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Abstra
tThe Hall-ratio of a graph G is the ratio of the number of verti
es and the independen
enumber maximized over all subgraphs of G. We investigate asymptoti
 values of theHall-ratio with respe
t to di�erent graph powers.



Dedi
ated to the memory of Claude Berge1 Introdu
tionSeveral graph parameters show an interesting behaviour when investigated for di�erentprodu
ts or powers of graphs. One of the most famous examples for su
h behaviour isthat of the Shannon 
apa
ity of graphs whi
h is de�ned as a normalized limit of theindependen
e number under the so-
alled normal power, 
f. [23℄.If �(G) denotes the Shannon 
apa
ity of graph G and �G is the 
omplementary graph,then C(G) := �( �G) is known to lie between the 
lique number !(G) and the 
hromati
number �(G) of G (
f. [23℄, [17℄). This property of Shannon 
apa
ity is known to havehad a strong in
uen
e on Claude Berge when he introdu
ed the 
elebrated 
on
ept ofperfe
t graphs. (For a detailed a

ount on this story, see [5℄.)By using the 
omplementary (to normal) 
on
ept of 
o-normal powers (de�nitions aregiven in the next se
tion) C(G) 
an be de�ned as the asymptoti
 value of the (appro-priately normalized) 
lique number. The same kind of limit for the 
hromati
 number isknown to be equal to the fra
tional 
hromati
 number of G, 
f. [6℄, [20℄, [22℄, whi
h is ingeneral stri
tly larger than C(G), 
f. [17℄. (For other des
riptions and basi
 properties ofthe fra
tional 
hromati
 number we refer to [22℄.)The above dis
ussion may already suggest that similar asymptoti
 values for param-eters falling into the interval [!(G); �(G)℄ are usually interesting. The parameter 
alledHall-ratio, we are 
on
erned with in this paper, has the property of falling into the aboveinterval. In Se
tion 2 we will de�ne and investigate its asymptoti
 value analoguous toShannon 
apa
ity. (We remark that several other analogues of the Shannon 
apa
ity ofgraphs were already de�ned and investigated, 
f., e. g., [14℄ and [11℄.)It will be 
lear from its de�nition below that the Hall-ratio is also 
losely related to theindependen
e ratio i(G) := �(G)jV (G)j for whi
h asymptoti
 values under other graph expo-nentiations, namely the Cartesian and the dire
t (or 
ategori
al) powers are investigatedin [13℄, [15℄, [25℄ and [7℄. In these 
ases the relevant limits are 
alled ultimate values. Wewill de�ne and investigate the 
orresponding ultimate values of the Hall-ratio in Se
tion3. Motivated by problems of list 
oloring, the Hall-ratio of a graph G is investigated in[8℄ where it is de�ned as �(G) = maxfjV (H)j�(H) : H � Gg;that is, as the ratio of the number of verti
es and the independen
e number maximizedover all subgraphs of G. (In [8℄ indu
ed subgraph is said in the de�nition of �(G), but
onsidering other subgraphs, as well, will not matter, sin
e deleting edges from a subgraphH may only in
rease �(H).) It is 
lear that !(G) � �(G) by 
onsidering any maximal
lique as a subgraph. Also, �(G) � �(G) is immediate just like the stronger inequality1



�(G) � �f (G), where �f (G) is the fra
tional 
hromati
 number of G. In [8℄ the authorsinvestigated the length of the intervals [!(G); �(G)℄ and [�(G); �(G)℄ and showed thatboth 
an be made arbitrarily large, even simultanously.Thus the Hall-ratio is indeed an invariant that lies between the 
lique number and the
hromati
 number, so it 
oin
ides with them whenever these two are equal, e. g., for allperfe
t graphs. It will turn out that the relevant limit for 
o-normal powers will behaveas it does for the upper bound and is always equal to the fra
tional 
hromati
 number.This will be shown in Se
tion 2 where we also dis
uss the behaviour of the Hall-ratio withrespe
t to the normal power.The later se
tions pursue a systemati
 study of asymptoti
 values of the Hall-ratiounder the Cartesian, dire
t and lexi
ographi
 exponentiations, i.e., the other three powers
oming from graph produ
ts treated as the most important ones in the book [16℄. In 
aseof the dire
t and the lexi
ographi
 powers we 
annot solve the problem of determining theasymptoti
 values in general, only 
onje
ture that the 
orresponding limits are expressedagain by the fra
tional 
hromati
 number. In 
ase of the Cartesian power we 
an useresults from [13℄ and [25℄ to show that the problem is equivalent to that of determiningthe ultimate independen
e ratio and it may a
tually di�er from the value of the fra
tional
hromati
 number.2 Normal and 
o-normal powersWe �rst de�ne the 
o-normal and then the normal power of graphs.De�nition 1 The 
o-normal produ
t G � H of two graphs G and H is de�ned on thevertex set V (G �H) = V (G)� V (H) with edge set E(G �H) = ffuv; xyg : fu; xg 2 E(G)or fv; yg 2 E(H)g. The nth 
o-normal power Gn of G is the n-fold 
o-normal produ
tG �G � : : : �G.That is, Gn is de�ned on the n-length sequen
es over V = V (G) as verti
es and twosu
h sequen
es are adja
ent in Gn i� there is some 
oordinate where the 
orrespondingelements of the two sequen
es form an edge of G.De�nition 2 The normal produ
t G�H of two graphs G and H is de�ned on the vertexset V (G � H) = V (G) � V (H) with edge set E(G � H) = ffuv; xyg : fu; xg 2 E(G)and fv; yg 2 E(H); or fu; xg 2 E(G) and v = y, or u = x and fv; yg 2 E(H)g. The nthnormal power G(n) of G is the n-fold normal produ
t of G�G� : : :�G.That is G(n) is de�ned on the n-length sequen
es over V = V (G) as verti
es and twosu
h sequen
es are adja
ent in G(n) i� their elements at every 
oordinate are either equalor form an edge in G.The term normal produ
t is used by Berge, for example in [4℄ (page 111), and is oftensubstituted by several other names, like AND produ
t ([2℄) or strong produ
t ([16℄).2



Similarly, the 
o-normal produ
t is 
alled OR produ
t in [2℄ and disjun
tive produ
tin [16℄, [22℄.It is easy to 
he
k that the above two graph powers are 
omplementary in the sensethat �Gn = G(n):2.1 Co-normal powersThe (normalized) asymptoti
 value of the 
hromati
 number referred to in the Intro-du
tion is given by the following theorem of M
Elie
e and Posner [20℄, 
f. also Berge andSimonovits [6℄.Theorem 1 ([20℄) limn!1 nq�(Gn) = �f(G):Ex
hanging �(Gn) to !(Gn) above, we obtain the de�nition of the Shannon 
apa
ityof the 
omplementary graph of G (
f. [23℄). What we are interested in here is the similarasymptoti
 value of the Hall-ratio.De�nition 3 h(G) := limn!1 nq�(Gn):The existen
e of the limit easily follows from the fa
t that �(Gk+m) � �(Gk) � �(Gm)whi
h is a 
onsequen
e of jV (Fk �Fm)j = jV (Fk)j � jV (Fm)j and �(Fk �Fm) = �(Fk) ��(Fm)applied to the subgraphs Fi of Gi a
hieving �(Gi) (i = k;m). The existen
e of the limitis then implied by what is usually 
alled Fekete's theorem, 
f., e. g., [21℄.We know that !(Gn) � �(Gn) � �(Gn) and thus h(G) � �f(G) follows immediatelyfrom either the M
Elie
e-Posner theorem or even more dire
tly from the well knownidentity �f(Gn) = [�f (G)℄n (
f., e. g., Corollary 3.4.2 of [22℄) and the obvious inequality�(Gn) � �f(Gn).In general, there is a gap between the Shannon 
apa
ity of �G whi
h is C(G) :=limn!1 nq!(Gn) and �f (G). A famous example is G = C5, for whi
h C(G) = p5 and�f (G) = 52 , see [17℄. As �(G) 
an be arbitrarily far from both !(G) and �(G) (
f. [8℄), itis not immediately obvious where h(G) should lie between the asymptoti
 values of !(G)and �(G), i.e., in the interval [C(G); �f(G)℄. The next theorem shows that it is alwaysat the upper end.Theorem 2 For every graph G we have h(G) = �f (G):Remark: Observe that a possible interpretation of Theorems 1 and 2 is that the unique
ommon point of the nested intervals [ iq�(Gi); iq�(Gi)℄; (i = 1; 2; : : :) is �f (G).For the proof of Theorem 2 we need some preparation. (For a detailed a

ount of thenotions and te
hniques we will use, 
f. [10℄.)3



De�nition 4 For a sequen
e x 2 V n let the probability distribution de�ned by 8a 2 V :Px(a) = jfi:xi=agjn be 
alled the type of x. Let T nP denote the set of all sequen
es in V n thathave type P .We will use the notation G[U ℄ for the indu
ed subgraph of G on U � V . ThusGn[T nP ℄ denotes the indu
ed subgraph of Gn on all those sequen
es that have type P . LetV (G) = V:Lemma 1 �f (Gn) � (n + 1)jV jmaxP �f (Gn[T nP ℄):Proof. This follows from the fa
t that the number of di�erent types is at most (n+1)jV j,sin
e the number of appearen
es of ea
h element of V in a sequen
e of length n 
an takeonly n + 1 di�erent values (
f. [10℄.) It is obvious that �f(Gn) � �Mi=1�f(Gn[T nPi ℄) whereP1; : : : ; PM are all the possible types of sequen
es of length n. (This is easiest to see byrepresenting all �f values in the inequality by maximal fra
tional 
liques, that 
an bedone by the duality theorem of linear programming.) Using our previous estimation onthe number of di�erent types we obtain�f(Gn) � (n+ 1)jV jmaxi �f(Gn[T nPi ℄): 2Lemma 2 For every P whi
h is a possible type of sequen
es of length n, we have�f(Gn[T nP ℄) = jT nP j�(Gn[T nP ℄) :Proof. Sin
e sequen
es of the same type are permutations of ea
h other and the order ofthe elements of a sequen
e does not matter in the de�nition of the 
o-normal power, thegraph Gn[T nP ℄ is vertex-transitive. It is well known that the fra
tional 
hromati
 numberof a vertex-transitive graph is just the ratio of its number of verti
es and its independen
enumber (see, e. g., Proposition 3.1.1 in [22℄.) 2Proof of Theorem 2. We know h(G) � �f (G) thus it is enough to prove the reverseinequality.Taking nth root and limit in the inequality stated by Lemma 1 we get�f (G) � limn!1 nrmaxP �f(Gn[T nP ℄):But by Lemma 2 the right hand side here is justlimn!1 nvuutmaxP jT nP j�(Gn[T nP ℄) � h(G);4



where the last inequality follows from 
onsidering the indu
ed subgraphs Gn[T nP ℄ as pos-sible 
andidates to a
hieve the Hall-ratio. The last two inequalities give �f (G) � h(G)what we needed. 2We remark that the above proof used the standard information theoreti
 te
hnique ofpartitioning an exponential size set of sequen
es a

ording to their types. This is a verypowerful method used throughout the book [10℄, see also [9℄.2.2 Normal powersNoti
e that Lemmas 1 and 2 remain true even if we use the normal exponentiationin pla
e of the 
o-normal one. Thus by a similar argument we obtain an analoguousstatement for the variant of h(G) 
orresponding to the normal power.De�nition 5 hn(G) := limn!1 nq�(G(n)):The existen
e of the limit is somewhat less obvious here than in 
ase of h(G) be
ause�(G(n)) may get larger than [�(G)℄n. However, following the steps of Lemmas 1 and 2 weobtain nq�f (G(n)) � nr(n+ 1)jV jmaxP �f(G(n)[T nP ℄) == nvuut(n + 1)jV jmaxP jT nP j�(G(n)[T nP ℄) � nq(n+ 1)jV j�(G(n)) � nq(n+ 1)jV j�f(G(n)):Taking the limit everywhere here, we readily obtain the existen
e of the limit hn(G)by its equality to limn!1 nq�f(G(n)), whose existen
e will follow from its further equalityto limn!1 nq�(G(n)): The existen
e of the latter limit follows again from Fekete's theoremby observing �(G(k+m)) � �(G(k)) � �(G(m)), that 
an be seen by 
oloring the verti
es ofG(k+m) by the appropriate pairs of 
olors used in optimal 
olorings of G(k) and G(m). Theequality of limn!1 nq�f(G(n)) and limn!1 nq�(G(n)) 
an be shown similarly to the proofof Theorem 1 as follows. Key to the proof is a lemma of Lov�asz from [18℄ stating that�(G) � (1 + log�(G))�f(G) holds for every graph G. This implieslimn!1 nq�(G(n)) � limn!1 nq(1 + log�(G(n)))�f(G(n)) �� limn!1 nq(1 + n log jV (G)j)�f(G(n)) � limn!1 nq�f(G(n)):Sin
e the reverse inequality is obvious this proves the equality we stated.The 
orresponding asymptoti
 value for the 
hromati
 number is also a graph invariant
onsidered for its own right, 
f. [24℄, [2℄, [3℄.5



De�nition 6 ([24℄) R(G) := limn!1 nq�(G(n))is the Witsenhausen rate of the graph G.Just like Shannon 
apa
ity, R(G) was de�ned for its information theoreti
 meaning,see [24℄, [3℄. It is similarly diÆ
ult to determine as to determine C(G) and it 
an liestri
tly between the 
lique number and the 
hromati
 number. It follows from the resultsin [17℄ and [24℄, for example, that R(C5) = 5C(C5) = p5 whi
h is also smaller than thefra
tional 
hromati
 number of C5.The result thus obtained for hn(G) by the previous dis
ussion is the following.Corollary 1 hn(G) = R(G): 2Remark: A somewhat surprising feature of the above equality is that the parameterR(G) may be both smaller and larger than �(G), thus the asymptoti
 value hn(G) issometimes larger, sometimes smaller than the original value �(G). For the latter relationthe already mentioned C5 is an example as �(C5) = 52 > p5 = R(G). An example whenR(G) > �(G) is provided by G = W5, the 5-wheel, whi
h is the graph we obtain froma C5 by 
onne
ting ea
h of its verti
es to a sixth vertex. It takes an easy 
he
king that�(W5) = 3: On the other hand, R(W5) 
an be shown to be at least 1+p5 > 3. This followsfrom R(G) > C(G) whi
h is a 
onsequen
e of results of Marton in [19℄ and from the fa
tthat C(W5) = 1+p5:What we need from the latter is only C(W5) � 1+p5 whi
h followsfrom a general 
onstru
tion given by Shannon [23℄ proving �(F [ G) � �(F ) + �(G),where F [ G means the disjoint union of graphs F and G. (To see that equality holdsfor F = C5 and G = K1 one 
an use the properties of Lov�asz's theta-fun
tion de�ned in[17℄. Shannon a
tually 
onje
tured that the last inequality is always an equality. Thislong-standing 
onje
ture was re
ently disproved by Alon [1℄.)3 Cartesian and dire
t powersThe book [16℄ treats four asso
iative graph produ
ts as basi
, three of whi
h are 
om-mutative, these are the normal (under the name \strong"), the Cartesian and the dire
t(often 
alled also \
ategori
al") produ
ts. In this se
tion we investigate the behaviour ofthe Hall-ratio under the powers we obtain from the Cartesian and the dire
t produ
t.
6



3.1 Cartesian powersDe�nition 7 The Cartesian produ
t G2H of two graphs G and H is de�ned on thevertex set V (G2H) = V (G)�V (H) with edge set E(G2H) = ffuv; xyg : fu; xg 2 E(G)and v = y or u = x and fv; yg 2 E(H)g. The nth Cartesian power G2n of G is the n-foldCartesian produ
t G2G2 : : :2G:Thus the Cartesian power is also given on the n-length sequen
es of the original verti
esand two su
h sequen
es form an edge if and only if they di�er at exa
tly one pla
e andat that pla
e the 
orresponding 
oordinates form an edge of the original graph.De�nition 8 The ultimate Hall-ratio with respe
t to the Cartesian power is de�ned ash2(G) = limn!1 �(G2n):The existen
e of the limit easily follows from �(F2G) � �(F )jV (G)j that implies�(G2(i+1)) � �(G2i) and from the obvious boundedness of �(G2n) by jV (G)j, say.Noti
e that here we do not have the multipli
ative-like behaviour of the Hall-ratio wefa
ed in the powers of the previous se
tion and so we do not have to take roots here.A related notion to h2(G) is the ultimate independen
e ratio. Formally introdu
ed in[15℄ as I(G) := limn!1 i(G2n) where i(F ) = �(F )jV (F )j , it was extensively studied by Hahn,Hell, and Poljak in [13℄. A (surprisingly non-trivial) result of the latter paper (see asLemma 2.2 in [13℄) immediately implies that I(G) and h2(G) are essentially the samenotions.Lemma 3 ([13℄) If F is a subgraph of G then I(G) � I(F ):Corollary 2 h2(G) = 1I(G) :Proof. Sin
e h2(G) � 1I(G) is obvious, it is enough to prove the reverse inequality. Forevery i let Fi denote the subgraph of G2i a
hieving �(G2i). Now we 
an write�(G2i) = 1i(Fi) � 1I(Fi) � 1I(G2i) = 1I(G)where the �rst inequality follows from the easy fa
t that i(F2r) is a de
reasing sequen
eof r (see as Corollary 2.2 in [15℄), the se
ond is a 
onsequen
e of Lemma 3, while the lastequality is easy to see. Letting i go to in�nity the required inequality follows. 2The results proven in [13℄, [15℄ and [25℄ for I(G) thus 
an also be stated in terms ofh2(G). We quote some of these to illustrate the relationship between h2(G) and �f(G).Theorem 3 ([13℄,[15℄) �f(G) � h2(G) � �(G):7



Zhu in [25℄ showed that h2(G) (i. e., 1I(G) in his language) 
an be stri
tly between thetwo bounds above and improved the upper bound �(G) to �
(G), the 
ir
ular 
hromati
number of G. He also showed the following.Theorem 4 ([25℄) h2(G) = limn!1 �f(G2n):That is, while h2(G) 
an be stri
tly larger than the fra
tional 
hromati
 number, italways 
oin
ides with its 
orresponding ultimate value.3.2 Dire
t powersNow we turn to dire
t powers.De�nition 9 The dire
t produ
t G�H of two graphs G and H is de�ned on the vertexset V (G�H) = V (G)� V (H) with edge set E(G�H) = ffuv; xyg : fu; xg 2 E(G) andfv; yg 2 E(H)g. The nth dire
t power G�n of G is the n-fold dire
t produ
t G�G�: : :�G:De�nition 10 The ultimate Hall-ratio with respe
t to the dire
t power is de�ned ash�(G) = limn!1 �(G�n):The existen
e of the limit follows again by monotoni
ity and boundedness. Mono-toni
ity is a 
onsequen
e of G�i � G�(i+1) that 
an be seen by simply dupli
ating the last
oordinate of ea
h sequen
e forming a vertex of G�i. A notion analoguous to the ultimateindependen
e ratio was introdu
ed under the name ultimate 
ategori
al independen
e ra-tio by Brown, Nowakowski, and Rall in [7℄. It is de�ned as A(G) := limn!1 i(G�n).The relation to h�(G), however, is quite di�erent to that we have seen in 
ase of theCartesian produ
t. The reason of the di�eren
e is, that while i(G2n) de
reases with n,i(G�n) is in
reasing. Sin
e G is an indu
ed subgraph of G�n for all n (take the sequen
es
ontaining the same letter at ea
h 
oordinate), we have h�(G) � �(G) = 1i(G) � 1A(G) ,and thus h�(G)A(G) > 1 whenever any of the two ultimate values di�er from the initialvalues of �(G) and i(G), respe
tively. It is proven in [7℄ that i(G) > 12 implies A(G) = 1.Thus adding jV (G)j isolated verti
es to any graph G will lift A(G) to 1, while it will not
hange the value of h�(G). This shows that the parameters A(G) and h�(G) are highlyindependent of ea
h other.It is quite obvious that �f (G�n) = �f (G). (A fra
tional 
oloring of G naturallyextends to a fra
tional 
oloring of G�n by 
onsidering only the �rst 
oordinates. Thisimplies �f(G�n) � �f(G) while the reverse inequality follows from G � G�n.) Thisimplies h�(G) � �f(G). In all the 
ases we know the 
orresponding values, there isequality in the previous inequality. It seems plausible to beleive this is always the 
asebut we do not have a proof of this.Conje
ture 1 h�(G) = �f(G)8



Let us remark that on
e we know a �nite k for whi
h we have �(G�k) � �f (G) thatimplies h�(G) = �f (G). This is be
ause the monotoni
ity of �(G�i) in i then impliesh�(G) � �f(G) and sin
e �f (G) is also an upper bound for h�(G), equality follows.The existen
e of some �nite k with �(G�k) = �f(G) is trivial if �f (G) = !(G) or ifG is vertex-transitive. (In both 
ases k = 1 will do.) A less trivial but still easy 
ase iswhen G is an odd wheel. Let the wheel 
onsisting of a 
y
le of length m and an additionalpoint joint to every vertex of the 
y
le be denoted by Wm.Proposition 1 h�(Wm) = �f (Wm) for every m � 3.Proof. The 
ases when m is even or m = 3 are trivial, sin
e then Wm is perfe
t, thus weare done by the general inequalities !(G) � h�(G) � �f(G) � �(G):Assume now that m = 2s+ 1 and s � 2. Then �f (Wm) = 3s+1s . Thus it is enough toshow a subgraph F of W�km for some k with �(F ) � [i(F )℄�1 = 3s+1s : Let the points of them-
y
le of Wm be 1; 2; : : : ; (2s+ 1) and the additional point be 0. Consider the 2-lengthsequen
es in the union of the following sets: Z := f00g, A := f01; 03; 05; : : : ; 0(2s� 3)g,B := f10; 30; 50; : : : ; (2s�3)0g, D := f22; 44; 66; : : : ; (2s�4)(2s�4)g, L := f(2s�2)(2s�2); (2s � 1)(2s � 1); (2s)(2s); (2s + 1)(2s + 1)g: Let F be the subgraph of W�2m indu
edby the above sequen
es. We show that [i(F )℄�1 = 3s+1s . Sin
e jV (F )j = 3s + 1 we haveto show �(F ) = s. Consider a maximal independent set S. Sin
e all verti
es in A areadja
ent to all verti
es in B, at least one of S \ A and S \ B is empty. Without loss ofgenerality, we may assume S\B = ;. If 00 2 S then S\ (D[L) = ; and thus S � A[Z:But then jSj � jAj+ jZj = (s� 1)+ 1 = s and we are done. Thus we 
an assume 00 =2 S.In this 
ase S � A[D[L. Observe that the subgraph indu
ed by A[D[L is isomorphi
to C2s+1, the 
y
le of length 2s+ 1. But then jSj � �(C2s+1) = s, so we are done, again.2 Proposition 1 suggests that the following approa
h might lead to a proof of Conje
ture1. Let G be an arbitrary graph and f(v) be a non-negative fun
tion on V (G) de�ning anoptimal fra
tional 
lique, i. e., maximizing �v2V (G)f(v) under the 
onstraint �v2Sf(v) � 1holding for every independent set S. By the duality theorem of linear programming�v2V (G)f(v) is then equal to �f(G): Sin
e �f(G) is rational and all f(v)'s 
an be 
hosenrational (
f. [22℄), there is some integer M su
h that Mf(v) is integral for every v. Nowtake f(v) 
opies of v for ea
h v 2 V (G) as \one length sequen
es". Their total numberis M�f (G) and the largest independent set they \indu
e" has size M , the only problembeing that many of our \sequen
es" are identi
al. That is, if we 
ould extend these \onelength sequen
es" to longer ones so that all of them be
ome di�erent while the size of thelargest independent set they indu
e in the 
orresponding power would not in
rease thenwe were done. Indeed, our sequen
es would then de�ne an indu
ed subgraph F of G�nfor some n with jV (F )j�(F ) = �f (G): This would imply �(G�n) � �f (G) whi
h by our earlierdis
ussion would prove Conje
ture 1. In the proof of Proposition 1 this approa
h workedwith n = 2. It might also be the 
ase that 
hoosing n =M and 
onsidering all sequen
esof length M and type P , where P (v) is de�ned by P (v) = f(v)�f (G) , would give an indu
edsubgraph of G�M with [i(F )℄�1 = �f(G). If so, this would prove Conje
ture 1.9



4 On the lexi
ographi
 powerUnlike the other produ
ts leading to the graph powers treated in this paper the lexi
o-graphi
 produ
t (often 
alled also substitution) is not 
ommutative.De�nition 11 The lexi
ographi
 produ
t G ÆH of two graphs G and H is de�ned on thevertex set V (GÆH) = V (G)�V (H) with edge set E(GÆH) = ffuv; xyg : fu; xg 2 E(G)or u = x and fv; yg 2 E(H)g. The nth lexi
ographi
 power GÆn of G is the n-foldlexi
ographi
 produ
t G ÆG Æ : : : ÆG:That is, two sequen
es of the original verti
es are adja
ent in the lexi
ographi
 poweri� they are adja
ent in the �rst 
oordinate where they di�er. It is straightforward fromthe de�nitions that G(n) � GÆn � Gn.De�nition 12 hÆ(G) := limn!1 nq�(GÆn):The existen
e of the limit follows similarly as in the 
ase of the 
o-normal powerusing that here we have the analoguous equalities jV (Fk Æ Fm)j = jV (Fk)j � jV (Fm)j and�(FkÆFm) = �(Fk)��(Fm) that 
an be applied to the subgraphs Fi of GÆi a
hieving �(GÆi)(i = k;m). (The �rst of these is trivial, the latter is also easy to see, 
f. Proposition 8.9in [16℄, attributed to Geller and Stahl [12℄.)The above equalities readily give �(G) � hÆ(G), while R(G) � hÆ(G) follows fromG(n) � GÆn and Corollary 1. We know from the Remark after Corollary 1 that neither ofthese lower bounds is universally better than the other, thus we writehÆ(G) � maxf�(G); R(G)g:It is known that the fra
tional 
hromati
 number behaves multipli
atively with respe
tto the lexi
ographi
 produ
t (this is Theorem 8.40 in [16℄), so we havehÆ(G) � limn!1�f (GÆn) = �f(G):It is also a 
onsequen
e of the above and GÆn � Gn that the analogue of Theorem 1 isalso true for the lexi
ographi
 produ
t, see [14℄. Sin
e, unlike the sequen
e iq�(Gi), thesequen
e iq�(Gi); (i = 1; 2; : : :) 
onverges to �f (G) from below, the above relation of thepower graphs does not imply an analogue of Theorem 2 for lexi
ographi
 powers.In Se
tion 2 it was 
entral in our arguments that the subgraphs of the power graphsindu
ed by all �xed type sequen
es, i. e., Gn[T nP ℄ and G(n)[T nP ℄, were vertex-transitive.The analoguous statement is not true here in general be
ause of the non-
ommutitativenature of the lexi
ographi
 produ
t.Nevertheless, we beleive that the analoguous statement to that of Theorem 2 is truehere, but we do not have a proof of this. We �nish our dis
ussion by stating it as a
onje
ture.Conje
ture 2 hÆ(G) = �f (G):10
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