases we know the corresponding values, there is
equality in the previous inequality. It seems plausible to beleive this is always the case
but we do not have a proof of this.

Conjecture 1
hx(G) = x4 (G)



Let us remark that once we know a finite k& for which we have p(G**) > x;(G) that
implies hy(G) = x;(G). This is because the monotonicity of p(G**) in i then implies
hy(G) > x(G) and since x(G) is also an upper bound for h, (G), equality follows.

The existence of some finite & with p(G**) = x;(G) is trivial if x;(G) = w(G) or if
G is vertex-transitive. (In both cases k¥ = 1 will do.) A less trivial but still easy case is
when G is an odd wheel. Let the wheel consisting of a cycle of length m and an additional
point joint to every vertex of the cycle be denoted by W,,.

Proposition 1 h,(W,,) = x;(W,,) for every m > 3.

Proof. The cases when m is even or m = 3 are trivial, since then W,, is perfect, thus we
are done by the general inequalities w(G) < hy(G) < x/(G) < x(G).

Assume now that m = 2s+1 and s > 2. Then x;(W,,) = 2. Thus it is enough to
show a subgraph F' of W ¥ for some k with p(F) > [i(F)]"! = 2L Let the points of the
m-cycle of W,,, be 1,2,...,(2s + 1) and the additional point be 0. Consider the 2-length
sequences in the union of the following sets: 7 := {00}, A := {01,03,05,...,0(2s — 3)},
B = {10,30,50, ..., (25—3)0}, D := {22,44,66, ..., (25— 4)(25—4)}, L := {(25—2) (25—
2), (25 — 1)(2s — 1),(2s)(25), (25 + 1)(2s + 1)}. Let F be the subgraph of W, ? induced
by the above sequences. We show that [i(F)]' = 35 Since |V(F)| = 35 + 1 we have
to show «a(F) = s. Consider a maximal independent set S. Since all vertices in A are
adjacent to all vertices in B, at least one of SN A and S N B is empty. Without loss of
generality, we may assume SN B = (). If 00 € S then SN(DUL) = () and thus S C AU Z.
But then |S| < |A|+|Z] = (s—1)+1 = s and we are done. Thus we can assume 00 ¢ S.
In this case S € AUDUL. Observe that the subgraph induced by AUDU L is isomorphic
to Casy1, the cycle of length 2s + 1. But then |S| < a(Cysy1) = s, S0 we are done, again.
Ol

Proposition 1 suggests that the following approach might lead to a proof of Conjecture
1. Let G be an arbitrary graph and f(v) be a non-negative function on V(G) defining an
optimal fractional clique, i. e., maximizing ¥,cv () f(v) under the constraint Xycq f(v) <1
holding for every independent set S. By the duality theorem of linear programming
Yvev(e) f(v) is then equal to x¢(G). Since x;(G) is rational and all f(v)’s can be chosen
rational (cf. [22]), there is some integer M such that M f(v) is integral for every v. Now
take f(v) copies of v for each v € V(G) as “one length sequences”. Their total number
is Mx¢(G) and the largest independent set they “induce” has size M, the only problem
being that many of our “sequences” are identical. That is, if we could extend these “one
length sequences” to longer ones so that all of them become different while the size of the
largest independent set they induce in the corresponding power would not increase then
we were done. Indeed, our sequences would then define an induced subgraph F' of G*™
for some n with |Z((II§))‘ = X/(G). This would imply p(G*™) > x(G) which by our earlier
discussion would prove Conjecture 1. In the proof of Proposition 1 this approach worked
with n = 2. It might also be the case that choosing n = M and considering all sequences
of length M and type P, where P(v) is defined by P(v) = XC((”C)T,), would give an induced
subgraph of G*M with [i(F)]™* = x;(G). If so, this would prove Conjecture 1.
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4 On the lexicographic power

Unlike the other products leading to the graph powers treated in this paper the lexico-
graphic product (often called also substitution) is not commutative.

Definition 11 The lexicographic product G o H of two graphs G and H 1is defined on the
verter set V(GoH) =V (G) x V(H) with edge set E(Go H) = {{uv,zy}: {u,z} € E(Q)
oru = z and {v,y} € E(H)}. The n'" lexzicographic power G™ of G is the n-fold
lezicographic product GoGo...oG.

That is, two sequences of the original vertices are adjacent in the lexicographic power
iff they are adjacent in the first coordinate where they differ. It is straightforward from
the definitions that G C G°" C G™.

Definition 12
ho(G) = lim {/p(G°n).

The existence of the limit follows similarly as in the case of the co-normal power
using that here we have the analoguous equalities |V (Fy o F,,)| = |[V(Fg)| - |V (Fy)| and
a(FyoFy,) = a(F}y) a(F,) that can be applied to the subgraphs F; of G achieving p(G*)
(¢ = k,m). (The first of these is trivial, the latter is also easy to see, cf. Proposition 8.9
in [16], attributed to Geller and Stahl [12].)

The above equalities readily give p(G) < ho(G), while R(G) < ho(G) follows from
G™ C G°" and Corollary 1. We know from the Remark after Corollary 1 that neither of
these lower bounds is universally better than the other, thus we write

ho(G) = max{p(G), R(G)}.

It is known that the fractional chromatic number behaves multiplicatively with respect
to the lexicographic product (this is Theorem 8.40 in [16]), so we have

ho(G) < Jim ¢ (G™) = x4(G).

It is also a consequence of the above and G°™ C G™ that the analogue of Theorem 1 is
also true for the lexicographic product, see [14]. Since, unlike the sequence \/x(G?), the

sequence /p(G?), (i = 1,2,...) converges to xf(G) from below, the above relation of the
power graphs does not imply an analogue of Theorem 2 for lexicographic powers.

In Section 2 it was central in our arguments that the subgraphs of the power graphs
induced by all fixed type sequences, i. e., G"[T#] and G™[T2], were vertex-transitive.
The analoguous statement is not true here in general because of the non-commutitative
nature of the lexicographic product.

Nevertheless, we beleive that the analoguous statement to that of Theorem 2 is true
here, but we do not have a proof of this. We finish our discussion by stating it as a
conjecture.

Conjecture 2
ho(G) = x1(G).
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